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1 Introduction

The aim of this paper is a very modest one. I want to propose an extension
of Dynamic Montague Grammar (DMG, see Groenendijk & Stokhof [2]), in
which the space is created for incorporating presuppositions. Presuppositions
cannot be handled in the version of MG that Groenendijk & Stokhof present,
although in their article they hint at a possible solution. In this paper I will
elaborate on that hint.

It is evident that creating a version of DMG in which we can incorporate
an analysis of presuppositions is not the same as giving such an analysis.
Unfortunately, it is not an entirely trivial task to give such an analysis in
the extended version of DMG. As we shall see the definition of negation
constitutes a problem; a presupposition cannot escape from it. At the end
of this paper I will present a definition of negation which does not have this
problem and roughly describe how it can be used to develop a full-fledged
theory of presuppositions in a DMG-framework, including accommodation.

I will certainly not claim that such a theory will empirically do better
than the best theory of presuppositions of the moment, which I take to be
the presuppositions-as-anaphora-approach advocated by Van der Sandt [10]
and Van der Sandt & Geurts [11]. Why undertake this exercise then? Why
DMG as our framework? I do not want to be very dogmatic about this, but
I think that although DMG has its weak points, at the very least its strict
compositionality forces us to be very explicit about what we are doing and
in this way we can hope to gain some insights in what is going on.

The structure of this paper is as follows: in section 2 we will take a closer
look at Groenendijk & Stokhof’s proposal. In paragraph 2.1 the represen-
tation language of Dynamic Montague Grammar is introduced: Dynamic
Intensional Logic. This language is also the basis of the extended version of
Dynamic Montague Grammar. In paragraph 2.2 DMG itself is presented and
illustrated with some examples. In section 3 the extended version of DMG
will be presented. We will illustrate with a simple example how this version
can be used to treat presuppositions and point out some problems. Finally,

*Thanks are due to Paul Dekker, Bart Geurts, Jeroen Groenendijk, Reinhard Muskens,
Martin Stokhof & Elias Thijsse. Every single one of the remaining errors I have made
myself.
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in section 4 we will try to overcome some of these problems.

2 Dynamic Montague Grammar

DMG was developed to give a fully compositional account of the semantics
of discourse. Essentially, it differs from ‘standard’ Montague Grammar! in
that the view on meaning is dynamic instead of static. What this means is
that in Montague Grammar the meaning of a sentence resides in its truth-
conditions, while in DMG the meaning of a sentence is its potential to change
the context (i.e. the representation of the previous discourse).

The basic idea of DMG is very simple, and before we shall see in greater
detail how it works, I will first illustrate it by means of a very simple example.

(1) A man is eating doughnuts.

Just like in traditional Montague Grammar we want to translate this sentence
into a formula of a representation language, before we give it an interpreta-
tion. In the case of DMG the representation language is Dynamic Intensional
Logic (DIL). We want to translate sentence (1) in a DIL-formula, and the
resulting DIL-formula has to have a number of characteristics. First of all, we
want to say that there is a discourse marker, say d, which denotes an object
belonging to the set of men and to the set of doughnut-eating objects; that
is to say: man(d) A eat_doughnut(d). The existential quantifier which is part
of the meaning of the indefinite determiner is just dz. We also need a link
between the variable z and the discourse-marker d: this is fleshed out in the
state-switcher {z/d}. This results in: 3z{z/d}(man(d) A eat_doughnut(d)).
Notice that this translation is very much like a static first-order representa-
tion, there are no signs that we are translating a discourse-fragment; there is
still something missing. To make this formula a truly dynamic one we have
to add a place —within the scope of the quantifier— where further sentences
can land. Formally this is achieved in DMG by assigning each sentence a a
translation of the form Ap(a’ A Vp), where p is variable of type (s,t). The
result then is:

(2) Ap3z{z/d}(man(d) A eat_doughnut(d) A Vp)

And this translation is indeed the DIL-translation of sentence (1). Now the
state-switcher can do its work: it ‘walks’ through the formula and every time
it hits upon a d, it replaces that particular occurrance of d with z. The
state-switcher cannot be reduced any further when it hits the tail of the
representation, the ‘Vp’. So, the following formula is equivalent to (2):

(3) Ap3z(man(z) A eat_doughnut(z) A {z/d}"p)

The state-switcher remains there because it is possible that in a next sentence
an anaphor occurs which refers back to the man walking on the beach; a case
in point would be if we conjoin sentence (1) with sentence (4.a) (with (4.b)
as its DIL-representation):

"Montague Grammar usually refers to the PTQ-model (Montague [7], see Gamut [1] for
a thorough introduction).
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(4) a. He smiles.
b. Ag(smile(d) A Vq)

The conjunction in DMG is defined is such a way that, when we utter (4.a)
immediately after (2) the representation of the second sentence ends up on
the hook for further sentences of the first one. The result is:

(5) Ag3z(man(z) A eat_doughnut(z) A {z/d}smile(d) A Vq)) =
Ag3z(man(z) A eat_doughnut(z) A smile(z) A {/d}Vq))

Notice that this process can be repeated for a long time, just like we can add a
large number of sentences following (2)-(4.a). One ingredient is still missing:
how we can derive the static, ‘ordinary’ truth-conditions of a dynamic formula
like (5)7 We simply apply the DIL-formula to a tautological proposition
(symbolized as true). The result of this is a formula of the form a’ A true,
which is obviously equivalent to o, the standard PL-translation of a.

Now we will look in somewhat more detail how this works: first we shall
look at DIL (paragraph 2.1), then we will see how DIL is used as the repre-
sentation language of DMG in paragraph 2.2.

