
Non-associative Lambek Categorial Grammar

in Polynomial Time

Erik Aarts

1

Research Institute for Dep. of Mathematics

Language and Speech and Computer Science

Utrecht University University of Amsterdam

Trans 10 Plantage Muidergracht 24

3512 JK Utrecht 1018 TV Amsterdam

Kees Trautwein

Research Institute for

Language and Speech

Utrecht University

Trans 10

3512 JK Utrecht

Abstract

We present a new axiomatization of the non-associative Lambek catego-

rial grammar. We prove that it takes polynomial time to translate any non-

associative Lambek categorial grammar into an equivalent context-free gram-

mar. Since it is possible to recognize a sentence generated by a context-free

grammar in polynomial time, this proves that a sentence generated by any non-

associative Lambek categorial grammar can be recognized in polynomial time.

1 Introduction

In this paper we present an algorithm for the recognition of sentences generated by

non-associative Lambek categorial grammars (see Lambek

(

1958

)

for details on the

Lambek categorial grammar). First we will de�ne categorial grammars. These gram-

mars consist of a lexicon de�ning a type assignment to words, and a calculus de�ning

the well-formed sequences of types. An important categorial grammar is the Lambek

grammar which uses the Lambek calculus to de�ne well-formedness. The complex-

ity of the recognition problem for Lambek categorial grammar is still unknown. So

far only nondeterministic polynomial time algorithms are known. On the other hand

there isn't any proof that this recognition problem is NP-complete.

For the second order fragment polynomial algorithms have been found

(

Aarts,

1993; Aarts, to appear

)

. Another interesting fragment of the Lambek calculus is the

1

The author was sponsored by project NF 102/62-356 ('Structural and Semantic Parallels in

Natural Languages and Programming Languages'), funded by the Netherlands Organization for the

Advancement of Research (NWO).

7



non-associative calculus. The non-associative Lambek calculus can be obtained from

the standard Lambek calculus by dropping the associativity rule. There are several

ways to axiomatize the resulting calculus. Buszkowski

(

1986

)

proves that the non-

associative Lambek categorial grammar is equivalent with context-free grammar. The

grammar that he obtains has exponential size. Only exponential time algorithms have

been found in the past

(

Janssen, 1991; Trautwein, 1991

)

. In this paper we present

a new axiomatization of the non-associative Lambek calculus. This axiomatization

enables us to give a polynomial translation into context-free grammars. After the

translation we can use any context-free recognition algorithm to recognize a sentence

generated by the non-associative Lambek categorial grammar in polynomial time.

2 Categorial Grammars

A categorial grammar G is de�ned by a lexicon Lex and a calculus C. A (�nite) set

of primitive types Pr is given. Tp is the set of types. Types are constructed from

primitive types by two type-forming operators: / and n, i.e., Tp is the smallest set

including Pr such that if x; y 2 Tp, then xny; x=y 2 Tp. One member s of Pr is

singled out as the distinguished type.

A lexicon Lex is a �nite relation between an alphabet � and Tp (Lex � �� Tp;

� \ Tp = ;). If a lexicon Lex relates a 2 � with A 2 Tp (ha; Ai 2 Lex), we say Lex

assigns A to a.

STp is the set of strings of types. Furthermore, we de�ne the set BSTp, of bracketed

strings of types as the smallest set including Tp such that if X; Y 2 BSTp, then

(X; Y ) 2 BSTp. The yield of a bracketed string X is the string we get when we erase

the brackets. Yields are elements of STp.

Now L(G) is de�ned to be the set of strings w 2 �

�

, w = a

1

: : : a

n

such that for

some bracketed string of types X, yield(X) = A

1

; : : : ; A

n

, ha

i

; A

i

i 2 Lex (1 � i � n)

and X ! s is derivable in the calculus C.

We use the non-associative Lambek calculus as the calculus C. There is a number

of possible axiomatizations for this calculus. We choose one given in Kandulski

(

1988

)

as our starting point. This calculus is called NLG

0

and can be found in Figure 1.

