Cross-Fertilization of Earley and Tomita

Klaas Sikkel

Computer Science Department, University of Twente,
PO Box 217, 7500 AE Enschede, The Netherlands
sikkel@cs.utwente.nl

Abstract

Earley’s and Tomita’s algorithm are superficially rather different. Their underly-
ing structure, however, is remarkably similar. For a closer inspection of differences and
similarities, we define variants of Earley and Tomita that produce (almost) indistinguish-
able results: a parse stack annotated with recognized items. Tomita’s algorithm is more
sensitive to the complexity of this parse stack. It will be better than Earley’s algorithm,
provided that the grammar is not too complicated, i.e., not densely ambiguous.

As an application of cross-breeding between the two species, we sketch a novel,
elegant parallel parser. Combining a well-known parallelization strategy of Earley with
the algorithmic approach of Tomita yields a Parallel Bottom-up Tomita parser.

1 Introduction

There is a variety of parsing algorithms and an even wider variety of parallel parsing algorithms.
The work presented here is part of a research project that aims at bringing some order into the not
yet very structured field of parallel parsing. We envisage the following general approach. If we
abstract from the data structures used and other algorithmic details, we can perceive parsing stra-
tegies: which (sub)products are to be computed and — not unimportant for parallelization —
what are the constraints on the ordering of the computation steps? More specifically, we can clas-
sify bottom-up parsing algorithms according to their recognized item set (RIS). A recognized
item denotes the fact that some symbol, or part of a production, has been identified to produce a
specific part of the sentence. Such a categorization seems rather natural for chart parsers (c.q.
Earley), but we will show that it easily applies to LR parsers (c.q. Tomita) as well.

We will first show that — with minor modifications — Earley and Tomita have an identical
RIS. Moreover, we introduce variants of Earley and Tomita that produce an almost identical data
structure. This graph structured variant of Earley and annotated variant of Tomita allow a
detailed comparison of both algorithms. We know quite a few people who shared our conviction
that, basically, Earley and Tomita are rather similar, but we do not know of any paper in which
the two algorithms are systematically compared. It is generally acknowledged that Tomita is
more efficient on easy grammars; it has compiled a fair part of the work that needs to be done
run-time by Earley. The worst-case behaviour, however, is less clear. It can be argued that Tom-
ita need not be slower (up to a constant factor) than Earley, even for hard (i.e. densely ambigu-
ous) grammars. But this is only of theoretical value.

Having uncovered the similarity between the two algorithms, we can apply extensions and
variations of one species to the other species as well. As a particularly interesting case, we sketch
how a well-known parallelization strategy of Earley [Graham80] can be combined with the algo-
rithmic approach of Tomita. The resulting Paraliel Bottom-up Tomita (PBT) algorithm is a (with
hindsight) rather obvious, but nevertheless unknown paralielization of Tomita. The PBT algo-
rithm is investigated further in {Lankhorst91].

The successful cross-breeding of Parallel Bottom-up Earley and Tomita into Parallel
Bottom-up Tomita is a sign that our approach towards parallel parsing is a fruitful one.

133

2 Definitions and notation

We consider context-free grammars G = (N, Z, P, S), with nonterminal symbols N, terminal sym-
bols =, a set P of productions of the form A —a with A €N, oe(NUZ)" and a start symbol S. We
write V for NUZ. We assume G to be cycle-free, i.e., there is no sequence of productions
A =* A. Within the context of natural languages this is not an unreasonable assumption.

Triples of the form [i,A—aB,j], with A—af a production and i,j numbers that denote
positions in the sentence, are called items. For a string of length n, the set of items E is defined by

def
= = {[i,A—=a.p,j]|A—apeP, 0si<jsn}.

If at some moment during parsing it is established that some prefix a of the right-hand side of a
production A—af produces a substring a;.; * * - a; of the sentence, we will denote this fact by
adding the item [i,A—0a+f, j] to a set] of items recognized so far.

Parsers that deal with such items explicitly can be classified according to their recognized
item set (RIS), that is, all items that are recognized during parsing. Thus /= {J at the start and [=
RIS at the end of an algorithm. Earley’s algorithm is characterized by a recognized item set

RISp = {[iA—aB,j]l|a="a;, g A yeV':S ="a; - aAy}.

Subsequently we will present a particular variant of Tomita’s algorithm that can be characterized
by the same recognized item set RISg.

As an alternative notation for items we write

def
2; = {liA—~0.p]|A—>aBeP, 0sisj},

and we maintain separate item sets [; CE; for 0<j=n. If [i, A—>a.f,j]el then [i,A—a.B]el;
and vice versa. As a third, equivalent notation we introduce (identical) sets of items

def
g, = {A—a.p]|A—aBeP}

for Osi=<j=<n and maintain separate item sets [; ; CE; ;. Consequently, [i,A—a.B]el; iff
[A—a.B)el; ;. We will switch notation according to what is most practical in a particular con-
text.

As an example throughout this article, we will use the following simple grammar G:

(1) S—=NPVP (4) NP — *det *noun
2) S—=SPP (55 NP — NPPP
(3) *det —¢ (6) PP — *prep NP

(7) VP — *verb NP

Production (3) usually reads NP — *noun. That is, a noun phrase can have the form *det *noun or
*noun. In this case, a noun phrase always has the form *det *noun, but the *det may be omitted.
Both grammars are equivalent, but G as defined above is slightly more awkward to parse. This
makes it very suitable for the examples to follow. Note that *det is also used as a nonterminal in
*det — ¢, but this will not cause any confusion. When space is limited (as in pictures) we write
*d, *n, *y, *p for *det, *noun, *verb and *prep, respectively.