2.1 Dynamic Intensional Logic

The version of DIL that Groenendijk & Stokhof employ as the basis of DMG
originates from Janssen [5], where in chapter 9 a Montague Grammar for the
programming language ALGOL 68 is developed.

The types of DIL are the same as those of Intensional Logic, the repre-
sentation language of Montague Grammar. The syntax of DIL is also the
same as that of IL, although DIL-syntax differs from IL-syntax in two res-
pects. First, DIL contains two new concepts: the discourse markers and
the state-switchers. Their syntactic behavior is, as usual, defined in terms
of the set of meaningful expressions of type a, ME,. Given sets of constants
and variables for every type a (respectively CON, and VAR,) and a set of
discourse markers DM, the new concepts are defined as follows:

Definition 1 ((new parts of the) DIL-Syntax)
1. If a € DM, then a € ME,

2. Ifd € DM,a € ME,,83 € ME,, then {a/d}8 € ME,

As can be seen from the definition only discourse-markers of type e are used.
The state-switchers make it possible to identify certain states in which dis-
course markers have a particular value, by switching from the present state
to a new one. A state can be viewed as a discourse marker assignment and
so state-switchers are in fact a sort of descriptions of states.

The second difference between IL and DIL is that the operators ‘v’ and
‘A’ are present in DIL, but will in this context be seen to express abstraction
over, and application to states respectively. So the intensional vocabulary is
used in DIL, but with another meaning than in IL.
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Let us now direct our attention to the semantics of DIL. A model M is a
triple (D, S, F), with D and S as two disjunct, non-empty sets of individuals
and states as their respective elements, and F' as a function which interprets
the constants of the language. So if a € CON,, then F(a) € D,. The
definition of these DIL domains is just as one would expect them to be, except
of course that we use S here as the set of states. Groenendijk & Stokhof
force the states to behave like discourse marker assignments, by means of two
postulates: distinctness and update. Together these two postulates guarantee
that for each state s, discourse marker d and object d, there exists a unique
state s/ which differs from s at most in this respect that the denotation of
d in &' is d. The notation used for this unique s’ is (d « d)s. Notice the
similarity between this notation and the familiar g[v/d]: states behave as
assignments of values to discourse markers.

The semantics is defined by means of the notion [a]ar,, 4, which stands
for the interpretation of a with respect to model M, state s and assignment

g.
Definition 2 (DIL-semantics)

1. [e]m,s,g = F(c), for every constant c

[v]m,sg = 9(v), for every variable v

2. [d]M,sg = F(d)(s), for every discourse marker d

3. [a(B)]M,sg = []m,s,0([B]r,s,6)

4. [~¢lM,eg = 1iff [@]rr,e9 =0
[e A "/’]]M.s.y = 1iff II‘P]]M,MJ = [¥]meg =1

5. [Bvplnm,sg = 1 iff there is a d € Dy such that [¢]pr, 4w/ = 1, Where
the type of vis a

6. [Ava]a,., = that function h € D,P% such that h(d) = [l a,e,g00/q)
for every d € Dy, where the type of a is a and the type of vis b

7. I[{a/d}ﬂ]]M,a,g = [[ﬂ]]M,(dH[[a]]M‘,.g)a,g

8. [*a]a,s g = that function h € D,° such that h(s') = [a]um,.g for every
s' € S, where the type of ais a

9. [Valm,eg = [a]m,sg(s)

Several things are worth noticing about this definition. First of all we see
in clause 2 that the interpretation of discourse markers is state-dependent.
They are interpreted as ‘individual concepts’, that is functions from § to D..
Clause 8 presents the interpretation of the state-switcher: the interpretation
of {a/d}f in a given state s is the interpretation of A is a new state s’
which differs from s at most in this respect that the value of d in s’ is the
object which is the denotation of a in s. From clause 9 and 10 we see, as
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was announced above, that Ya and "a are interpreted as application and
abstraction over states respectively.

The notions of truth, validity and entailment are defined in the usual way:
(truth) ¢ is true w.r.t. M, s, and g iff [@]n,, g, (validity) = ¢ iff ¢ is true
for all M, s and g, and (entailment) ¢ = 9 iff for all M, s and g it holds
that if [¢]a,sg = 1, then [¥]lm,eg = 1.

The behavior of state-switchers is characterized in the following fact:

Fact 1 (Behavior of state-switchers)

1. If 8 is a constant, a variable or an expression of the form "a, then
{a/d}B is equivalent to 3 .

2. {a/d}d is equivalent to a
{a/d}d' is equivalent to d', if d' # d

3. {a/d}(B(7)) is equivalent to {a/d}B({a/d}(7))

4. {a/d}(p A1) is equivalent to {a/d}p A {a/d}1 (similarly for ‘V’, ‘=",
‘=, m].d (_")

5. {a/d}Jvyp is equivalent to Fv{a/d}p, provided that v does not occur
freely in a (similarly for Yup and Avep)

6. {a/d}VB is not equivalent to Vg

This last item of the definitions is of prime-importance for the following as
we shall see. Finally, we note that the following familiar facts also hold in
DIL:

Fact 2 (V" -elimination) Y a is equivalent to a

Fact 3 (A-conversion) Ava(f) is equivalent to [3/v]a if:
1. all free variables in 8 are free for v in a, and

2. B is a constant, a variable or an expression of the form "« (that is: 3
in an intensionaly closed expression), or there are no occurrences of v
in a in the scope of a ‘A’ or a state-switcher {vy/d}

Some notation: when two DIL expressions a and 3 are equivalent module
VA_elimination we write this is as a =,, 3. When « reduces to 8 by means
of a (finite) number of A-conversions we write this as a =3 3.