[A1] x! x ; for x 2 Tp

(X; y)! x

X ! x=y

[R1

0

]

(y;X)! x

X ! ynx

[R1

00

]

X ! y Y [x]! z

Y [(x=y;X)]! z

[R2

0

]

X ! y Y [x]! z

Y [(X; ynx)]! z

[R2

00

]

for X; Y 2 BSTp and x; y; z 2 Tp.

Figure 1: NLG

0

8



The notation Y [x] (resp. Y [X]) is used to indicate the bracketed string of types

Y , in which, on a certain place, type x (resp. bracketed string of types X) occurs.

Before we show that sentences can be recognized in polynomial time we �rst intro-

duce two auxiliary calculi: NLG

�

0

and NLG

��

0

. The calculus NLG

�

0

di�ers from NLG

0

in that the X's in the R1

0

and R1

00

rules are restricted: they must be in Tp instead of

in BSTp. The calculus NLG

��

0

di�ers from NLG

�

0

in that the X's in the R2

0

and R2

00

rules must be in Tp instead of in BSTp.

The calculus NLG

��

0

can be written down as follows (compared to NLG

0

, X has

been replaced by w):

[A1] x! x ; for x 2 Tp

(w; y)! x

w! x=y

[R1

0

]

(y; w)! x

w! ynx

[R1

00

]

w! y Y [x]! z

Y [(x=y; w)]! z

[R2

0

]

w! y Y [x]! z

Y [(w; ynx)]! z

[R2

00

]

for Y 2 BSTp and w; x; y; z 2 Tp.

Figure 2: NLG

��

0

In the sequel, we are going to prove that NLG

0

, NLG

�

0

and NLG

��

0

are equivalent.

We prove the following inclusions:

� NLG

0

� NLG

�

0

(Theorem 2.1)

� NLG

�

0

� NLG

��

0

(Theorem 2.2)

� NLG

��

0

� NLG

0

(Theorem 2.3)

Theorem 2.1 For all k, if some sequent � ! A containing k slashes is derivable in

NLG

0

, then it is also derivable in NLG

�

0

.

Proof: We prove this theorem with strong induction on the number of slashes (/,n)

in a sequent. The base case is k = 0. The sequent must be an axiom. No R1

0

or

R1

00

rules are used so Theorem 2.1 holds for k = 0. Now we assume the induction

hypothesis:

IH(k): For all i < k, if some sequent � ! B containing i slashes is derivable in

NLG

0

, then �! B is also derivable in NLG

�

0

.

We have to prove that if some sequent �! C containing k slashes is derivable in

NLG

0

, then it is also derivable in NLG

�

0

.

9



Assume � ! C is derivable in NLG

0

. Then there is a proof � of � ! C. We

will show that �! C is also derivable in NLG

�

0

. We consider various possibilities for

the last step in the proof of �. We assume that proofs are constructed from top to

bottom, i.e., from the axioms we try to reach the conclusion. The last step in a proof

is the step that proves the �nal conclusion.

Case 1: � is an axiom. Then it is derivable in NLG

�

0

too.

Case 2: The last step in � is an R2 rule or an R1 rule with X 2 Tp. The proof is

easy. The premises of the last step contain fewer slashes than �! C. The induction

hypothesis tells that the premises are derivable in NLG

�

0

. Use the NLG

�

0

proofs of the

premises and the last rule of � to construct a proof of �! C in NLG

�

0

.

Case 3: The last step in � is some R1 rule (e.g. R1

0

, the other case is symmetric)

with X 2 BSTp, but X 62 Tp.

.

.

.

.

(X; b)! a

X ! a=b

[R1

0

]

The induction hypothesis tells that (X; b)! a is derivable in NLG

�

0

. Consider the

proof in NLG

�

0

of (X; b) ! a. The last step in this proof is not an R1 rule because

(X; b) 62 Tp. If (X; b) ! a has been derived with an R2 rule, then we have various

possibilities.

: : :

(X; b)! a

[R2]

X ! a=b

[R1

0

]

The type b is not involved in the rule R2 (case 3a) or it is involved (case 3b).

Case 3a: If b is not involved, then R2 can be R2

0

or R2

00

. The proof is similar for

both cases. In the �rst case, the proof is of the form:

.

