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Abstract

This paper presenis a pariial formalisation of phonological brackeled grid theory. It
is subsequently argued thai this formal object and the more well-known tree cannot be
compared. Yel from the brackeled grid we can extract a construct called a superhne.
The superline satisfies the Single Root Condition but not the Exclusivity Condition
or the Non-Tungling Condition. Phonolagical X-bar struclures are introduced and il
i5 shown in whai way they are different from both normal trees and bracketed grids.
X-bar rees are a more restricted form of tree. They differ from bracketed grids and
superlines in the restriclions imposed on {government) relations.

1 Introduction

The rise of Non-linear Phonology shifted the phonologist’s attention from the theory
of rules (The Sound Pattern of English—Chomsky and Halle 1968) to the theory of
representations. During the last decade phonologists have developed a theory of repre-
sentations that is sufficiently rich and adequate to describe a wide range of facts from
the phonologies of various languages.

It is a fairly recent development that these representations are being studied also
from a purely formal point of view. There has been some work done on autosegmental
structure (for instance Coleman and Local (1991) Bird and Ladd (1991}, Bird and
Klein (1990)) and also some work on metrical trees (like Coleman (1990) in unification
phonology and Wheeler (1981), Moortgat and Morrill {1991) in categorial logics). As
far as I know, apart from the pioneering work by Halle and Vergnaud (1987}, bitherto
no attention has been paid to the formal aspects of the most popular framework of
metrical phonology nowadays, the bracketed grids framework (Halle and Vergnaud 1987,
Hammond 1984, Hayes 1991, Kager 1989).

In this paper I study this representation from an algebraic point of view. The
purpose of this is twofold. First, I want to define a formal language in which linguistic
generalizations on metrical structure can be expressed. Secondly, I want to study some
of the mathematical properties of this system. In particular [ am interested in comparing
this system with the formalism of trees and X-bar structures.

*“Thanks to Emile Krahmer, Reinhard Muskens, Craig Thiersch, Chris Sijtsma and the anonymous
CLIN reviewers for comments on an earlier version of this paper. Thanks to Gerrit Rentier for sharing
his IATEX macros with me. All usual disclaimers apply. The work reported here is part of CLS project
823.02 “The logical structure of phonological form’. Part of the reselts have also been reported in Van
Oostendorp (1993); those paris are discussed oaly briefly here.
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The relation between bracketed grids and trees has been under discussion ever since
the appearance of the former formalism. In Halle and Vergnaud (1987, henceforth HV}),
a whole section is dedicated to the subject {cf. section 5.5, pp. 161-170). Hammond
(1984) independently argued for a formalism quite like bracketed grids, in which tree-like
dominance lines are drawn between elements.

Other authors have also expressed the intuition that bracketed grids and tree struc-
tures {e.g. the [s(trong),w(eak)] labeled trees of Hayes (1981) and related work) are
equivalent. An example is Van der Hulst (1991), writing: Unless I miss something, it
seems to me that the [bracketed grid notation] is equivalent to a tree notation.

In this paper, I study Van der Hulst’s intuition in some formal detail and show that
it is wrong. The structure of the argument is as follows. In the second section of this
paper, I build up a definition of the bracketed grid as a formal object. In section 3 1
subsequently compare this formal object to the tree and in section 4 I compare both
trees and grids to phonological X-bar structures. Section 5 is devoted to a conclusion.

2 The definition of a bracketed grid

HV themselves have devoted a major part of their book (part II) to pure formalization
of the bracketed grid framework in terms of Horn Clause-like logics. Unfortunately
there are a few problems with this formalization. I will mention three of them.

First, their formalization is not flexible enough to capture all instances of (bracketed)
grid theory which are actually found in the literature of the last few years. They
merely give a sketch of the specific implementation of bracketed grid theory as it is
used in parts of their book. Modern work like Kager (1989) or Hayes (1991) cannot be
described within this framework; and even with respect to their own empirical work,
the formalization is incomplete, as we will see below.,

Secondly, they use a lot of formal concepts which have no empirical or formal ne-
cessity like ‘natural brackets’ (cf. Blevins 1992).