Before we show how DMG makes use of DIL it is worth pointing out that
the use of discourse markers apart form ‘ordinary’ variables is not crucial
for Groenendijk & Stokhof’s analysis. The only reason why Groenendijk &
Stokhof make use of them is because they make it more clear what is going
on. In fact, in Groenendijk & Stokhof (2] (page 14) it is shown that the
addition of discourse markers and state-switchers is in fact nothing else than
the addition of a second sort ‘variable-and-binding device’.
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2.2 Dynamic Montague Grammar

Now we will construe a dynamic version of MG, making use of DIL: Dynamic
Montague Grammar (DMG). In DMG, as in classical MG, natural language
expressions are translated in a logical language (DIL) which is associated
with a model-theoretic interpretation. The meaning of complex constituents
is determined in a compositional fashion by the meaning of the respective
parts and the operations which have formed the complex constituent. The
use of the DIL-formulas in DMG is facilitated by the introduction of a number
of notation-conventions, which we shall introduce in a minute.

First, however a general remark concerning the notion of meaning in
DMG. In classical MG an (indicative) sentence is translated into an IL-
expression of type t: the extension of a sentence is a truth-value, the in-
tension a proposition. In other words: in MG —as one would expect— we find
the static view on meaning. Needless to say, this is not the view on meaning
we would expect in DMG. And indeed, in DMG we find the dynamic view on
meaning. This has some consequences for the type of the DIL-translation for
a sentence. A natural language sentence is translated into a DIL-formula of
type {(s,t),t). In the following we use the abbreviation 7 for this type. The
meaning of a sentence is an object of type (s,7), i.e. a function from states
to sets of propositions. The standard, static meaning still resides in DMG,
but only as a secondary notion.

Let us now look in more detail how this is formalized in DMG. In what
follows we will use uppercase Greek letters as meta-variables for formulas of
type T and lowercase Greek letters as meta-variables for formulas of type ¢.

The first notation-convention of the DMG-language is the uparrow: T.

Deflnition 3 (uparrow) 79 = Ap(¢ A Vp), where ¢ is a formula of type ¢,
and p is a variable of type (s,t) with no free occurrences in ¢

Basically, what the T¢ does is making place for possible continuations
of ¢, the Vp figures as the ‘hook’ on which further pieces of discourse can
be hanged. If ¢ is true in some state s, then Ty denotes the set of all true
propositions in s. And when ¢ is false in s, Ty denotes the empty set.

There is also a converse operation downarrow: |:

Definition 4 (downarrow) |® = ®("true)

The expressions & of type 7 are typically the kind of formulas into which
natural language sentences will be translated. This is the level on which the
dynamic bindings are created. True is a constant for which the following
holds: F(true) = 1. So, as we have seen above, what the |-operator does
is free a formula of its dynamic burden and deliver its standard static truth
conditions. The formula |® is true in some state s iff & can be processed
successfully in s.
Notice that the following fact holds:

Fact 4 (|7-elimination)|Ty = ¢
Just as AV = ¢ doesn’t hold in general, T|® = & does not either. Especially
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when @ still has dynamic potential (i.e. active quantifiers), this does not hold.
Basicly T|® can be seen as the static closure of . Whenever you want to
strip a formula of its dynamic potential but still want it to be followed by new
sentences, it can be closed of with T|. A context in which this is desirable is
for instance negation. Consider this mini-discourse:

(6) It is not the case that a; man eats a; doughnut. *He; likes it,.

We do not want the quantifiers associated with a; man and a; doughnut to
bind the a variable corresponding with a pronoun in the second sentence.
This is achieved by defining negation in terms of static closure:

Deflnition 5 (Static negation) ~® = - |®

Besides negation there are two more basic DMG-operators, viz. the exi-
stential quantifier and the conjunction, both dynamic:

Deflnition 6 (Existential quantifier and conjunction)
1. £d® = Ap3z{z/d}(2(p)), where p has no free occurrences in &.

2. ;% = Ap(®(N(¥(p)))), where p has no free occurrences in either &
or ¥.

Notice that the conjunction is strictly linear, that is to say it is both associ-
ative (i.e (2;%);T = &;(¥;7T)) and non-commutative (i.e. ;¥ # ¥ ; &).
An important fact for the translation of discourse-fragments is the following:
Fact 5 £d® ;¥ = £d(®; ¥)

This fact guarantees that a quantifier (a man) can bind variables (he) which
are not in its syntactic scope.

The other DMG-notions can, in the usual fashion, be defined in terms of
conjunction, negation and existential quantification:

Definition 7 (Other DMG notions)

1. 2= 9 =n~(3;~7)

2. dor¥ =~(~3;~9)

3. Ad® = ~Ed~D
The implication is internally dynamic, because the antecedent is not closed of
under negation. The other two operators do not have any dynamic potential.

Another important fact for the analysis of ‘donkey’-sentences is the fol-
lowing, which takes care of the universal reading in implications.

Fact 6 £d% => ¥ = Ad(3 = ¥)

The next fact makes it easier to replace dynamic operators for their static
counter-parts:
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Fact 7 (From dynamic operators to static ones)
L ~Tp =Ty
2. (Te;19) =T(e AY)
3. (Teor ) =T(p V)
4. (e = 1) =T~ ¥)

Now we have all the tools needed for a small fragment of English. The
fragment has as basic categories IV (intransitive verbs), CN (common nouns)
and S ((sequences of ) sentences). The derived categories are of the form A/ B,
A and B any category. Used here are: NP (= §/IV, noun phrases), DET (=
NP/CN, determiners) and TV, (= IV/NP, transitive verbs).

