
Genetic Grammatical Inference

�

Willem-Olaf Huijsen

Research Institute for Language and Speech (O.T.S.)

Utrecht University

Trans 10, room 2.05

NL-3512 JK Utrecht

Tel. +31-30-536006

e-mail: Willem-Olaf.Huijsen@let.ruu.nl

Abstract

This research is concerned with the genetic grammatical inference of formal

languages: the induction of pushdown automata and context-free grammars for

context-free languages from �nite sets of example sentences from these languages

using genetic algorithms. Setup of experiments and analyses of their results are

presented. The induction of both deterministic and nondeterministic pushdown

automata was successful; the induction of context-free grammars proved more

di�cult. A number of propositions are made for extensions and improvements.

1 Introduction

The goal of this research is to build a system that can construct a recognizer or a

context-free grammar from a �nite number of example sentences of a context-free

language. A recognizer is a formal structure which can determine whether a speci�c

sentence belongs to a given language. A grammar of a language is a scheme for

specifying the sentences allowed in the language, indicating the syntactic rules for

combining words into well-formed phrases and clauses. Grammars are more versatile

than recognizers since grammars can not only be used to parse but also to generate

sentences of the language. Construction of the recognizer or grammar for the context-

free language is to be done using genetic algorithms.

Section 2 introduces grammatical inference; section 3 discusses the genetic algorithm

paradigm; section 4 provides the reader with the insight in how genetic algorithms

are to be applied to the problem of grammatical induction; section 5 describes the

experiments conducted; �nally, section 6 presents the conclusions.

�

This research was conducted during the author's master's thesis, Genetic Grammatical Inference:

Induction of Pushdown Automata and Context-Free Grammars from Examples using Genetic Algo-

rithms, at the Department of Computer Science at Twente University, Enschede, The Netherlands,

summer 1993 (supervisors prof.dr.ir.A.Nijholt, dr.M.Poel, dr.ir. P.R.J.Asveld)

59



2 Grammatical Inference

Grammatical inference (Gold 1967; Pinker 1979; Angluin and Smith 1983) is the

problem of learning a grammar for a (formal) language on the basis of a set of sample

sentences. Although a great deal of work has been done, a complete and applicable

theory is still a distant goal.

A fundamental theorem of mathematical linguistics states that there is an in�nite

number of grammars that can generate any �nite set of strings. Therefore, it is

impossible for any learner to observe a �nite sample of sentences of a language and

always produce a correct grammar for the intended language. Thus, only guesses can

be made. The quality of these guesses depends on the quality of the examples. Good

examples must characterize the main features of the concept they represent.

Showing the inductor only a set of positive examples S

+

� L (i.e. strings in the

language) is generally not su�cient for inducing a language L � �

�

. If one guesses too

large a language, the positive examples will never tell you that you are wrong. Thus,

both positive examples S

+

and negative examples S

�

(i.e. strings not in the language)

are required to provide the contrast needed to outline L in �

�

. Formally, Gold showed

that if both S

+

and S

�

are available to the inductor, the class of primitive recursive

languages (which by assumption include the natural languages) are learnable. If only

positive examples S

+

are available, no language class other than the �nite cardinality

languages is learnable. See Gold (1967).

3 Genetic Algorithms

Genetic algorithms (Holland 1975; De Jong 1985; Davis 1987; Goldberg 1989; Michale-

wicz 1992) have been investigated for almost twenty years now, with a marked increase

in interest within the last few years.

3.1 What are Genetic Algorithms ?

Genetic algorithms are optimization and search algorithms based on the mechanisms

of natural selection and genetics. They combine survival of the �ttest among string

structures with a structured yet randomized information exchange to form a search

strategy with some of the innovative 
air of human search. Every generation in this

evolution, new arti�cial creatures (the strings) are created using bits and pieces of the

old, sometimes trying out a completely new part.

Unlike many other search algorithms, GA's search from a population of candidate

solutions, simultaneously climbing many hills in parallel, thus reducing the probabil-

ity of getting stuck in a local optimum. It is believed that GA's possess desirable

properties for solving problems with large search spaces, high order, multimodality,

discontinuity and noise disturbance.

60



Outline of a Simple Genetic Algorithm

The basic construction is to consider a population of individuals that each represent a

potential solution to the given problem. The relative success of each individual on this

problem is considered its �tness, and used to selectively reproduce �tter individuals

to produce similar but not identical o�spring for the next generation. By iterating

this process, the population e�ciently samples the space of potential individuals and

eventually converges on the most �t.

More speci�cally, consider a population of N individuals x

i

, each represented by a

chromosomal string of L allele values. An initial population is constructed at random;

call this generation g

0

. Each individual is evaluated by some objective function (the

�tness function) that returns the �tnesses �(x

i

) �R of each individual in g

0

. The evo-

lutionary algorithm then performs two operations. First, its selection algorithm uses

the population's N �tness measures to determine how many o�spring each member of

g

0

contributes to g

1

. More �t individuals are more likely to have o�spring than less �t

individuals. Second, a set of genetic operators are applied to these o�spring to make

their genetic information di�erent from their parents. The resulting population is now

g

1

; these individuals are again evaluated, and the cycle is repeated. The iteration is

terminated by some measure suggesting that the population has converged.