Thirdly, their way of formalizing bracketed grids has very much a ‘derivational’
flavour. HV are more interested in how grids can be built than in what they look like.
Although looking at the derivational aspects of a generative theory is an interesting and
worthwile enterprise in itself, it makes HV’s formalism less suitable for a comparison
with metrical trees or other formal objects.

2.1 Lines and metrical lines

A grid in the linguistic literature is a set of lines, each line defining a certain subgroup
of the stress bearing elements, Thus, in (1) (HV’s (77), p.262), the elements (bot the
asterisks — ‘stars’ — and the dots) on line 1 represent the syllables of the word Tennessee,
the elements on line 2 represent the syllables with secondary stress and line 3 represents
the syllable with primary stress. An element is drawn as a star iff it is also present at
a higher level. Otherwise it is drawn as a dot:

{1 . line 3
(- ¥} line 2
(* .} (*) linel

Ten ne see

We can formalize the notion of a line as follows:
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Definition 1 (Line) A line L;is a pair < A;, <>

where A; = {a},...,al}; al,...,a} constants, n a fired number

~<; is a total ordering on A; which is transilive, asymmetric and irreflexive.

We say that L; C L; if A; C A;; o € L; if o € A;. Other set theoretic expressions are
ertended in a similar fashion.

Yet this formalisation is not complete for bracketed grids. It has to be supplemented by
a theory about the brackets that appear on each line, i.e. by a theory of constitueney
and by a theory of what exactly counts as a star on a given line.

We have exactly one dot on top of each column of stars. Moreover, each constituent
on a line has one star in it plus zero, one or more dots. The stars are heads. HV say that
these heads govern their complements. This government relation can only be a relation
which is defined in terms of precedence, because of the nature of a line. Suppose we
make the government relation the primitive notion instead of the constituent. A metrical
line is defined as a line plus a government relation on that line:

Definition 2 (Metrical line) A metrical line ML; is a pair < L;, R; >, where L; is
a line and R; is a relation on L; and an element of {<;, >, —, —i}!

I assume that something like Government Requirement 1 holds, just as it is assumed in
HV that every element is in a constituent:

Government Requirement 1 (to be revised below)
A line L;meets the government requirement iff all dots on [; are governed, i.e. a star
is in a government relation to them.

Now a constituent can be defined as the domain that includes a star, plus all the dots
hat are governed by this star. We have to be a little bit careful here, because we want
to make sure that there is only one star in each constituent.

In order to ensure this, we adopt an idea from modern syntactic {GB) theory, viz.
Minimality, which informally says that an element is only governed by another element
if there is no closer governor. The definition of Phonological Minimality could look as

follows:

Definition 3 ( Minimality definition of phonological government)
aG.8 (o governs 3 on line i) iff o is a star and aR;3 A =37,y a star : [YR:3 A aR~]

We will give the formal definition of a star below, but first I can define the notion of a

constituent:

vl :Vade L;:

- a e, ﬁdéiﬂ =i a

R — Bdf—-fa < BA-3y:i[a<ivAy < B

d
- Q—ol'ﬁé!ﬂw'a

Actually, HV also use a fifth kind of constituent in their book, viz. one of the form {. * .). Because
there has been a lot of criticism in the literature against this type of government (see e.g. Kager 1991
and Haves 1991), I will not not discuss 1t here.
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Definition 4 (Constituent) A constituent on a line L; is a set, consisting of ezactly
one star S in L; plus all elements that are not stars but that are governed by .

Notice that in this formalism, the constituent is not a primitive. This means we
cannot freely move around with brackets, as it is sometimes done in the literature.
Even in HV (p. 188) we find a rule like the following, moving a bracket in order to
analyse Odawa stress retraction:

(2) line2: %))/ _#

This rule moves a bracket around a star, as if the bracket is a real element of the
line. We can only do this if we consider a bracket to have substance, in other word if we
view it as an SPE'like boundary symbol. This type of rule can not be expressed in the
formalism presented here: in this formalism, the bracket is an epiphenomenon and we
can not refer to it direcily in our rules. However, the rule is against the spirit of HV’s
own formalisation as well, where brackets are seen as properties of constituents, not as
independent elements {cf. the definition of the Recoverability Condition in HV (p. 10)).