In what follows, z is a variable of type e, P and @ are variables of type
(s,{e,7)) and T of type (s,((s,(e,T)),)); leland is a constant of type e,
doughnut and smile are constants of type (e, t) and eat (in its transitive form)
of type (e, (e,t)); the dy’s are discourse markers. In the table below some
examples of lexical items are listed:

Definition 8 (Lexical items)

(DET) an ~ APAQEdL(VP(dn);VQ(dn))
(DET) every, ~  APAQAd,(YP(dn) = VQ(dn))
(CN)  doughnut ~ AzTdoughnut(z)

(1V) smile ~  AzTsmile(z)

(TV) eat ~ AT Az(VT(Myleat(z,y)))
(NP)  hey ~ AQVQ(dn)

(NP)  Leland, ~  AQ{leland/d,}VQ(dn)

The thing to notice about these definitions is that determiners, pronouns and
proper names are indexed. We need to chose a particular discourse marker
in the translation, otherwise we are not able to make the anaphoric link. In
other words, the fragment does not translate English sentences as such, but
rather indexed structures.

The fragment has the following construction rules:

Definition 9 (Construction rules)
1. Functional application: a4,p88 ~ a'("g"h)
2. Sentence sequencing: a.f~ o' ; 8’
3. Conditional sentences: If a, (then) 8~ o' = '

4. Sentence negation: It is not the case that a ~ ~a'

To end this section I would like to illustrate DMG with two examples.
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A; man sees a; doughnut. He; eats it,.
Functional applications and some reductions give the following translation of
this example.

(7) &di(Tman(d,); £dz(Tdoughnut(dy) ; Tsee(d;, d3))) ; Teat(ds, d2)

Notice that we can lift the existential quantifier corresponding to a; doughnut
since that doesn’t create new bindings.

(8) &di€dy(Tman(d,) ; Tdoughnut(dy) ; Tsee(ds, dz)) ; Teat(dy, d2) =g5ct 74
Sdlf,'dzT(man(dl) A doughnut(dg) A see(d1, dz)) 3 Teat(dl, dz)

Writing out the definitions of the existential quantifier (def. 6.2) and the
uparrow (def. 3) and some reductions, this gives us:

(9) Ap3zdy(man(z) A doughnut(y) A see(z,y) A {z/d1}{y/d2}"p) ;
/\p(eat(dl, dz) A Vp)

Now we write out the dynamic conjunction of the two sentences (def. 6.1):

(10) Ar(Ap3z3y(man(z) A doughnut(y) A see(z,y) A {z/d1}{y/d2}Vp)
(M(eat(d1,d2) A Vr))) =avafact 1
Ar3z3y(man(z) A doughnut(y) Asee(z,y) Aeat(z,y) A {z/d1}{y/ds}"r)

When we apply the |-operator to this last formula we end up with the
standard truth conditions:

(11) Jz3y(man(z) A doughnut(y) A see(z,y) A eat(z, y))

If a man; sees a; doughnut, he; eats it,.
Next we translate the ‘donkey’-sentence. We translate the antecedent and
the consequent and combine them by means of the construction rule 9.3:

(12) Ap3z3y(man(z) A doughnut(y) A see(z,y) A {z/d;}{y/ds}"p) =
Ap(eat(dy, d3) A VD) =gef 74
~(Ap3z3y(man(z) A doughnut(y) A see(z,y) A {z/d1}{y/d2}Vp);
~(Ap(eat(d1, d2) A Vp)))

As far as the second conjunct is concerned: ~Ty by fact 7.2 equals T-¢p.
Next we eliminate the dynamic conjunction, which after two \-conversion
and further pushing of state-switchers results in:

(13) ~(Ar3zdy(man(z) A doughnut(y) A see(z,y) A —eat(z,y) A
{z/d1Hy/d2}"r))

Writing out the outermost negation, this eventually results in:
(14) Ag—(3z3y(man(z) A doughnut(y) A see(z,y) A —eat(z,y)) A Vq)

Notice that this translation is still of type 7, but further sentences will no
longer land inside the scope of the quantifiers. This explains why this is not
a grammatical discourse:
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(15) If a; man sees a; doughnut, he; eats its. *He; really loves doughnuts,
particularly with black coffee.

The pronoun he; cannot be bound by the relevant quantifier.
Applying the |-operator to the formulain (14), we get the standard truth-
conditions:

(16) -(3z3y(man(z) A doughnut(y) A see(z,y) A —eat(z,¥))) =equivalent
VzVy((man(z) A doughnut(y) A see(z,y)) — eat(z,y))

3 Presuppositions in DMG

In the previous section we have seen how DMG succeeds in giving a strictly
compositional account of discourse semantics. In this section we will see how
we can extend DMG in such a way that presuppositions can be incorporated
in it. I will restrict myself here to presuppositions triggered by definite NPs.
All definite NPs have the property of presupposing their descriptive content,
so a proper name like Laura Palmer presupposes that there exists someone
with that name, a definite description like the doughnut presupposes that
there exists a doughnut etc. Take the following example:

(17) The doughnut is delicious .

This sentence presuppose that ‘there exists a doughnut’. What does it mean
for a sentence to presuppose something? One possible answer to this question
is that a presupposition is a kind of test; when we encounter a presupposition
like ‘there exists a doughnut’, we test if the context (which we will simplify to
the representation of the previous discourse) satisfies this presupposition. If
this is the case we simply continue, if not, we say that the sentence containing
the trigger of the relevant presupposition (in the case of example (17), the
definite determiner) is infelicitous. Note that this view on presuppositions is
not the only possible one. In fact, in section 4 we will discuss a somewhat
different view on presuppositions. But for now, suppose that we want to give
an account of presuppositions which tests the context for presupposition-
satisfaction and only continues if this test succeeds. We cannot express that
in the version of DMG which we saw in the previous section. The reason
for this is simple; when we translate a sentence into a DIL-formula of type
r, only further sentences are anticipated, the previous discourse is not taken
into consideration. However, if we want to formulate a test to check whether
or not a context satisfies a certain presupposition we do need the previous
discourse.