3 Earley’s algorithm

Earley’s algorithm is one of the first efficient parsing algorithms that can handle any
context-free grammar (including cyclic grammars) [Earley68,70]. In the past two decades some
smaller improvements have been made and many approaches to parallelization of the algorithm
have been suggested. See, e.g., [Graham80], [Chiang84], [Nijholt91]. In this paper we describe
Earley’s algorithm rather tersely.

134

In Figure 1, the item sets I; are shown that should be computed by Earley’s algorithm for
the input sentence John saw a lion. It can be verified that RISg = {_) =i I;. Such a table can be

completed in the following way. We start with an item [0,S—«NP VP]el,. That is, we intend
to recognize a sentence, but no part of it has been recognized so far. We add items in each of the
following ways:

o If[i,A—a.BB]el; and B—>yeP then [i, B—>.y] is added to I; (predict);

e if [i, B—>a.ap]el;_; and a =a; then [i, B—~oa «B] is added to I; (scan);

e if [k, B—y.]el; and [i, A—>c.Bf]el; then [i, A—0B «B] is added to /; (complete).
Exhaustive application of these steps yields the item sets as shown in Figure 1.

In the following formal description of Earley’s algorithm we have incorporated the predict
operation into scan and complete. Let D be the set of dotted rules {A—a.B | A—afeP}. We
define functions predict : N — D and predictor : E;x{1, - -+ ,n} — 27 as follows:

def
predict(A) = {B—«p |B—BeP, Jyev*':A ="By}.

{[i,A—a+p]} ifp=corpB=ayforsomeac,yeV"

def
predictor([i,A—0BLj) = |(1; 4 >q.B]} U {[j,C—+0] | C—+depredict (B)}
if =By for some B eN,yeV"

L

We define operations SCAN and COMPLETE including the predictor function

SCAN (j): for each [i, B—a.af]el;_; such that a =a;
do; :=1; U predictor ([i, B—=aa «B], j) ;

COMPLETE (j): while 3A,BeN, o,B,yeV", i,k 0sisksj)
such that [k, B—y.]el}, [i, A—~a.BBlel, [i, A—>0B .B]¢l;
do/; :=1; U predictor ([i, A—>aB «B], j) ;

yielding the following top-level description of Earley’s algorithm:

1o = {[0,A—>a.] | A—.aepredict(S)} ;
COMPLETE (0);
for j:=1tondo
begin
1] =0 5
SCAN (j) ;
COMPLETE (j)
end;

if [0,S—w.]el, for some S—weP then accept else reject;

We will define a graph structure — using the items sets /; — that shows the structure of the
recognition process somewhat clearer. An example of such a graph is shown in Figure 2. The
graph illustrates how items have been added to the item sets /;. The graph contains two types of
nodes. Item set nodes (circles) are labelled with subsets of some item set /;. Such nodes are con-
nected via symbol nodes (squares). These show how a new set of items has been derived from a
given set of items by scanning a particular symbol. The root node, denoted uy, is labelled with
the set of items predict(S). As it happens to be the case that the sentence starts with a NP, u is

135

Io I, I, Iy G
[0,5—.NPVP]| [[0,NP—*d*n.]| [[1,VP—*.NP]| |[2,NP—*d.*n]| |[2,NP—>*d*n.]
[0,S—>.S PP] [0,S—NP.VP] | |[2,NP—.*d *n] [2, NP—NP .PP)
[0O,NP—.*d *n]| |[0,NP—NP.PP]| |[2,NP—>.NP PP] [1, VP—*y NP.]
[0,NP—.NPPP]| |[1,VP—.*VNP] [2, *d—.] [0,S—NP VP.]
[0, *d—.] [1,PP—.*pNP]| |[2,NP—>*d.*n] [0,S—»S . PP]
[0, NP—*d . *n] {4, PP— . *p NP]

Figure 1: completed item sets 1; for the sentence John saw a lion

L
[0,S—.NP VP] [0,S—=NP .VP] [1,VP—*v.VP] |[2,NP—>"d."n] {[Z,NP—-"d *n.]
[0,S—.S PP] [0,NP—NP .PP]| | | [2,NP—.*d *n]
[0,NP—.*d*n]| | |[1,VP—.*vNP]| | |[2NP—.NP PP]
[0,NP—.NPPP]| | |[1,PP—.%p NP] [2,%d—>.]
[0,*d—.]

[1,VP—*vNP.]
[2,NP—=NP .PP]
(4, PP—.*p NP]

[0,S—S .PP]
[4,PP—.*p PP)

Figure 2: A completed Earley graph for the sentence John saw a lion

connected — via an NP symbol node — to an item set node labelled with
e the applicable items from the label of u¢ in which the dot has been carried over an NP,
o the predictor sets of those items.

Every symbol node in the graph, in similar fashion, represents a step in the recognition process,
in which the items of its sucessor node have been derived from the items of its predecessor.