2.2 Grids and bracketed grids

We now have a satisfying definition of a metrical line. We can define a grid as a collection
of metrical lines, plus an ordering relation on them:

Definition 5 (Grid) A grid G is a pair <L, ]>, where

L={L,...,L.}, L,,...,L, metrical lines

| is a total ordering on L, such that

VL Li e L:Li L L, (L, ¢ LjAVa, B8 € LinL; o < & a <; B]]; where C denotes

the proper subset relation.

It is relatively easy to see that | by this definition is transitive, asymmetric and irreflex-
ive. We also define the inverse operator 1 such that L; 1 L; iff L; | L;.

The most interesting part of definition 5 is of course the | (‘above’)-relation. Look
once again at the grid in (1). Each of the lines in this grid has fewer elements than
the one immediately below it. This follows from elementary pretheoretical reasoning.
Every stressed syllable is a syllable, every syllable with primary stress also has secondary
stress. I expressed this in definition 5 by stating that every line is a subset of the lines
below it. The second part of the definition says that the relative ordering of the elements
in each line is the same as that on the other lines.

We can also easily define the notion of a dot and a star, informally used in the
definitions of government above. We can simply say that Yo € L; : star,-(a)dgHLj :
(Z; | Li A{a € L;)] and similarily, Yo € L; : dot;{a) iff —~star;(a)

The government requirement can now be fully formalised. It will subsequently be
extended to the grid as a whole.

Government Requirement 2 (for lines — final version) A metrical line L; meets
the government requirement iff Va € L; : dot;(a) = 38 € L; : [star:(3) A 3G a]

We want two extra definitions on grids. Because all grids found in the linguistic litera-
ture are finite (i.e. they have a finite bottom line), I can define a bottom line and a top

line for each grid:
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Definition 6 (Top line and bottom line) For a certain grid G, VL; € G
- (Liop = LYEVEL; € G2 [(Li = L)V (Li | Ly)]
- (Loosome = L)HVL; € G 1 [(Li = L)V (Li 1 Ly)]

Government Requirement 3 (for grids)
A grid G meets the government relation iff all the lines L; € G — {L;p,c} meet the
government requirement?.

A last definition is needed here. If we look at the grids that are actually used in linguistic
theory, it seems that there is always one line which has just one element. Furthermore,
this line is the top line of the grid (the only line that could be above it would be an
empty line, but that one doesn’t seem to have any linguistic significance). Hayes (1991)
also notes this where he states that if prominence relations are obligatorily defined on
all levels, then no matter how many grid levels there are, there will be a topmost level
with just one grid mark,

We can formalize this as follows®: A finite grid G which meets the government
requirement is called a complete grid iff [Li, 6| = 1,1e. Ja:[a € L,e AVB: [F €
Ly =8 = a]]

I call this type of grid complete because one can easily construct a complete grid out
of a given grid meeting the government requirement.

I Liop gis non-empty, we construct a complete grid by projecting the rightmost {or
alternatively the leftmost) element to a new line L; and by adding the government
requirement > {or <) to L., ¢. Finally we add the relation L; | L, s to the grid, i.e.
we make L; to the new L,,, 5.

If the top line of the grid is empty, we remove this line from the grid and proceed
as above. If the top line has exaclty 1 element, the grid already is complete an we can

stop.

3 Grids and trees

In this section, I show to what extent bracketed grids and trees are really different
formal systems. First recall the standard definition of a tree (I cite from Partee, Ter
Meulen and Wall 1990)*:

2We have to say something special with regard to L,op, &, because on this line all clements by definition
are ungoverned dots. Hence they can never satisfy the government requirement.