Basically this problem follows from the simplification Groenendijk &
Stokhof make concerning their notion of meaning. As we have seen they
refer to the meaning of a sentence as a function of type (s, 7). This is strictly
speaking not the type one would expect for a system concerned with the con-
tezt change potential (CCP) of sentences. According to this view, the CCP
of a sentence is a function from information states to information states. It
should be noted that it is not the states which are the information states
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but rather the sets of sets of states. That this is indeed the case can be
seen when we consider the following: in DMG we are interested in (partial)
information about the reference of discourse markers, a state completely de-
termines the references of discourse markers, hence it is obvious that the sets
of sets of states, and not the states themselves are the real information states.
This means that the notion of meaning as the context change potential of
a sentence should be represented as a function of type (7, 7). Groenendijk
& Stokhof observe two things. First of all: this notion can be derived from
functions of type (s,7) Second: Groenendijk & Stokhof note that (...) in-
corporating other aspects of meaning, such as presuppositions, may very well
necessitate the use of the more complez notion as our basic notion (Groe-
nendijk & Stokhof [2], page 22). This is exactly the line that is going to be
explored in this section. With one small extension of the type: we will take
type ((s,T),T) as our basic type. Notice that this type has an initial s added
to the type corresponding with the CCPs. For the purposes of this section
the type without the initial s (i.e. (r,7)) will do. But later on we will need
the slightly higher type. In order not to create too much confusion, I will use
the higher type from the beginning.

But before we start being formal, I will first informally describe how
we can translate sentences like (17) into DIL-formulas. Basically such a
formula will have to consist of two parts: a part which tests if the previous
discourse satisfies the presupposition and a part which is just the semantic
representation of the sentence. So we need two new things: first of all we have
to define a version of DMG which has the higher notion of meaning as its
basis. And we need an operation which tests if presupposition-satisfaction.
The first part entails that a sentence a will not be translated as Ag(a’ A Vg),
but instead as APAgVP("(a' A Vgq), where P is a variable of type (s, 7).

The second new thing is the presupposition-test. For this I will introduce
the following notation: [x > £] (a context x satisfies a presupposition £).
This test will be a static one (i.e. of type t).2 Notice that for such a definition
of presupposition satisfaction we need a partial semantics for DIL. Because
when the context does not satisfy the presupposition, we do not want the
sentence to be false, but rather truth-value-less. The simplest way to achieve
this is by letting the >>-operation return a third truth-value (i.e. not true
or false), say: error, when a presupposition is not satisfied. We will say
that a presupposition is satisfied if, when the previous discourse is true, the
presupposition is also true. Then the rest of the semantics of DIL has to be
defined in such a way that when somewhere in a formula an error occurs, this
can never be undone: the whole formula is in error (hence infelicitous). In
particular: the negation of a formula which is in error, remains in error. We
shall not spell out these definitions here, because they would run in a similar
fashion as the rules of error-state semantics proposed by Van Eijck [g].

IStrictly speaking it has to be (internally) dynamic before it is brought back to the
truthconditional level, for instance because a presupposition might contain free discourse
markers (Cooper saw a nice doughnut nect to his cup of strong black coffee. The doughnut
he was going to eat looked really delicious.), but we will ignore this for reasons of simplicity.
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Now we can state the intended DIL translation for a sentence containing
a presupposition-trigger, like example (17). This translation will not only
anticipate possible further sentences, but also previous sentences; it has a
hook for both previous and further sentences. The hook for the previous
sentences will be needed twice: once for the presupposition-test and once for
the semantic representation. In the presupposition-part it will be tested if
the static meaning of the previous discourse satisfies the presupposition. The
semantic part will simply be ‘delicious(d)’. When we add this all up we get
the following DIL-representation:

(18) APAg([4VP > Jzdoughnut(z)] A vV P("(delicious(d) A Vg)))

(Where | is the operation which brings a dynamic formula back to a static
one).

3.1 Dynamic Montague Grammar revisited
When we want to extend DMG in such a way that we can work with DIL-
formulas as the one in (18), this will lead to a different set of notation-
conventions. We will refer to this version of DMG as DMG,.

First of all, we define the operation which lifts DIL-expressions of type ¢
to ones of type ((s,7),T).

Definition 10 (Uparrow) fip = APA¢YP("¢ A Vq)), where ¢ is a DIL-
formula of type t, P a variable of type (s, ) and g of type (s,t)

Notice that the T from DMG is encapsuled in this definition. We also define
the converse operation, bringing back formulas from type {(s,7), T) to type t.
(In what follows we again use uppercase Greek letters for dynamic formulas
(now of type ((s,7), 7)), and lowercase Greek letters for static formulas.)

Definition 11 (Downarrow){® = &(*Ap“p)( true), in which & is a formula
of type ({s,7),7) and p is a variable of type (s,t)

Again we have the fact that Jfip = ¢ The converse still does not hold in
general: & # &.
The three primary DMG, operators are defined in 12.

Definition 12 (DMG,-operators)

1. ;9 = AQ¥(N(2(Q))), Q not free in either ¢ or ¥.