Formally, we introduce the set of item set nodes U = {uo} U {u;x |0<jsnXeV}. We
may write U; for subsets of U with fixed j. Each ueU is labeled with a set of items ITEMS (u),
defined by

136

def
ITEMS (ug) = {[0,C—+y] | C—«yepredict(S)}
def
ITEMS (ujx) = U predictor ([i,A—>aX <],)
[i,A—oX .Blel;

As a consequence, I; = ITEMS (u) for each j. le., taking the union of the verticall
] uer y

aligned ITEMS (1) boxes in Figure 2 yields the item sets of Figure 1. Items of the form
[i, A— «B] may appear in more than one ITEMS (u; x) set for the same j, as they have been added
to I; more than once in different predictor sets. The set of symbol nodes, denoted Y, is defined by

def
Y = {yj,X l 3 uj’XeU\{uO}: ITEMS(ujx)#Q} .

That is, for each u; x with a non-empty set of items, a node y; x is introduced. Symbol nodes are
labeled with their second index: SYMBOL (y;y) =X. Note that y; €Y iff X =>"a;,, - a; for
some i. This fact, and the particular i, will be indicated by the edges that are contained in the
graph. If y; y€Y then there is some item [k, A—0X . B]eITEMS (u; x). Also, there must be some
v with [k, A—0.+XB]eITEMS (v). For each such v, an edge v—>y; x is added to set of edges E.
Finally, y; x—>u; x is also added to E.

Consequently, X = g, a; iff there are veU;, uelU;, yeY such that v—=y, y—>ueckE
and SYMBOL (y) = X. Thus we have formalized the underlying intuition: one can move from
veU; to ueU; by scanning a symbol X that produces a;.; * " * a;.

In [Sikkel90] it is shown in some more detail how the graph can be constructed directly,
rather than from the sets /;.

4 Tomita’s algorithm

We will describe a variant of Tomita’s algorithm that allows close comparison with Earley’s
algorithm. At the end of the section we will show how a recognized item set can be defined for
an LR parser. The RIS of the variant of Tomita’s algorithm constructed here is identical to RISg
of Earley’s algorithm.

Tomita’s algorithm is a generalization of the well-known LR parsing technique. In fact
Tomita was not the only, nor even the first person to consider “generalized LR parsing”, but the
algorithm is known under his name because his book is very easy to read and enjoys widespread
circulation. A more theoretical but rather more complex approach can be found in [vdSteen88].

An LR parser scans a string from left to right while constructing a rightmost derivation of
the parse tree. LR parsing is introduced in any textbook on parsing, e.g. [Aho77], [Harrison78).
Traditional LR parsing requires at every step that the next action be uniquely determined; in gen-
eralized LR parsing, table entries may contain multiple actions. If such an ambiguity arises, all
actions are carried out on separate copies of the parse stack. For efficiency, the different parse
stacks are merged into one graph-structured stack; if different parses share common sub-parts, the
corresponding actions have to be carried out only once.

In [Tomita85] an SLR(1) parser is used. For a close comparison with Earley, it is better to
use an LR(0) parser. That is, the set of possible actions depends only on the state of the parser,
irrespective of the next input symbol. An LR(0) parse table for & is shown in Figure 3. This
LR(0) table has the following interesting features:

e There is a column dotted rules. These sets of dotted rules play a vital role in the construc-
tion of the table (to be discussed shortly). With this extra column, we call it an annotated
parse table.

e The action column gives the actions to be carried out in a particular state; “sh” means shift
and “re p” mean reduce by production p. If the action is shift, the next state is determined

137

state dotted rules action | *d *m * *» NP PP VP S §
S'—’-S$
S— .NPVP
S—.SPP re3
0 3 - - - 2 = = 1 -
NP —.*d*n sh
NP — .NP PP
* —.
S’—’S-$
1 S—S.PP sh - = = 6 = 5 = = 4
PP —.*p NP
S—=NP.VP
, |NP=NP.PP| 4 | _ _ 7 6 - 9 8 - -
VP —.*v NP
PP —.*p NP
3 NP — *d.*n sh = 10 - - - - = =7 =
S—=55. acc - - - = i - - - -
5 S—SPP. re2 - - - - = = = o
PP — *p.NP
6 NP — .*d *n red 3 _ _ -1 _ =
NP — .NP PP sh
*d —.
VP — *v.NP
NP — .*d *n re3
7 3 - - - 12 - - - =
NP — .NP PP sh
.
8 S—=NPVP. rel - - = — - - - - =
9 NP — NP PP. re5 - - = = = = = _ -
10 NP — %d *n. red - - - - - = - = =
PP — *p NP. re6
11 NP — NP .PP sh - - - 6 - 9 - s iz
PP — . *p NP
VP — *v NP. re7
12 NP — NP.PP sh - - - 6 = 9 - - =
PP —.*p NP

Figure 3: an annotated LR(0) parse table

by the symbol that has been shifted. If there is no entry, the branch of the stack can be dis-
carded.

e An extra production $'—S $ has been added; it is presumed that the input sentence is fol-
lowed by an end-of-sentence-marker 3. The end-of-sentence marker must be shifted expli-
citly, in order to to determine that the sentence has really finished before it is accepted.
Clearly,S' = "a; " a,$ iff § ="a, " a,.

How is such a table constructed? The states represent sets of dotted rules of the form A—a.f.
(In LR literature, a dotted rule is called an LR(0) item, but we prefer to avoid the word “item” so
as not to create confusion with items of the form [i,A—a.p]elju. We start with state s, which
contains PREDICT(S'). If a state contains a dotted rule A—>a, the action “reduce A—>a” is
added to the possible actions. In s, production (3) *det—¢ can be reduced. For every symbol
that appears directly after the dot in a dotted rule, we need another state to go to. From state sg,
we need states to go to for the symbols S, NP and *det. States s, S, and s3 are defined accord-
ingly. If, for example, a noun phrase is parsed, the dot is carried over the NP symbol where appli-
cable, hence S—>NP.VP, S—NP.PPes,;. Additionally, for every A—a.Xfp we add
PREDICT (X) to the same state, ¢.g., VP—>- *yerb NP and PP— . *prep NP €s,. This process is

138

continued until no new states can be added.