.

.

.

X

0

! y

.

.

.

.

(Z[c]; b)! a

(Z[(c=y;X

0

)]; b)! a

[R2

0

]

Z[(c=y;X

0

)]! a=b

[R1

0

]

We can transform this proof into the following proof:

.

.

.

.

X

0

! y

.

.

.

.

(Z[c]; b)! a

Z[c]! a=b

[R1

0

]

Z[(c=y;X

0

)]! a=b

[R2

0

]

10



The sequents Z[c]! a=b and X

0

! y have fewer slashes than Z[(c=y;X

0

)]! a=b.

The induction hypothesis tells that the two smaller sequents are provable in NLG

�

0

.

Therefore, Z[(c=y;X

0

)]! a=b is also provable in NLG

�

0

.

Case 3b: If b is involved in the R2 rule it must be the functor. X cannot be the

functor because X 62 Tp. Type b is of the form dnc.

.

.

.

.

X ! d

.

.

.

.

c! a

(X; dnc)! a

[R2

0

]

X ! a=(dnc)

[R1

0

]

The induction hypothesis says that X ! d is derivable in NLG

�

0

. Consider the

proof of X ! d in NLG

�

0

. The last step in this proof must be an R2 step because

X 62 Tp. The proof is of the following form:

.

.

.

.

X

0

! y

.

.

.

.

Z[e]! d

Z[(e=y;X

0

)]! d

[R2

0

]

.

.

.

.

c! a

(Z[(e=y;X

0

)]; dnc)! a

[R2

00

]

Z[(e=y;X

0

)]! a=(dnc)

[R1

0

]

We can transform this into:

.

.

.

.

X

0

! y

.

.

.

.

Z[e]! d

.

.

.

.

c! a

(Z[e]; dnc)! a

[R2

00

]

Z[e]! a=(dnc)

[R1

0

]

Z[(e=y;X

0

)]! a=(dnc)

[R2

0

]

The induction hypothesis says that X

0

! y and Z[e] ! a=(dnc) have proofs in

NLG

�

0

. Therefore Z[(e=y;X

0

)] ! a=(dnc) has a proof in NLG

�

0

. This completes the

proof of Theorem 2.1. 2

Theorem 2.2 For all k, if some sequent � ! A containing k slashes is derivable in

NLG

�

0

, then it is also derivable in NLG

��

0

.

Proof: Proof with strong induction on the number of slashes k. The base case

k = 0 is trivial. Now we assume the induction hypothesis:

IH(k): For all i < k, if some sequent � ! B containing i slashes is derivable in

NLG

�

0

, then �! B is also derivable in NLG

��

0

.

11



We have to prove that if some sequent �! C containing k slashes is derivable in

NLG

�

0

, then it is also derivable in NLG

��

0

.

Assume �! C is derivable in NLG

�

0

. Then there is a proof � of �! C in NLG

�

0

.

We will show that �! C is also derivable in NLG

��

0

. We consider various possibilities

for the last step in the proof of �.

Case 1: � is an axiom. Then it is derivable in NLG

��

0

too.

Case 2: The last step in � is an R1 rule or an R2 rule with X 2 Tp. The premises

of the last step contain fewer slashes than � ! C. The induction hypothesis tells

that the premises are derivable in NLG

��

0

. Use the NLG

��

0

proofs of the premises and

the last rule of � to construct a proof of �! C in NLG

��

0

.

Case 3: The last step in the proof is an R2 rule with X 2 BSTp, but X 62 Tp.

.

.

.

.

X ! y

.

.

.

.

Y [x]! z

Y [(x=y;X)]! z

[R2

0

]

The induction hypothesis says that X ! y has a proof in NLG

��

0

. The last rule

applied in the proof of this sequent cannot be an R1 rule, because X 62 Tp. So the

last rule in the proof of X ! y is an R2 rule, say R2

0

(the R2

00

case is similar). We

have the following proof:

.

.

.

.

W ! v

.

.

.

.

Z[d]! y

Z[(d=v;W )]! y

[R2

0

]

.

.

.

.