4The reader should keep in mind that the type of grid presented here is a very strict cne. This is done
on purpose, because this is the grid that comes closest to a tree. In modern metrical work one makes
use of a device called Weak Local Parsing, which keeps part of the structure ‘unparsed’, i.e. it allows
for ungoverned dots on a limited scale. I could certainly define a WLP-bracketed grid in my formal
language, but it would be immediately clear that this type of grid is different from a tree, because trees

are by definition ¢onnected graphs.
*For the moment, I will not consider } and [, because these are relatively unimportant for my

present aim and goal and there is nothing comparable to the labeling function in my definition of
bracketed grids. For now I will stndy unlabeled irees. Notice however that the trees actually used in
the phonological literature do use at least a binary set of labels {s, w}. We will also see that X-bar
structures make crucial use of labeling.
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Definition 7 A (constituent structure) tree is a mathematical configuration
<N,Q,D,P,L>, where

N is a finite set, the sei of nodes

@ is a finite set, the set of labels

D is a weak partial order in N x N, the dominance relution

P is a strict partial order in N x N, the precedence relation

L is a function from N inlo @, the labeling function

and such that the following conditions hold:

(a) Fa € N :¥3 € N :[<wa,B>€ D] (Single root condition)

() Vo, € N : [(<o,f>€ PV < B,a>€ P) & (<a,8>¢ DA < B,a >¢ D))
(Ezclusivity condition)

(c) Vo,B8,7,6 : [(<a,f>€ PA <a,7>€ DA <83,6§>€ D) =<~,6 > P] (Nontan-
gling condition)}

It is clear that bracketed grids and trees have structures which cannot be compared
immediately. Bracketed grids are pairs consisting of a set of complex objects (the lines)
and one total ordering relation defined on those objects (the above relation). Trees on
the other hand are sets of simple objects (the nodes) with two relations defined on them
{dominance and precedence). These simply appear to be two different algebras where
no isomorphism can be defined.

Yet if we decompose the algebraic structure of the lines, we see that there we have
sets of simple objects (the elements of the line) plus two relations defined on them. One
of those relations {<,) is a strict partial order, just like P. The other relation, Gj, is
vaguely reminiscent of dominance.

A line is not a tree, however. Although <; has the right properties, it is not so clear
that G; does. While this relation clearly is asymmetric (because it is directional), it is
not a partial order because it is not transitive and because it is irreflexive.

A more interesting relation emerges if we consider the grid as a whole. Because
trees are finite structures, we need to consider finite grids only. The line Ljsrom chas
the property that VaVL, € G : [e € L; = a € Liottom ] This follows from the
definitions of Ly,¢t0m ¢ and the ‘above’ relation.

This means that all basic elements of the grid are present on L, om gand, as we
have seen above, we can equal P to <sortom,g. Furthermore, we can build up a ‘super-
government® relation G, which we define as the disjunction of all government relations

G;in G:

Definition 8 (Supergovernment relation of a grid &)

Ce Y |J {<a,8> | aGBrdoti(3)}

L.eG

If we want to compare ¢ to dominance, we have to make sure it is a partial order.
However, G obviously still is irreflexiv and it also is intransitive. For this reason, I take
the transitive and reflexive closure of G, which I call G*.

Using this relation, we can define the superline of a linguistic grid:

Definition 9 (Superline)
The superline SL of a linguistic grid G is the tuple < Asotrom > =bottom,c» G >
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The superline is an entity which we can formally compare to a tree, with <soiomc= P,
Aportomc = N, G~ = D. Of most interest are the complete linguistic grids, firstly
because these are the ones that seem to have most applications in linguistc theory and
secondly because the requirement that they be complete (i.e. their L,,, ¢ should have
exactly one element) mirrors the single root condition on trees, From now on, I will use
the abbreviation CLG for ‘complete linguistic grid’.

Note that I also restrict my attention to grids which meet the government require-
ment, i.e. to linguistic grids. I am not so sure that this restriction is equally well sup-
ported by metrical theory as the restriction to completeness. However, the restriction
to linguistic grids makes sure that all elements in the grid participate in the government
relation, because everything ends as a star somewhere and hence has to be governed by
another element.