We will exemplify the maintenance of the graph structured stack by looking at a few
instances during the parsing of the sentence John saw a lion at the zoo. After having processed
John saw a lion, we have a stack as shown in Figure 4(a). The next action could be reduce
VP—*verb NP or a shift. As a matter of policy, all possible reduce actions are carried out before
the next shift is done. So the reduction VP—*verb NP is carried out, yielding 4(b). Figure 4(c)
shows the stack after another reduction S—NP PP. There are no more reductions and both
branches do a shift. As it turns out, the next symbol *prep yields state 6 from both states 1 and
12, so we can join the branches again, yielding 4(d).

® O -7 ®

sh
®)
rel
©
C))

Figure 4: managing a graph structured stack

The stack of Tomita’s parsing algorithm can be described as a bipartite directed graph
I'=(U,Y;E). The set U=UyU -+ UU, contains state nodes. A state node u is in U; if the
state has been reached after reading the first j input symbols. A label STATE (u) gives the state
number corresponding to that particular vertex. The set of dotted rules of that particular state is
given by rules (STATE (u)). The set Y contains symbol nodes, as in the Earley graph. For a more
detailed description of how the algorithm maintains the graph structured stack see [Tomita85].

We will make three small changes to Tomita’s stack. Firstly, we reverse the direction of the
arrows as compared to the original Earley stack. This should not upset the reader at all, as we
have not shown any arrows so far. Secondly, when a reduction is carried out, there is no need to
delete the part of the stack that is being reduced. We can simply leave it in the graph and start a
new branch from the appropriate state node. This does not change the algorithm in any way, only
the presentation of what a graph structured stack looks like is different.

Last, and most important, we will label the state nodes with a set of items, ITEMS (), con-
taining items of the form [i, A—a.p] for each dotted rule A—o.«f in rules(STATE (u)). The
intention is clear: if [i, A—>a.p]eITEMS(u) and ueUj, then [i, A—a.f, j]€RIS, and reversed.
Items [i, A—a..p] are added to ITEMS (u) in the following way. For eachueUj:

e if y—uecE and SYMBOL (y) =X, then for each v such that v—=y—u and for every
[i, A=+ XB]eITEMS (v) add an item [i, A—aX «B] to ITEMS (u). It is easily verified that

139

this can only happen if indeed A —oX « B erules (STATE (u)).
e For each A—.yeSTATE (u), add an item [, A—>«y] to ITEMS (u).

As an example, the annotated stack of the sentence John saw a lion is shown in Figure 5.

moncm

\ [O,NP—-"d “n]

I [0, T]

2, NP—-"d ‘nﬂ

(D<=)"

Ca—>{(3 y—={7 (1)

1 1 1 1 1
[0,S'—.S §] [0,S—NP.VP] | | | (1, vP—*v.VP) l[Z,NP——*d.'n] [[Z,NP—.*d :-,,,]|
[0,S—.NPVP] | | |[0,NP~NP.PP]| | | [2,NP—.*d*n]
[0,S—.S PP] [1,VP—.*vNP]| | |[2NP— .NP PP]
[0,NP—.*d*n]| | |[1,PP—.*p NP] [2,%det—.]
[0,NP—=.NP PP] {7
[0, *d—]
[1, VP—*v NP.]
[2,NP—NP.PP]

[4, PP—.*p NP]

[77}—={8)

[0,8'—=S.5]
[0,S—S.PP]
[4,PP—.*p PP]

Figure 5: An annotated Tomita stack for John saw a lion

It is not a coincidence that Figure 5 and Figure 2 are very similar. The most important difference
(not present in the example graphs) is the fact that one u eU; in the Tomita graph may correspond
to multiple u; x’s in the Earley graph. This will be dlscussed in more detail in the next section. It
is has no consequences for the collection of items represented in the graph.

In order to relate the Earley item set /; and the Tomita item sets ITEMS (u) we have to
sweep one more detail under the rug: We mtroduced a supplementary production S'—S 3 for the
LR parser. If we discard items [, S’ —a.«f], or alternatively, if we run Earley’s algorithm on the
augmented grammar, we find the equality

RISg = \J ITEMS(u) .
uel

5 A close comparison of Earley and Tomita

Having discussed Earley and Tomita in the previous sections, we are ready to precisely establish
their relation.

140

The graphs of Graph Structured Earley (GSE) and Annotated LR(0) Tomita (AT) are almost
identical (in a sense that will be made more precise shortly). Furthermore, both algorithms are
naturally divided into steps O - - - n such that Y; and U; are constructed in step j. The main differ-
ence between these two algorithms is the way in which each individual step is carried out. Before
we look into the construction of the parse graph, we will review the differences between the GSE
and AT graph and argue that they are not essential. We may safely ignore the differences caused
by the fact that AT uses a grammar G' =G U{S'—S $}. A more substantial difference is that
the U;(GSE) nodes are classified according to the symbol that has been recognized, whereas the
U;(AT) nodes are classified according to the state of the parser. Each state can be associated with
a recognized symbol, as each state contains dotted rules of the form A—.«y and A—>oX .f for
some X €V. Unfortunately, there can be several states with the same symbol X. Furthermore, as
for every ueU; in either algorithm there is exactly one yeY;, we also find that for every
y €Y;(GSE) there is a corresponding set of symbol nodes in Y;(AT).