Y [x]! z

Y [(x=y; Z[(d=v;W )])]! z

[R2

0

]

where W is in Tp. We can transform it as follows:

.

.

.

.

W ! v

.

.

.

.

Z[d]! y

.

.

.

.

Y [x]! z

Y [(x=y; Z[d])]! z

[R2

0

]

Y [(x=y; Z[(d=v;W )])]! z

[R2

0

]

The sequents W ! v and Y [(x=y; Z[d])] ! z have proofs in NLG

��

0

(induction

hypothesis) and therefore Y [(x=y; Z[(d=v;W )])]! z has a proof in NLG

��

0

too. End

of proof of Theorem 2.2. 2

Theorem 2.3 Anything derivable in NLG

��

0

is also derivable in NLG

0

.

Proof: This is trivial, any proof in NLG

��

0

is also a proof in NLG

0

. 2

12



From Theorems 2.1, 2.2 and 2.3 we know that NLG

0

= NLG

�

0

= NLG

��

0

. We

introduce another calculus now, called A1{R2{R3{R4. This calculus is de�ned as

follows:

[A1] x! x ; for x 2 Tp

w! y z ! x

w! x=(ynz)

[R3']

w! y z ! x

w! (z=y)nx

[R3"]

w! y z ! x

w=x! y=z

[R4']

w! y z ! x

xnw! zny

[R4"]

w! y Y [x]! z

Y [(x=y; w)]! z

[R2

0

]

w! y Y [x]! z

Y [(w; ynx)]! z

[R2

00

]

for Y 2 BSTp and w; x; y; z 2 Tp.

Figure 3: A1{R2{R3{R4

Theorem 2.4 A1{R2{R3{R4 = NLG

��

0

Proof: Let us repeat the calculus NLG

��

0

here.

[A1] x! x ; for x 2 Tp

(w; y)! x

w! x=y

[R1

0

]

(y; w)! x

w! ynx

[R1

00

]

w! y Y [x]! z

Y [(x=y; w)]! z

[R2

0

]

w! y Y [x]! z

Y [(w; ynx)]! z

[R2

00

]

for Y 2 BSTp and w; x; y; z 2 Tp.

Figure 4: NLG

��

0

The last step in the proof of the premise of an R1 rule must be an R2 rule. There-

fore we can replace R1

0

and R1

00

by the following rules:

w! y z ! x

w! x=(ynz)

[R3' = R2

00

+ R1

0

]

w! y z ! x

w! (z=y)nx

[R3" = R2

0

+ R1

00

]

w! y z ! x

w=x! y=z

[R4' = R2

0

+ R1

0

]

w ! y z ! x

xnw! zny

[R4" = R2

00

+ R1

00

]

This proves Theorem 2.4. 2

13



Observe that the antecedent of the conclusion of an R2 rule is not in Tp. On the

other hand, the antecedents of the premises and the conclusions of R3 and R4 rules

are in Tp. Hence, a proof in A1{R2{R3{R4 of a sequent with an antecedent in Tp

contains R3 and R4 rules only.

3 Recognition for non-associative categorial gram-

mar

We have come to a point now where we can remove the brackets from our calculi. We

de�ne the bracket-free calculus NLG

1

. The rules of NLG

1

are:

[A1] x! x ; for x 2 Tp

w! y z ! x

w ! x=(ynz)

[R3']

w! y z ! x

w! (z=y)nx

[R3"]

w! y z ! x

w=x! y=z

[R4']

w! y z ! x

xnw ! zny

[R4"]

x! y �; w;�

0

! z

�; w=y; x;�

0

! z

[R5

0

]

x! y �; w;�

0

! z

�; x; ynw;�

0

! z

[R5

00

]

for �;�

0

2 STp and w; x; y; z 2 Tp.

Figure 5: NLG

1

This calculus di�ers from A1{R2{R3{R4 because the brackets in the rules R2

0

and

R2

00

are erased. This results in two new rules R5

0

and R5

00

.

There is a one-to-one correspondence between proofs in A1{R2{R3{R4 and NLG

1

.

We can prove the following lemma's:

Lemma 3.1 If a bracketed sequent X ! z is derivable in A1{R2{R3{R4, then

yield(X)! z is derivable in NLG

1

.