2. €d, = APA¢VP(3z{z/d.}"q)

3. ~& =1 {2
Several things are worth noticing here. First of all notice that the definition
of negation is the same as the one in DMG, except for the types. The existen-
tial quantifier is defined categorematically. This has been done to prevent
free variables in previous sentences from being bound by the quantifier. A

quantification £d® will be read as a conjunction Ed; & That is, first we
random assign a value to d and the dynamics is created by the composition

-146-



with ®. In a sense this brings us closer to dynamic logic. The definition
of conjunction might seem somewhat strange at first: the second sentence
has the first one in its scope. But suppose the second sentence contains a
definite determiner which triggers a presupposition. Then we want the re-
presentation of the previous discourse to land inside the test by means of an
instance of A-conversion and that is only possible when the second sentence
has scope over the previous sentence(s). Apart from that the conjunction
acts just the same as the one in DMG. So it will come as no surprise that the
conjunction in DMG,, is also both associative and non-commutative. Notice
that the DMG,, version of the important fact that an existential quantifier
can bind variables which are outside its syntactic scope (see fact 5) is just a
special case of the associativity fact in DMG,:

Fact 8 (£d,;®);¥ = €Ed,;(®;7)

The secondary DMG,, operators are again defined in terms of conjunction,
negation and existential quantification.

Definition 13 (Secondary DMG,-operators)
1. 3= 9 =n~(2;~7)
2. Ady, ;@ = ~(Ed, ; ~2)
3. Por¥ = ~(~&;~T)

The definitions for the disjunction and implication are the same as their DMG
counterparts, except of course for the types. The definition of the universal
quantifier is somewhat different because we have introduced the existential
quantifier categorematically. Again, it can easily be seen that the universal
quantifier is internally dynamic. Another interesting thing to note is the
structural similarity between the universal quantifier and the implication,
as familiar from DRT. The fact that guarantees a correct reading for the
donkey-sentences is in DMG,, formulated as follows:

Fact 9 £d, ;% = ¥ = Ad, ; (¢ > ¥)

In DMG,, we can replace dynamic operators with static ones exactly the
same as in DMG, i.e. just like in fact 7, but with f's stand in for Ts. It
is worth noticing that the static nature of negation in DMG,, is crucial for
the DMG,, version of this fact. In this way, for instance the negation cor-
responding with the consequent of the implication does not take scope over
the antecedent.?

We can construct a fragment for English in a parallel fashion as we did
in section 2.2. The interesting definitions are of course the presupposition
triggers, with as their most important representative the definite determiner.
The translation of the definite article can be defined as follows (leaving aside
uniqueness-issues):

*Proof: fip = fip = ~(fte i ~i9) = AU ; 1-UNe) = t-U(the ; %) = t-Un(e A
) =f(p A=P) = fi(e — ¥)
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(19) (DET) thep ~ APAQARX([UVR > {&€d,.VP(d,)] A VQ(dn)(R)(q))
I shall illustrate DMG,, with a simple example:

A; man eats a; doughnut. The; doughnut is delicious.
The first sentence translates into:

(20) APAgVP(MNIzdy(man(z) Adoughnut(y) Aeat(z,y) A{z/d1}{y/d2}Vq)))
The second sentence translates as follows:
(21) ARA([YVR > Y(Ed; ; frdoughnut(d;))] A fdelicious(d;)(R)(q))

This can be reduced by writing out the second {}-operator and two instances
of A-conversion:

(22) ARAG([VVR > |(&d; ; frdoughnut(dy))] A VR("(delicious(dy) A Vg)))

Next we dynamically conjoin the two representations using notation conven-
tion 12.1 and one instance of A-conversion:

(23) AQ(ARMAG[UVR > U(€d; ; frdoughnut(dy))] A VR("(delicious(d1) A Vq))
(MAgVQ(N(3zTy(man(z) A doughnut(y) A eat(z,y) A
{z/d1H{=/d2}"4))))))

Now we do two more instances of A-conversion and see that the represen-
tation of the first sentence lands in both the presupposition-test and the
representation of the second sentence:

(24) AQAg([3z3y(man(z) A doughnut(y) A eat(z,y)) > Jzdoughnut(z)] A
VQ(N(AzIy(man(z) A doughnut(y) A eat(z, y) A delicious(y) A

{z/d1H{y/d2}"q))))

It shall be clear that the previous discourse satisfies the relevant presupposi-
tion. In fact, the presupposition-test is a tautology, so what we end up with
is the second conjunct. When we apply the |}-operator to it we end up with
the following static truth conditions:

(25) 3Jz3y(man(z) A doughnut(y) A eat(z,y) A delicious(y))

Notice that this exactly the representation we would find for the same dis-
course, with ity instead the, doughnut.

The DMG, approach to presuppositions sketched above is very simple
and by no means complete. One thing that has to be altered is the definition
of negation: it is still the static closure. But there is also another, more basic
problem with the approach. A presupposition is analyzed as a test on the
context (previous discourse). If the test is satisfied we continue; if not, we
render the sentence infelicitous. The problem is that this is not the way it
works in real life. Humans tend to be much more codperative. Suppose A
says to B:

(26) Sorry I'm late, but I wanted to eat my doughnut first.

-148-



it is not very likely that B will protest that this doughnut was never properly
introduced. Rather he will accommodate (as Lewis [6] called it) the informa-
tion that A ‘owned’ a doughnut, triggered by the definite NP my doughnut.
An accommodated presupposition has its descriptive content simply added
to the representation of the discourse, in a suitable place. This process has
been studied in some detail by Heim [4] and particularly Van der Sandt (Van
der Sandt [10], Van der Sandt & Geurts [11]).

Accommodation is for dynamic semantics an important and interesting
mechanism. Take the use of PNs. PNs have a different anaphoric behavior
than indefinite NPs. When an indefinite NP is used in an if-then clause it
cannot be the antecedent for further reference outside that clause, as we have
seen in (15). When we replace the indefinite NP with a PN, the situation
changes radically:

(27) If Cooper; sees a; doughnut, he; eats it,. He; really loves doughnuts,
particularly with black coffee.