The next question, to be answered immediately, is: how much larger is the AT graph com-
pared to the GSE graph? We will argue that the difference in size is small enough to be ignored.
For that purpose, we define a refinement of GSE, called GSE+. We define symbol nodes in Y
according to occurrences of symbols in right-hand sides of productions, and item nodes accord-
ingly. Grammar G', with different occurrences of symbols numbered differently is

0 S—=5,9% (4) NP — *det| *noun,
(1) §—NP,VP, (5) NP — NP, PP,

2 S—S,pPP, (6) PP — *prep; NP;
(3) *det —¢ (7) VP — *verb; NP,

In Figure 2 a GSE graph for the sentence John saw a lion was shown. In order to change it into a
GSE+ graph, we would have to make the following changes:

e The node u; yp must be split up into u yp, and u; yp,, similarly for y; yp.
e The node u 4 yp must be split up into u4 yp, and u4 yp,, similarly for y 4 yp-

The administrative work in creating new nodes and arrows and the multiplicity of predicted items
may increase slightly. In the worst case with a factor equal to the largest number of occurrences
of one particular grammar symbol; it will be rather hard to notice a difference in performance.

We have associated each node in U;(GSE) with a subset of U;(AT); in the same way we can
associate each node in U;(AT) with a subset of U;(GSE+). It is not hard to prove that for arbi-
trary CFG’s the number of states in LR(0) Tomita is bounded by the number of different
occurrences of symbols in right-hand sides of productions. In particular, for any grammar, any
input and any j the inequality

|U;(GSE)| = |[U{(AT)| = |U;(GSE+)|

holds. A similar inequality holds for Y;. As we have argued that the difference in size between a
GSE and GSE+ graph is irrelevant, the different in size between either graph and an AT graph is
irrelevant too. Thus we have trivialized the differences between GSE and AT graphs, and we
may consider them almost identical indeed.

Let us now reconsider in some detail the operation of both algorithms. GSE creates the
ITEMS (uj x) sets (and, as a by-product, nodes y; x and u;x by scanning the appropriate
ITEMS (u; x') sets for O=i=j. For a scan operation, a scan over [;_; = UueU,-_, ITEMS (u)
yields all items [i, A—a.aP] with a = a; that cause items [i, A—0a +f] to be added to u; ,.. The
predict has been incorporated into the scan and complete operations, but the work still has to be
carried out. It is easy to verify that predict, like scan, takes O (j) time for each value of j, i.e.
O (n?) time for the algorithm. Complete involves some more work: a scan over /; teveals the
various items [k, B—y.] that take part in a complete step. For each k involved, I, must be
scanned for items [i, A—o0+B]. It is possible that /; contains items [k, A—0«f] for multiple

141

values of k. In the worst case, their number is proportional to j, hence complete is bounded by
O (n?), and the algorithm by O (n?) time. If the size of the item sets does not (significantly)
expand for larger j, one complete step takes only O(n) time and the algorithm finishes in 0 (n?)
time. Some clever indexing can help to reduce the number of items that is really scanned during
a scan or complete; but the essence of Earley’s approach is scanning completed item sets in order
to compute a new item set.

AT, while producing (almost) the same graph, operates in quite a different fashion. Shift,
like scan, is straightforward. For each state node u;_; ;€U;_; that allows a shift, nodes y; , and
u;j, s are introduced. As a by-product, ITEMS (u;, ;) is created. Predict has no counterpart in the
AT algorithm, because the work has been carried out compile-time in the construction of the
parse table! Reduce, as counterpart of complete, is the more complex operation. Let’s call the
node to be reduced the reductand and the (one or more) nodes, at which the stack should be con-
tinued with the left-hand side symbol, the ancestors. If the number of edges is not significantly
larger than the number of nodes, this can be done in O(n) time. Because the size of Uj, is
bounded by a constant, O (n) suffices for all reductions in U;. If there is no ambiguity, a reduce
step takes only constant time, and AT is of order O(n).

A worst case analysis is somewhat more complex. For a reductand in U}, the number of
ancestors is at most O (n). The way in which the ancestors are searched for by the Tomita algo-
rithm is: enumerating all paths from the reductand back to its ancestors. With dense ambiguity,
this may take O (nP) steps when the production has a right-hand side with size p. As [Kipps89]
has pointed out, there are search algorithms with lower worst case complexity bounds (but much
more overhead in average cases). It is possible to find the ancestor set in O (n?) time. Thus, a
variant of Tomita’s algorithm can be constructed that is guaranteed to recognize a sentence in
O (n®). When it comes to parsing, i.e., a shared forest is also required, the argument no longer
holds, because a node in the shared forest may have O(n®) sub-nodes, corresponding to the
enumeration of all paths from an ancestor to the reductand [Johnson90].

In GSE, the task of finding the ancestors of some z €U, in a densely ambiguous sentence
poses no particular problem. It is done in an O (n?) scan over the items. On the other hand,
Earley’s algorithm recognizes, rather than parses. Johnson’s argument applies to Earley’s algo-
rithm as well: if a shared forest is constructed with O (nP) sub-nodes at some nodes, this takes
O (n®*1) time. A parse can be constructed in O (n?) time, however, if a more packed representa-
tion of a parse forest is used, as in [Leermakers91}. Thus a cubic-time Earley parser can be con-
structed. On the other hand, combined with Kipps’ O (n 2} reduce operation, a Tomita-like parser
can be constructed that is guaranteed to operate in cubic time.