Proof: A proof in A1{R2{R3{R4 has the following shape:

.

.

.

.

R3-R4

x

1

! w

1

.

.

.

.

R3-R4

x

2

! w

2

.

.

.

.

R3-R4

x

3

! w

3

.

.

.

.

Y

3

! z

Y

2

! z

[R2]

Y

1

! z

[R2]

Y

0

! z

[R2]

The Y

i

! z premises are the only premises containing brackets. When we leave

out those brackets, we immediately obtain an NLG

1

proof. 2

14



Lemma 3.2 If a sequent Y ! z is derivable in NLG

1

, then there is an X such that

yield(X) = Y and X ! z is derivable in A1{R2{R3{R4.

Proof: If we have an NLG

1

proof it has the following shape:

.

.

.

.

R3-R4

x

1

! w

1

.

.

.

.

R3-R4

x

2

! w

2

.

.

.

.

R3-R4

x

3

! w

3

.

.

.

.

Y

3

! z

Y

2

! z

[R5]

Y

1

! z

[R5]

Y

0

! z

[R5]

It is easy to add brackets to the Y

i

such that we obtain an A1{R2{R3{R4 proof. 2

Lemma's 3.1 and 3.2 enable us to remove the brackets in the de�nition of gram-

maticality as well.

L(G) has been de�ned as the set of strings w 2 �

�

, w = a

1

: : : a

n

such that for

some bracketed string of types X, yield(X) = A

1

; : : : ; A

n

, ha

i

; A

i

i 2 Lex (1 � i � n)

and X ! s is derivable in NLG

0

.

But the language can be de�ned bracket-free now: L

0

(G) is the set of strings

w 2 �

�

, w = a

1

: : : a

n

such that for some string of types A

1

; : : : ; A

n

, ha

i

; A

i

i 2 Lex

(1 � i � n) and A

1

; : : : ; A

n

! s in NLG

1

.

Lemma 3.3 For every lexicon G, L

0

(G) = L(G).

Proof: Follows from Lemma's 3.1 and 3.2, Theorem 2.4 and the fact that

NLG

0

= NLG

��

0

. 2

Lemma 3.4 For all x; y 2 Tp, we can check in time O((jxj + jyj)

2

) whether x ! y

is provable in NLG

1

.

Proof: The antecedents of the premises and of the conclusions of the R3 and R4

rules have length one. The antecedent of the conclusion of an R5 rule has length

bigger than one. Therefore, the proof of x! y consists of R3 and R4 rules only. The

subformula property holds for the \R3{R4 calculus". Let n be the number of slashes

in x plus the number of slashes in y. n is linear in jxj + jyj. We have to compute at

most O(n

2

) times whether some a! b is derivable (because a and b are subformulas

of x and y). We memoize

(

Cormen et al., 1990, pp. 312{314

)

the results of the

attempts to prove something: the �rst time we have to compute a ! b the result of

the computation is stored in a table. If we have to compute it again later we look up

the answer in the table. The search space is a graph with nodes labeled x ! y. As

said, there are O(n

2

) nodes. Every node has at most four outgoing arcs: at most two

rules of R3{R4 are applicable, so we have to prove at most 4 premises. Therefore,

the number of arcs is O(4n

2

) = O(n

2

). The algorithm is a depth �rst traversal of the

graph. Because of memoization, every arc is traversed only once. The algorithm takes

time O(n

2

) at most. 2

15



Theorem 3.5 The recognition problem for non-associative Lambek categorial gram-

mar can be reduced to context-free grammar recognition in polynomial time.

Proof: We take the new de�nition of categorial languages: L

0

(G) is the set of

strings w 2 �

�

, w = a

1

: : : a

n

such that for some string of types A

1

; : : : ; A

n

,

ha

i

; A

i

i 2 Lex (1 � i � n) and A

1

; : : : ; A

n

! s in NLG

1

. The symbol s is the distin-

guished type of the grammar (s 2 Pr). Proofs in NLG

1

look like:

.

.

.

.

R3-R4

x

1

! w

1

.