This phenomenon led Kamp to define a rule which stated that the discourse
marker for a PN is always introduced in the principal DRS, no matter how
deeply embedded it occurs. This is rather ad hoc. But, as Zeevat [12] noticed,
with accommodation we have a sort of explanation for this: what happens is
that the presupposition triggered by the PN (that is its descriptive content; it
is after all a definite NP) is accommodated from the embedded clause to the
top-level. In the last se tion of this paper, I will roughly describe how such
an accommodation mechanism can be formalized in DMG,,. I will illustrate it
with PNs, because they do not carry very much descriptive content, but the
procedure is general enough to be applied to other definite NPs, like -most
notably- definite descriptions. In order to do this we also have to change the
definition of negation, as announced a few paragraphs above.

4 Accommodation in DMG,

The prime difference between DMG and DMG, is that the former only an-
ticipates further discourse, while the latter also takes the previous discourse
in consideration. This means that it should be possible to modify the re-
presentation of the previous discourse in DMG,, and that is basically what
accommodation does. The idea is the following: when a sentence contains a
presupposition-trigger, we test if the previous discourse satisfies this presup-
position. If that is the case we continue, but if that is not the case we now try
to accommodate the presupposition. The lexical entry for a presupposition-
trigger contains a test which amounts to the following: if the presupposition
is satisfied nothing happens, if the presupposition is not satisfied we let the
descriptive content of the presupposition end up in front of the hook for the
representation of the previous discourse.
An example will hopefully clarify this. Suppose A tells B the following:

(28) If Leland; is happy, he; dances.

and they haven’t discussed this Leland before (i.e. the presupposition trig-
gered by the definite NP Leland is not satisfied by the representation of the
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previous discourse). Then B will assume (i.e. accommodate) that there exists
someone whose name is Leland and that when that person is happy he whist-
les. In other words, the presupposition ‘escapes’ from the conditional and
gets accommodated at a ‘higher’ level of representation. This also explains
the fact that we can refer back to the individual named Leland in sentences
which follow the conditional (see the difference between example (15) and
example (27)).

How can we translate sentence (28) into DMG,? I will assume that we
have passed the testing-stage and that the result was that Leland was not
present in the context. As said, we then let the descriptive content (which in
the case of a PN in DMG is simply a state-switcher) end up in front of the
representation of the clause in which the trigger occurred:

(29) {leland/d:}fthappy(d1) = frdance(d:)

When we write out the first occurrance of the f-operator and the definition
of the dynamic implication we get the following formula:

(30) ~(APAg{leland/d,}VP("(happy(di) A Vq)); ~fdance(dy))

Notice that the state-switcher ‘hops’ over the lambdas and keeps hanging in
front of the VP, which is the hook for the previous discourse. In order to
make things work we need two things, both having to do with the closure.
The only closure we have seen above is the full static closure, i.e. 1 ®. That
is also the form of closure in terms of which we defined the DMG negation.
Notice that with the higher ((s, ), 7), we have in fact two possible definitions
of closure besides the full closure: one which allows for dynamic binding but
stops further accommodation, and one which does the exact opposite.

To begin with the first one. In DMG,, we have two hooks to relate the re-
presentation of a sentence with the representation of the rest of the discourse;
one for the previous discourse and one for further discourse. But there is a
significant difference between them: we can keep anticipating further senten-
ces as long as we like, but we cannot do the same with the previous discourse,
which is of a fixed length. We do not want a presupposition which is in the
process of being accommodated to stay in front of the hook for previous sen-
tences too long; at a certain point we want the state-switcher to be able to
walk through the formula, replacing discourse markers where possible. That
is where the first closure operator comes into play, which I will call backward
closure: there is no longer any space for previous sentences, while further
sentences are still anticipated. In other words: accommodation is blocked,
while dynamic binding is still possible. Or: backwards closure brings a DMG,
formula back to a normal DMG formula. A formula which no longer has a
place for previous sentences (that is, a formula of type ) will be symbolized

o
as ¥.

-150=-



Definition 14 (Backward closure: //®)
1. /& = ®("\pVp), where p is a variable of type (s,t)

2. /¢ = /\PAqP(A(z(q))), P and q are variables of types 7 and (s,t)
respectively.

Of course we have the following fact: ,//‘B _y However, in this case we are
more interested in the fact that the following doesn’t hold in general: //® =
®. As familiar from the literature, there is a strong preference for global
accommodation (over local accommodation). Usually local accommodation
is only an option, when global accommodation is out of the question (for
instance because it leads to a contradiction). For now I simply want to
propose that the translation of a sentence (but not of a clause!) is closed off
under backwards closure.

The most problematic parts of presupposition-testing and accommoda-
ting are the negation and the constructions defined in terms of it. The pro-
blem is that presuppositions escape from the scope of negation. In section
3.1 we have defined negation in terms of static closure. Such a definition
of negation entails that a PN cannot be the antecedent of further reference,
because accommodation fails (both the hook for previous and the one for
further discourse are closed off). That this is incorrect follows from example
(31.a) However, it is true that an indefinite NP inside a negated sentence
cannot bind variables outside that sentence (except of course in the modal
subordination cases), as can be seen from sentence (31.b).

(31) a. It is not the case that Leland is unhappy. He whistles.

b. It is not the case that a man is unhappy. *He whistles.