There is no theoretical evidence that one algorithm is significantly better than the other.
Much depends on the grammar. Tomita will win on “easy” grammars, while Earley will work
better on “difficult” grammars. In [Tomita86] it is claimed that natural language grammars are
“casy”, that is, almost LR and almost e-free. For the examples in his book, Tomita’s algorithm is
5-10 times faster than Earley’s algorithm and 2-3 times faster than the improved GHR variant of
Earley’s algorithm (not discussed here) [Graham80]. However, we do not know of any empirical
study that has systematically tested Tomita’s claim against a variety of natural language gram-
mars.

Drawing the discussion to an end, it is clear that GSE is based on managing the items,
whereas AT is based on managing the graph. Earley’s algorithm is a simplification of GSE in
which the graph is dropped altogether; LR(0) Tomita is a simplification of AT in which the items
are left out completely. The strong points of Tomita — if the graph does not branch too much —
are:

e The states correspond to precompiled sets of dotted rules. adding one state to the graph
structured stack means adding several items to an item set in one stroke. The predict func-
tion has been eliminated because it is incorporated in the parse table.

142

e Retracing a path of fixed, short length in the graph is less work than scanning the possibly
useful items in an item set.

The weak point of Tomita is:

o The performance is rather dependent on the simplicity of the parse graph. Dense ambiguity
combined with large productions leads to extremely poor performance.

6 Parallel Bottom-up Tomtita

Having established the similarity of Earley and Tomita in sections 3-5, we can apply these
results in the construction of a novel Parallel Bottom-up Tomita (PBT) algorithm, being the
Tomita counterpart of a well-known parallelization of Earley. The PBT algorithm uses an array
of processors Py ' - P,; each processor P; parses those symbols X that produce a string
aiy1 " a.
A parallel bottom-up approach to Earley is possible if we enlarge the recognized item set to
RISbu = {[i9A_’a'B!j] I a =>*ai+1 e aj} .

The restriction S = "a; - - g;Ay for some veV* is dropped. Now we can compute items
[, A—a.B,j] for some specific value of j-i in parallel. If all items with j —i <k have been
computed before, we have enough information to compute the items with J—i=k. We compute
item sets /; ;, containing items of the form [A —ot+B] such that o =>* a;,1 ' " a;. The lay-out of
Figure 6 suggests a parallel implementation: n processors P;, each one computing table entries
Ii i I .

R X
[NP—*d.*n]| [S—NP.VP] [S—5.PP]
[NP—NP .PP] S_NP VP.]
PRED [NP—s*d *n.] ! '
[NP—*d.*n]
[VP—*y .NP] [VP—*NP.]
PRED
[NP=>*d.*n] [S—NP.VP]
[NP—*d.*n] |[NP-NP .PP]
PRED = [S—.NP VP] SRED (¥R dEn)
[S—.S PP]
[NP—s.*d *n]
[NP—.NP PP] [NP—>*d.*n]| [S—NP.VP]
[VP~.*v NP) [NP—=NP .PP]
[PP—.*p PP] PRED |[NP—*d*n.]
[*d—.]
[NP—*d.*n]
PRED

Figure 6: Tabular representation of RIS, for John saw a lion
The main difference to the original algorithm is in the computation of the item sets / i j- As

it is not clear beforehand which items ought to be added by the predictor, we simply add C— oy
for every production C—>yeP.

143

We have allocated a processor to each row in the upper triangular matrix of item sets. An
equivalent parallel Earley algorithm is obtained when processors are allocated to columns of the
matrix, as in [Nijholt90]. The division into rows is the more natural one for the Tomita case
because each row can be computed in left-to-right fashion. For other parallel approaches see [Sij-
stermans86], who uses a rectangular grid of processors, one for each I; j, or [Yonezawa89] where
processors are allocated to productions rather than positions in the sentence.

We will now develop a parallel LR-like parsing algorithm, such that processor P; creates a
partial parse stack, covering all partial parses A = “gi, v a ; fori < j sn. While building such
a parse stack, processor P; can use other partial parses that have been delivered by processors
P;,, - P,. Eventually, all complete parses are delivered by Pg. Consider, for example, the
prepositional phrase in the zoo. We will denote the corresponding grammar symbols as
(4, *prep, 5, (5, *det, 6), (6, *noun, 7). Place markers are necessary to identify the part of the sen-
tence that corresponds with a recognized grammar symbol. Processor P4 will be offered the
marked terminal (4, *prep, 5), and it constructs a parse stack

0— {4, *prep,5)—6..
In conventional LR parsing, state 6 would have contained predict (NP), because the parser should
continue parsing the constituents of an NP. This is different in the parallel case. It is not the task
of P, to actually parse the noun phrase, it simply waits till some other processor delivers a noun
phrase (5, NP, j). Ps will pass a noun phrase (5, NP,7) in due course, and P4 can shift an entire
noun phrase, yielding

0 — (4, *prep,5) — 6 — (5,NP,7) — 11.

A subsequent reduction PP—>*prep NP constructs a marked symbol (4, PP, 7) that can be passed
to P and further.