.

.

.

R3-R4

x

2

! w

2

.

.

.

.

R3-R4

x

3

! w

3

x

n

! w

n

s! s

[R5]

.

.

.

.

Y

3

! s

Y

2

! s

[R5]

Y

1

! s

[R5]

Y

0

! s

[R5]

The sequence s; : : : ; Y

3

; Y

2

; Y

1

; Y

0

can be seen as a derivation in a context-free gram-

mar. Given a lexicon, we construct a context-free grammar that generates the same

language as the categorial grammar. The context-free grammar consists of binary and

unary grammar rules. The start symbol is s. The binary rules simulate rewriting the

symbols s; : : : ; Y

3

; Y

2

; Y

1

; Y

0

. The unary rules simulate the lexical type assignment.

The binary rules are of the form w ) w=y; x and w ) x; ynw. Let the variables

x; w=y; and ynw range over all possible subtypes in the lexicon. The rule w) w=y; x

(or w ) x; ynw) is added to the grammar when the sequent x ! y is derivable in

NLG

1

. The unary rules (for lexical type assignment) are of the form A ) a with

ha; Ai 2 Lex.

The number of subtypes in the lexicon is linear in the size of the lexicon. The

number of binary rules is kwadratic in the number of subtypes. Therefore, the size

of the grammar is kwadratic in the size of the lexicon. Construction of the grammar

takes polynomial time because we can compute x! y in polynomial time. 2

The time complexity of context-free grammar recognition is O(jGjn

3

) where jGj is

the size of the grammar and n the length of the input sentence

(

Sippu and Soisalon-

Soininen, 1988, p. 147

)

. Via construction of the context-free grammar, we have a

polynomial time algorithm for recognition in the non-associative Lambek categorial

grammar. After construction of the grammar, the time complexity of recognition is

cubic in the length of the string and kwadratic in the size of the lexicon.

A polynomial time algorithm for deciding provability in NLG

1

can be given too.

Because we do not have a lexicon anymore, the number of possible types is in�nite.

We cannot use a context-free grammar in the style described here because it would

have in�nitely many rules. But instead of computing the grammar in advance we can

compute grammar rules \on the y". We try to combine adjacent types according to

the schemes w) w=y; x and w) x; ynw and compute whether x! y is derivable in

R3{R4.

16



Acknowledgements

We want to thank Kees Vermeulen for proofreading an earlier version of this paper.

References

Erik Aarts. Parsing second order Lambek grammar in polynomial time. In Paul

Dekker and Martin Stokhof, editors, Proceedings of the Ninth Amsterdam Collo-

quium, pages 35{45. Institute for Logic, Language and Computation, University

of Amsterdam, December 1993.

Erik Aarts. Proving theorems of the second order Lambek calculus in polynomial

time. Studia Logica, to appear.

Wojciech Buszkowski. Generative capacity of the nonassociative Lambek calculus.

Bull. Pol. Acad. Scie. Math., 34:507{516, 1986.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

algorithms. MIT Press, 1990.

Theo M.V. Janssen. On Properties of the Zielonka-Lambek Calculus. In Paul Dekker

and Martin Stokhof, editors, Proceedings of the Eighth Amsterdam Colloquium,

pages 303{308. Institute for Logic, Language and Computation, University of Am-

sterdam, December 1991.

Maciej Kandulski. The non-associative Lambek calculus. In W. Buszkowski, W. Mar-

ciszewski, and J. van Benthem, editors, Categorial Grammar, Linguistic and Lit-

erary Studies in Eastern Europe (LLSEE), pages 141{151. John Benjamins Pub-

lishing Company, Amsterdam{Philadelphia, 1988.

Joachim Lambek. The mathematics of sentence structure. American Mathematical

Monthly, pages 154{169, 1958.

Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, Vol. 1: Languages and

Parsing. EATCS Monographs on Theoretical Computer Science. Springer Verlag,

1988.

Kees Trautwein. Een parseeralgoritme voor de niet associatieve Lambek calculus

[a parsing algorithm for the non-associative lambek calculus]. Master's thesis,

University of Amsterdam, August 1991.

17