3.2 Implementing Genetic Operators

This section sketches a model for a simple genetic algorithm. Subsection 3.2.1 gives

a formal de�nition for the datastructure; subsections 3.2.2 and 3.2.3 de�ne the two

principal genetic operators: mutation and crossover. Subsection 3.2.4 discusses the

�tness function, which is used in the de�nition of reproduction in subsection 3.2.5.

3.2.1 The Datastructure

The fundamental datastructure of genetic algorithms is the chromosome: an array of

`genes' that may assume any of several allelic forms. The GA population is de�ned

as a set of n individuals: g = f�x

1

; �x

2

; : : : ; �x

n

g each individual �x being a vector of

length l, representing a chromosome: �x = [ x

1

x

2

: : : x

l

] (x

i

� Alphabet), where

Alphabet = f0; 1g, or any arbitrary integer range.

3.2.2 Mutation

Mutation is the sudden inheritable change of a gene from one allelic form to another.

The probability of mutation of an element of the chromosome is termed mutation

probability. Mutation probability p

m

is usually very low (e.g. 0.001 { 0.05).

Binary gene mutation is straightforward bit 
ipping (see �gure 3.1): mutation(gene)

= 1 { gene if Bernoulli(p

m

), or gene, otherwise, where gene � f0; 1g and Bernoulli(p)

de�ned as the result of a Bernoulli experiment with probability p.

61



bit mutation

mutation

Fig.3.1. Binary Point Mutation .

3.2.3 Crossover

Crossover is the exchange of genetic material between two chromosomes. Crossover

probability is the probability of two individuals exchanging genetic information during

reproduction. Usual values for crossover probability p

c

are 0.3 { 0.8. When two

chromosomes �x and �y participate in crossover, a break occurs somewhere along the

chromosomes, and the fragments are recombined:

crossover(�x,�y) = ([x

1

: : : x

b

y

b+1

: : : y

l

], [y

1

: : : y

b

x

b+1

: : : x

l

]) , if Bernoulli(p

c

)

= (�x,�y) , otherwise

The crossover mechanism de�ned is the so-called one-point crossover. Other types of

crossover are two-point crossover and uniform crossover (Huijsen 1993b, p.30-31).

crossover point
crossover

one-point

Fig.3.2. One-Point Crossover .

3.2.4 Fitness Function

The �tness function fitness is a function assigning a measure of success to an indi-

vidual �x. To do this, the chromosome has to be decoded into the problem's parameter

set values that can be evaluated to measure its performance on the given problem.

Since this is the only feedback the genetic algorithm gets, the �tness function has to

be designed with great care.

3.2.5 Reproduction

Reproduction recombines the genetic information of two individuals to produce o�-

spring using the genetic operators mutation and crossover. More �t individuals have

a greater probability of being selected for reproduction than less �t individuals. Each

individual �x

i

gets selected with a probability p

i

proportional to its �tness:

p

i

=

fitness(�x

i

)

P

n

j=1

fitness(�x

j

)

62



Subsequently, the two chosen individuals �x and �y are subjected to the genetic operators

mutation and crossover: o�spring (�x,�y) = crossover(mutation(�x),mutation(�y)). The

generated o�spring are then placed in the new population. This process is repeated

until the new population again contains n individuals.

4 Genetic Algorithms & Grammatical Inference

The problem to be attacked is the induction of recognizers for context-free languages

from �nite sets of examples from these languages. A recognizer is a structure which

can determine whether a speci�c sentence belongs to a given language. Construction

of the recognizers is to be done using genetic algorithms.

Learning a context-free language from examples has been proven to be NP-complete

by Gold (1967). Genetic algorithms impressively outperform other techniques on sev-

eral NP-complete problems such as dynamic programming, hill-climbing, and random

search (Grefenstette et al. 1985). This encouraging performance of genetic algorithms

stimulated the present research.

4.1 Formulation of Strategy

The grammatical induction of a recognizer can be formulated as a search in the space

of all possible recognizers. Genetic algorithms being general optimization algorithms,

they may readily be applied to this problem. A �tness function has to be de�ned over

the search space, which assigns a �tness value to the chromosomes, indicating their

success at recognizing the intended language. The �tness value is used by the genetic

algorithm in its search for the optimum.

fitness value

Reproduction

chromosome population

Decoding

recognizer

Evaluation

set of example sentences

formal language

Choice of
Example Sentences

Fig.4.3. Structure of the Genetic Inductor .

63



In the experiments the genetic inductor is tested using a number of formal languages as

test problems. The formal languages are used to establish a set of example sentences.