The processors are connected in a pipeline. P; receives marked symbols from P;,; and sees
if they fit to its own stack. Meanwhile, symbols that could also be useful to processors with a
lower rank number are passed on to P;_;, supplemented with the the marked symbols renized by
P;.cognized by P;. All processors use the same parse table. The construction of this table differs
in two respects from the construction of Tomita’s table:
e State O contains dotted rules A— «a for every A—aeP U {S' =S §},

e When a new state s' is constructed that is reachable via an entry (s,X) in the GOTO table,
do not add predict (X) to the dotted rules of 5.

The parallel annotated LR(0) Tomita parse table for our example grammar is shown in Figure 7.
Furthermore, there are the following differences in the construction of the partial parse stacks:
e On a reduce it is not allowed to prune the branch of the stack that is reduced. It may be still
be needed at some moment in future, as synchronize on shift is no longer possible.
e The shift operation is not restricted to terminals, but may also be applied to appropriate non-
terminal symbols that are passed down the pipeline.
e Two place markers are tagged onto each symbol. Without these place markers it would not
be possible to decide at which position in the stack a new symbol is to be added.

The completed partial parse stack for Py, parsing - - - saw a lion in the zoo is shown in Figure 8.
In some cases, when a reduction is carried out, the GOTO table shows no applicable state. For
example,

0— (1, *verb, 2y —T7— (2,NP, 4y —12
can be reduced to
0—(1,VP,4)——?

Absence of a next state in the GOTO table means that neither another symbol can be added after
a VP, nor a further reduction is possible. This is a completed branch of the partial parse stack that
serves no function, other than indicating that (1, VP, 4) has been parsed. In Figure 9 we write C

144

state | dotted rules action | *d *n * *» NP PP VP S §
S—.5%
S—.NPVP
S—.SPP
0 NP — .*d *n re3 3 _ 7 6 2 B _ 1 -
NP — .NP PP sh
VP — . * NP
PP —.*p NP
*—.
1 g = 5 .)fp sh | - - - - - 5 - - 4
o | S NP-VP h | = = = & = 9 8 = =
NP — NP .PP
3 NP — *d.*n sh - 10 - - - - - - -
4 S—>S53%. acc - = - - - = = = =
5 S—SPP. re2 - - - - - - - —i:
6 PP — *p.NP sh - - - - 11 - - - =
7 VP — *v.NP sh - - - - 12 - - - -
8 S—NPVP. rel - - - - = = = -
9 NP — NP PP. re5 - - - - - = = = =
10 NP — *d *n. re4 % - - - - = - - -
11 PP — *p NP. re6 - - = = - - - - -
12 VP — *vNP. re7 - - - - - - - = =

Figure 7: parallel annotated LR(0) parse table

Figure 8: completed partial parse stack of Py

for the state of such a completed branch. It is left to the reader to verify that an annotated version
of PBT recognizes exactly the item set RISy,, when bottom-up Earley is run with the augmented
grammar G .

If all recognized triples are passed on to all other processors, there is an obvious communi-
cation bottleneck. In [Lankhorst91] it is analysed how most of the junk communication, — i.e.,
symbols not used by any subsequent processor — can be discarded with a simple filtering
scheme. For example, if P; receives a marked symbol (i+1,X,j) and X¢FOLLOW (a;,)
[Aho77], the marked symbol need not be sent on to P; _;.

We have shown how a sentence can be recognized by the PBT algorithm. A parse forest
can be constructed in a way similar to [Tomita86]. Each processor constructs a list of recognized
symbols, with pointers to (c.q. labels of) its children. In case of ambiguity, a symbol has a list of
groups of children. In order to allow the necessary administration, the label of a symbol X in the
parse list of processor P; is also passed with the marked symbol. We change the notation of
marked symbols to {i.p, X, j), where p is the (i-)label of (i, X, j)- The result for our sample gram-
mar and input is shown in Figure 9. Note that the parse list in Figure 9 contains quite a few

145

symbol children
(7.a, *det, 7)
{6.a, *det, 6)
{6.b, *noun, 7)
(6., NP, 7) (6.0, 6.b)
(5.a, *det, 5)
(5., *det, 6)
(5., NP, 7) (5.b, 6.b)
{4.a, *det, 4)
{4.b, *prep, 5)
(4, PP, 7) (4.6, 5.0)
(3.a, *det, 3)
(3.b, *noun, 4)
(3.c, NP, 4) (3.a,3.)
(3.4, NP,7) (., 4.0)
2.a, *det, 2)
(2.b, *det, 3)
(2.c, NP, 4) (2.b,3.b)
(2.d, NP, 7) 2., 4.0)
(l.a, *det, 1)
(1.b, *verb, 2)

{l.c, VP, 4) (1.5, 2.c)
(1.d, VP, T) (1.b, 2.d)
(0.a, *det, 0)
(0.b, *noun, 1)
(0.c, NP, 1) (0.2, 0.b)
(04, S, 4) 0, 1.0)

(06,5,7) (0, 1.d)(0.d, 4.)

Figure 9: A complete parse list

useless symbols (not reachable from (0.e, S, 7)). This is due to the rather clumsy structure of G.
If we had used a grammar with production (3) NP—*noun, rather than (3) *det—e¢, all deter-
miners of zero width would be absent in the table.

In [Lankhorst91], the PBT algorithm is analyzed in more detail and proven to be correct.
Moreover, unlike Tomita, PBT can handle cyclic grammars as well. Analysis of a simulated
parallel implementation with respect to a comparable implementation of Tomita’s algorithm
shows that using O (n) processors in parallel reduces the time complexity with, roughly, O (n%?).