What this calls for is a form of closure which stops the dynamic potential, but
allows for accommodation (negation ‘as a hole’ in Karttunenian terminology).
Then a state-switcher is allowed to escape the clause and go to the beginning
of the discourse representation and from there it can bind possible anaphors.
A formula which allows for accommodation, but not dynamic binding (i.e. a

formula of type ((s,7),t)) will be symbolized as ®.
Definition 15 (Forward closure: Ay ®)

1. ¥& = {1®( true)

2. Ap = /\Q(.,r)/\Q(.,t)“;(")\T(.,t)VQ(_"(VT AVg)))

Again we have the fact that VAE = ®. But not in general: Ayd = @.
It is unfortunately not so simple that we can define negation as follows:
~P = AﬂV@

There is a way out, although I admit it is bit trickery. What we want
from negation ‘as a hole’ is that it closes of the possibility of further binding,
allows for accommodation, negates the information in its scope and brings
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the whole back to the original type. When we look at the definition of A it
is clear where the predicates that need to be negated will end up, so we can
easily define another lifting which is similar to A, but with a negation added:

Definition 18 A@ = AQAgP(MArVQ(N~Vr A Vg)))
Then we can define ~® simply as follows:
Definition 17 ~® = Ay ®

Once we have this definition of negation we can again define implication,
disjunction, and universal quantification in terms of it. These definitions are
exactly the same as those in 13, but now their behavior is rather different;
they allow presuppositions to be accommodated out of their scope.

Let us now look once again at example (28):

If Leland; is happy, he; dances.
The translation remains the same as the one we have seen in (29), except
that it we apply the backwards closure to it:

(32) //({leland/d; }thappy(d1) = frdance(d1))

Writing out the two f}-operators and the dynamic implication, we get the
following:

(33) /'{)()f;(/\Pz\q{leland/dl}VP("(happy(dl)/\Vq));w/\P)\qVP("(dance(dl)/\
Vg

Next we write the definition of the inner negation out, which reduces to:

(34) /{)();(AP)\q{leland/@}VP(/‘(happy(dl)/‘\Vq));AP)\qVP("(—ndance(dl)/\
Yg

Dynamic conjunction of antecedent and consequent results in the following
formula:

(35) i/ (~(AQAg{leland/d;}VQ("(happy(d:) A ~dance(d1) A Vg))))

Then we write the definition of the outer negation out:

(36) /(& (AQAq{leland/d,}VQ("(happy(d1) A ~dance(d1) A Vg))))

Following that we eliminate the \/-operator, lowering the type and avoiding
dynamic binding;:

(37) //(L5(AQ{leland/d,}VQ("(happy(di) A ~dance(dy)))))

And then we do the same with the Av-operator, negating the sentence and
bringing the formula back to its original type:

(38) /‘{)()/;RAqAQ{leland/dl}VQ(’\(happy(dl)/\ﬁdance(dl)))(’\)\TVR("(-NT/\
Vg)))) =a
/v (ARXg{leland/d;}¥ R("(—~(happy(di)A~dance(d1))AVg))) =equivalent
/v (ARAg{leland/d,}¥ R("(happy(d;) — dance(dy)) A Vq))
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We see that the V¢’ is outside the implication (that is, the implication is ex-
ternally static), and the state-switcher corresponding to Leland, is standing
in front of the variable anticipating the previous discourse (that is, the pre-
supposition triggered by the PN is accommodated to top-level). Now we can
write out the definition of the forward closure, allowing the state-switcher to
walk through the representation. This will result in the following formula:

(39) APAgVP("((happy(leland) — dance(leland)) A {leland/d;}Vq))

5 Conclusions and future directions

In this paper I have described how we can extend Groenendijk & Stokhof’s
DMG to a framework in which presuppositions can be analyzed. In section
2.2 we saw a first approximation of a treatment of presuppositions in DMG.
This treatment is not the desired one, because (i) the definition of DMG-
negation is still defined in terms of full-static closure, hence a presupposition
cannot escape from its scope and (ii) in case a presupposition is not satisfied
by the context the sentence containing the trigger of the presupposition is
always labelled infelicitous; there is no possibility for accommodating pre-
suppositions. To overcome these two points we can define two more flexible
notions of closure, one which allows accommodation but not dynamic binding
and one that does the exact opposite. We can use the latter to give a some-
what trickery definition of DMG-negation which does the job. I would like
to stress that the above is by no means a complete theory of presuppositions,
it just hands the tools which are likely to be needed when we want to give
such a theory in a DMG-framework..

In the future several things need to be investigated, a number of which
I will mention shortly in this section. First of all, we have to find a way
to constrain the accommodation-process. Van der Sandt [10] presents some
constraints. These are a little too strong, but empirically they do rather well.
An interesting line of research is to look at exactly what conditions should
be used and how they can be incorporated in the approach I sketched above.

Besides that we have to generalize the approach to other presuppositions.
I think that the outline of the procedure presented above is general enough to
include other presuppositions. For instance definite descriptions. There is one
important difference between PNs and definite descriptions: the descriptive
content of the first is just a state-switcher, while the second is a state-switcher
with one or more constraints on it. Suppose we want to accommodate a
presupposition triggered by the; doughnut. That means that we want to
place a state-switcher {z/d,} in front of the hook for the previous discourse,
but we also want to say that z is a doughnut. What we seem to need is a
more specific form of state-switching.

I guess another thing section 4 shows, is that the formulas tend to get
rather complex and highly typed. This entails that we still do not gain much
insights in what is going on when we accommodate presuppositions (except
perhaps the observation that it is a very strong process). A last point for
further research therefor is to try if it is possible to give an analysis along
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the lines presented in this paper in an ‘easier’ framework like Groenendijk &
Stokhof’s DPL [3] or a related framework like Muskens’ version of DMG [8].
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