We can now prove that for every linguistic grid G, if G is complete, then SLg
satisfies the Single Root Condition.

The formal proof of this theorem is given in Van Qostendorp (1993). Hopefully the
intuition behind it is clear: the requirement that a complete linguistic grid has only one
element in the top-most line is equal to the requirement that a tree has one and only
ane raot node.

So superlines have one important characteristic of trees. Yet ezclusivity and non-
tangling still do not hold for superlines of CLGs, even if they meet the government
requirement. The reason why these conditions do not hold is that, on lines as well as
on superlines, elements can both govern and precede another element. Exclusivity and
nontangling are meant to keep precedence and dominance apart.

As a matter of course the differences between trees and bracketed grids become much
less dramatic if we look at more restricted types of trees. Van Oostendorp (1993) shows
that one restricted type of tree can be found which is exactly isomorphic to bracketed
grids. This is the tree structure that is used in Dependency Phonology, which also do
not obey Exclusivity and Non-Tangling..

4 X-bar trees

Maxwell (1992) contends that the differences between Dependency Graphs and X-bar
structures are minimal. It remains to be shown whether there are any formal differences
between the bracketed grids that are presented in this paper and the ‘X-bar structures
in lines’ as they are represented in Levin (1985), Rubach and Booij (1990) and Hermans

(1991), among others.

X-bar structures have never been given a full algebraic formalisation and compar-
ison with trees, not even within mathematical syntax, even though they are among
the most widely used formalisms at the moment. For this reason, I will give a briel
characterisation of a general X-bar schema below. According to this schema, an X-bar

tree is a specialized kind of tree.

Definition 10 (Simple X-bar tree)
An X-bar tree is a constituent structure tree <N, Q. D, P. L > such that

1. Q=0B,U...uQB,, where @B,, ..., QB, are pairwise disjoint sets. referring
to bar levels (generally, n is taken to be 2)
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Q@ =QC V... UQC,,, where QC., ..., QC,, are pairwise disjoint sets, referring
to categories

3 Yae N: Ve N :{<a,f>€ D= L(a)€ QB,]

4. Vae N:{Lla)e @B, & -3 € N : [aMP]] (where M ‘mother of’ is immediate
dominance)

5. Yae NV e N:lax g% [aMBe DAL(a) € QB AL(3) € QB; Aj < iAL(a) €
QC, A L(B) € QC]]

6. Vae N:[38eN:[aMfB]= 3y €N :[a= ]|

7. Vae NVBe NVyeN:jam SAaMyAB #y] = [~(vy=B3)A(L{v) € QB,)]

e

I will briefly go through the items of this definition one by one. 10.1 divides the
set of labels into a certain number of disjoint subsets, each subset defining a certain

bar-level. For instance, Q might be the set of labels {N® A°, P° V°, N, A,P,V, N, A,
P, V}. In that case QB, could be {N® A°, P° V°} and QB, could be {N, A, P, V5

Similarily, according to 10.2, the set of labels can be divided into a certain number
of disjoint subsets, defining categories. In the sample Q just given we could for instance
suppose that QC, = {N? N, ﬁ} and QC, = {AY, A, f} We could of course also extend
the set of labels in order to include functional and other heads.

It has been proposed both for bar levels and for categories that we should work
with binary features instead of integers or unanalysable category names. For instance,
Muysken (1982) proposes that bar levels should be analyses by using the features
{£max]/{+proj] and it is more or less standard to analyse the category labels as [+V,
+N]. From an algebraic or set theoretic point of view, these issues are immaterial,
however, because the features still define disjoint sets

10.3 says that the root of an X-bar tree should always be a maximal projection.
Notice that this causes an important difference between X-bar trees and ‘normal’ trees:
while a branch of a tree is always a tree, it is not necessarily true that a branch of an
X-bar tree is always an X-bar tree — even though it is still a tree.

10.4 says that all the leaves of the X-bar tree are of a certain category and that all
elements of this category are leaves®. Again, this distinguishes X-bar trees from normal
trees: if we cut a branch from a normal tree, the result is again a tree. If we cut a
branch from an X-bar tree the result is not always again an X-bar tree (but again, it is
a tree).