7 Conclusions

We have shown the structural similarity between Earley’s algorithm and Tomita’s algorithm
using the Graph Structured Earley (GSE) and Annotated LR(0) Tomita (AT) variants. Earley and
LR(0) Tomita have identical recognized item sets. Furthermore, GSE and AT construct anno-
tated parse graphs that are almost identical This graph has been used for a detailed comparison of
the performance of both algorithms. Noteworthy points are

e In “average” cases (no dense ambiguity), Tomita’s algorithm should perform better because
it has compiled some of the work that needs to be done in many instances in Earley’s algo-
rithm. The predictor function is not needed in Tomita’s algorithm because it is incor-
porated in the parse table.

e The widely held belief (based on [Tomita86]) that the worst-case complexity of Tomita’s
algorithm is inferior when confronted with densely ambiguous grammars needs recon-
sideration:

146

e With some effort, a variant of Tomita’s algorithm can be constructed that recognizes
in O (n*) time, the same complexity as Earley’s algorithm [Kipps90].

e When we regard Tomita as a parsing algorithm (which it actually is), rather than a
recognition algorithm, a more than cubic time corresponds to a more than cubic
number of sub-nodes in the shared parse forest. Earley’s algorithm does not have this
problem simply because it does not create a parse forest. Either parsing algorithm can
be guaranteed to finish in cubic time, however, if a more packed representation of a
shared forest is used.

Cubic Tomita, however, is only interesting as a theoretical concept. In practice it will gen-
erally be slower than ordinary Tomita, due to the much larger overhead in the reduce step.

As a fertile example of cross-breeding we have discovered a Parallel Bottom-up Tomita parser
(PBT). In PBT, a sentence a; - * - a, is parsed by n+1 processors. Each processor P; makes a
partial graph structured parse stack covering the suffix @;,; * - * a, of the sentence. Nonterminals
that have been parsed by P;,; can be used as atomic symbols by P;. The PBT algorithm is
analysed in depth in [Lankhorst91].

Acknowledgements

I am grateful to Anton Nijholt for constructive comments on earlier versions of this paper, to
René Leermakers for some comments on the complexity of Tomita’s algorithm, and to two
anonymous referees for suggesting some improvements in presentation.

References

[Aho77] A.V. Aho, 1.D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Mass. (1977).

[Chiang84] Y.T. Chiang, K.S. Fu: Parallel Parsing Algorithms and VLSI implementations for
Syntactic Pattern Recognition, Transactions on Pattern Analysis and Machine Intelligence
PAMI-6, 3 (1984) 302-314.

[Earley68] J. Earley: An Efficient Context-Free Parsing Algorithm, Ph.D. Thesis, Computer
Science Dept., Carnegie-Mellon University, Pittsburgh, PA (1986).

[Earley70] J. Earley: An Efficient Context-Free Parsing Algorithm, Communications of the
ACM 13 (1970) 94-102.

[Graham80] S.L. Graham, M.A. Harrison, W.L. Ruzzo: An Improved Context-Free Recog-
nizer, Transactions on Programming Languages and Systems 2 (1980) 415-462.

[Harrison78] M.A. Harrison: Introduction to Formal Language Theory, Addison-Wesley, 1978.

[Johnson89] M. Johnson: The Computational Complexity of Tomita’s Algorithm, Proc. Int.
Workshop on Parsing Technologies, Pittsburgh (1989) 203-208.

[Kipps89] J.R. Kipps: Analysis of Tomita’s Algorithm for General Context-Free Parsing, Proc.
Int. Workshop on Parsing Technologies, Pittsburgh (1989) 193-202.

[Lankhorst91] M.M. Lankhorst, K. Sikkel: PBT: A Parallel Bottom-up Tomita Parser,
Memoranda Informatica 91-69, Department of Computer Science, University of Twente
(1991).

[Leermakers91] R. Leermakers: Non-deterministic Recursive Ascent Parsing, Proc. 5th Euro-
pean Chapter of the ACL, Berlin (1991) 63-68. A functional LR-parser, to appear in Infor-
mation Processing Letters (1991).

[Nijholt90] A. Nijholt: The CYK Approach to Serial and Parallel Parsing, Proc. Seoul Int.
Conf. on Natural Language Processing, Seoul National University (1990) 144-155.

147

[Nijholt91] A. Nijholt: The Parallel Approach to Context-Free Language Parsing, in: U. Hahn,
G. Adriaens (Eds.), Parallel Models of Natural Language Computation, Ablex Publishing
Co., Norwood, N.J. (1991).

[Sijstermans86] F.W. Sijstermans: Parallel parsing of context-free Languages, Doc. no. 202,
ESPRIT project 415 sub A, Philips Research Laboratories, Eindhoven, the Netherlands
(1986).

[Sikkel90] K. Sikkel: Cross-Fertilization of Earley and Tomita, Memoranda Informatica 90-69,
Department of Computer Science, University of Twente (1990).

[vdSteen88] G.J. van der Steen: A program generator for recognition, parsing and transduction
with syntactic patterns, CWI Tract 55, Centre for Mathematics and Computer Science,
Amsterdam (1988).

[Tomita85] M. Tomita: Efficient Parsing for Natural Language, Kluwer Academic Publishers,
Boston, Mass. (1985).

[Yonezawa89] A. Yonezawa, 1. Ohsawa: Object-Oriented Parallel Parsing for Context-Free
Grammars, in: A. Yonezawa (ed.) ABCL: an Object- Oriented Concurrent System, The MIT
Press (1989).

148