10.5 defines an important relation in X-bar trees, viz. ‘is the projection of %, The
version presented here allows recursion of all bar levels, so X can head an X and X can
head an X, but it could easily be redefined to exclude such recursion: in that case we
say 7 < ¢ instead of j < ¢. 10.6 consegently says that every element has a head, except
if it is a leave and 10.7 says that no element has more than one head and that all sisters
to a head are maximal projections.

The latter two statements of course define the core of X-bar theory, as used in GB
syntax®.

In the phonological literature the structures that are actually used are somewhat
more limited. I now turn my attention to phenological X-bar trees, which differ from

®At first sight this might seems to exclude recursion at the X° level. Because we can always relabel
a tree in such a way that it conforms to 10.4, this is a matter of no great importance.
®3pecific versions of syntactic X-bar theory sometimes have additional constraints, like a binary

branching requirement, but T will not go into these.
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the schema in definition 10 in certain ways. I will take Levin (1985) as my guideline,
because it is the most accessible and extensive presentation of phonological X-bar theory
available at the moment. This theory is most commonly used to represent syllable
structure. The English syllable tract is represented in this theory as follows:

(3)

©
N
N

NO

I
X X X X
I I I
t r a

o — K

k

I will discuss the steps of the definition one by one:

10.1

10.2

10.3

10.4

10.5

10.6
10.7

Like in syntactic X-bar theory, it is assumed that the lowest X-bar level is X% and
the highest level is X2. We should be a little bit careful here however. As one can
see in (3), we have an intermediate level of x-slots between the bar levels of N and
the segmental material. These skeletal points play a crucial role in all phonological
phrase structure descriptions, and therefore they should be considered part of
phonological X-bar theory. This gives us four bar levels: {x, N°, N, N }

As T stated above, most work in phonological X-bar theory is concerned with
syllable structure. This implies that there is often just one category: N{ucleus).
This axiom also holds for phonological X-bar structures. An X-bar structure is
not finished until it reaches its highest level.

Also this is true for phonological X-bar structures, at least if we keep to the
assumption just made that x’s are the real end-points of X-bar structures. These
do not dominate anything although they are associated to autosegmental material
in the sense of autosegmental phonology. The relation between the first z and the
/t/ in (3) is different from that between z and N: the /t/ is not a daughter of the
z-slot, but it is associated to it, i.e. they overlap in time (Sagey 1986).

is a definition which trivially holds on any X-bar structure. Notice however that
we need recursion on the N, but not on the N or N’. An adequate definition of a
phonological X-bar theory would take this into account by making 10.5 somewhat
more precise.

is true, if we assume that N° counts as a projection of the z dominated by it.
gives the most important difference between phonological and syntactic X-bar
trees: in phonological X-bar trees, the sisters of the head are never maximal
projections; to the contrary, they are always minimal elements. namely z’s. A
given NO always has z-slots as its non-head daughters. never full syllables.

Taking these considerations into account, we can give the following definition of a
phonelogical X-bar tree:

Definition 11 (Phonological X-bar tree)
A phonological X-bar tree is a tree <N,Q, D, P, L> such that
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1. Q=QB,U...UQB,, where QB,, ..., @B, are pairwise disjoint sets, referring
to bar levels (9B, = {z}, QB, = {N°}, @B, =(W}, @B, = {N})

2.Q=QC, ={z ¥, N V)

3 VaeN:VBeN:[<a,f>c D= L{a)€ QB,

4. Vae N:[Lla)eQB, & -3 € N : [aMf]]

Oy

Vae NVBeN:lax 8 [aMBe DA L) e QB AL(S) € QB; A(j <ivj=
i =3)]]

6. Vae N:[30eN:[aMB]=Ive N :[a~]

7. VYa€ NVBe NVye N:fexgraMy A #v]= [=(y= B8)A(L(y) € QB.)]

I already discussed the differences between these X-bar structures and trees. A word
remains to be said about the difference between X-bar structures and bracketed grids.

The first three clauses in (11) all refer to labels; an X-bar tree by definition cannot
be an unlabeled tree, whereas bracketed grids are always unlabeled. This seems to cause
already one important difference between the two formalisms.

This is certainly true for the categorial label, to which there is no real alternative
in bracketed grid theory. Notice, however, that it is assumed that there is just one set
QC which includes all members of . The categorial labels thus do not play a very
important role in the system at all.

The bar level sets, on the other hand, can be mimicked in the bracketed grid system
quite easily: we can say that an element € of a given bracketed grid T has the label X"
iff € is an element of line Z; in I' and there is no Lj, such that Z; | Ly and e € L;. In
other words, a bar level set is a line.

We have already seen that the Single Root Condition holds for (superlines of) com-
plete grids. According to 11.3, the root, i.e. the element that (transitively) governs all
other elements is an element of L,,, g. This is trivially true: if the root would not be a
member of L, g, it would be transitively governed by a member p of Lyyp g, distinct
from it. But then a contradiction would arise: p would not be governed by the root
because of the asymmetry of the government relation, hence the root would not be the
element governing all other elements.

11.4 is equally trivial: it says that there are no elements below the bottom line.

The projection relation a & 3 defined in 11.5 can not be interpreted directly in the
mapping, proposed here, because a = 3 seems to hold of every pair of elements <, 3>
which are on different lines, or both on L,,, ;. More generally we cannot really define
‘Is a projection of” in a bracketed grid: the element and the projection of that element
are indistinguishable, so we would have to say @ = 8 in stead of o ~ 3.

Because 11.6 and 11.7 are stated in terms of 11.5, they themselves now become
stricto sensu meaningless. However, the spirit of 11.6 can still be captured by the
formula Va € G : 38 € GlaMBAB € Lina € Ly AL; | L] = [a € L;], which is
trivially true, because Yo € G : [a € Ly A L; | L; & a € L;] is a theorem in bracketed
grid theory”.

11.7, however, shows us a final and irrepairable difference between phonological
X-bar trees and bracketed grid structures. Translated into bracketed grid terms, this
clause says that all governed elements of a grid are part of Lyseom g. The tree in (3)
could consequently only be translated into the following grid:

"This is the so-called Complez Column Constraint of Hayes 1991; for a proofl that the CCC is a
theorem in bracketed grid theory see Van Qostendorp 1993,
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(4) . Litop,c
(‘ . * . -) Lbottom,G
t r a k t

The necessary government relation in Lyom ¢ ¢an however in no way be expressed
in the system presented in this article or in the formalism of HV. Syntactic trees, on
the other hand can also not be translated into grids following this algorithm without
loding essential information. Because all governed elements in syntactic X-bar trees are
maximal projections, all elements would end up as elements of L;,p,c. This means that
syntactic X-bar trees would always end up as grids of just one line®.

5 Conclusion

Let me summarize the results of this paper. We have seen that from bracketed grids
we can extract superlines, on which the government relations of the normal lines are
conflated.

These superlines are equivalent to some sort of unlabeled trees, under a very weak
definition of the latter notion. Whereas the minimal restrictions of the Single Root
Condition do hold, the same is not necessarily true for the Exclusivity Condition and
the Non-Tangling Condition. Superlines do correspond to a very specialized sort of tree,
the Dependency Graphs of Dependency Phonology.

Finally, it is shown that the X-bar structures that are used in some versions of syl-
lable theory have properties that distinguish them from both plain trees and bracketed
grids. In particular, the notion of government as defined on an X-bar tree cannot be
translated to its counterpart on a bracketed grid.

It is a common practice, both in theoretical and in computational Linguistics, to
claim that most so-called linguistic theories are actually ‘notational variants’. If we take
the term ‘o is a notational variant of 8° to mean that we can define a homomorphism
between a and #, we have shown that although three of the most popular devices of
representing metrical structure, trees, grids and X-bar structures are very similar, they
are not notational variants.
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