The example sentences are used to determine the performance of the recognizers in-

ferred by the inductor. The genetic inductor is based on a regular GA system: a

population of chromosomes is maintained on which the recognizers are encoded. To

obtain the �tness value for a chromosome, the �tness function �rst decodes the chro-

mosome to the speci�c form of the recognizer. The recognizer now is evaluated for each

sentence in the set of example sentences. A combination of these results �nally yields

the �tness value associated with the chromosome. The �tness value of a chromosome

is used in the reproduction process of the genetic algorithm. The reproduction process

constructs the next generation of chromosomes. The reproduction/evaluation loop

continues until either an optimum has been found (i.e. until a recognizer has been

evolved that correctly classi�es all example sentences), or a predetermined maximum

generation has been reached.

4.2 Test Problems

This section de�nes the test problems used in the experiments of section 5. The follow-

ing test problems are de�ned: (i) PBP. Parenthesis balancing, deterministic; (ii) AB.

Equal number a's/b's, deterministic; (iii) WW

R

. Palindromes, nondeterministic. For

every test problem language L, all sentences from the sublanguage L

6

(sentences from

L with maximum length 6) are used as the positive example sentences. The comple-

ment (i.e. �

�

6

nL

6

) constitutes the negative examples.

4.2.1 The Parenthesis Balancing Problem

The parenthesis balancing problem (PBP) is concerned with matching parentheses. A

context-free grammar for this language may be written as: f S ! E, E ! �, E !

(E), E ! E E g.

A pushdown automaton for language PBP may be de�ned as:

Q = fq

0

g �(q

0

; (; $) = f[q

0

; (]g

� = f(; )g �(q

0

; (; () = f[q

0

; ((]g

� = f(; )g �(q

0

; ); () = f[q

0

; �]g

Q0

(  /  (  /  ( (
(  /  $  /  (

)  /  (  / λ

Fig.4.4. A PBP Pushdown Automaton .

64



In successful computations the machine accumulates the opening parentheses by push-

ing them onto the stack until the �rst closing parenthesis is inputted. Each closing

parenthesis cancels an opening parenthesis by popping it from the stack.

4.2.2 The AB Problem

The AB language is the language of all strings in fa; bg

�

having an equal number of

a's and b's. A context-free grammar for this language may be written as: f S ! E, E

! �, E ! a E b, E ! b E a, E ! E E g.

A pushdown automaton for language AB may be de�ned as:

Q = fq

0

g �(q

0

; a; $) = f[q

0

; a]g �(q

0

; b; $) = f[q

0

; b]g

� = fa; bg �(q

0

; a; a) = f[q

0

; a a]g �(q

0

; b; a) = f[q

0

; �]g

� = fa; bg �(q

0

; a; b) = f[q

0

; �]g �(q

0

; b; b) = f[q

0

; b b]g

Q0

a  /  $  /  a
a  /  a  /  a a

b  /  $  /  b

b  /  b  /  b ba  /  b  / λ
b  /  a  / λ

Fig.4.5. An AB Pushdown Automaton .

The pushdown automaton has to keep record of the number of a's and b's it has seen

on the input. The administration is done in a way very much like the previous prob-

lem: by counting symbols. At any point during processing, one of three cases applies

(na is the number of a's that have been inputted, and nb the number of b's that have

been inputted): (i) na = nb In this case, the stack is empty. (ii) na > nb The stack

contains na� nb a's. (iii) na < nb The stack contains nb� na b's. This invariant is

maintained during execution of the PDA.

4.2.3 The ww

R

Problem

The ww

R

language consists of the even-length palindromes over fa; bg. Formally, it

is de�ned as fww

R

jw � fa; bg

�

g. A context-free grammar for this language may be

written as: f S ! E, E ! �, E ! a E a, E ! b E b g.

A pushdown automaton for language ww

R

may be de�ned as:

Q = fq

0

; q

1

g �(q

0

; a; $) = f[q

0

; a]g �(q

0

; b; a) = f[q

0

; b a]g

� = fa; bg �(q

0

; a; a) = f[q

0

; a a]; [q

1

; �]g �(q

0

; b; b) = f[q

0

; b b]; [q

1

; �]g

� = fa; bg �(q

0

; a; b) = f[q

0

; b a]g �(q

1

; a; a) = f[q

1

; �]g

�(q

0

; b; $) = f[q

0

; b]g �(q

1

; b; b) = f[q

1

; �]g

65



Q1Q0

b  /  $  /  b

a  /  a  /  a a
a  /  b  /  b a

a  /  $  /  a

b  /  a  /  a b
b  /  b  /  b b

a  /  a  /
b  /  b  /

λ
λ

a  /  a  /
b  /  b  /

λ
λ

Fig.4.6. A WWR Pushdown Automaton .

A successful computation remains in state q

0

while processing the string w, and enters

state q

1

upon reading the �rst symbol in w

R

. The strings in ww

R

do not contain a

middle marker to trigger the state change. Therefore, the machine has to `guess' when

the middle of the string has been reached, introducing nondeterminism.

4.3 Related Research

Related research e�orts are: Zhou and Grefenstette (1986), Wyard (1991), Sen and

Janakiraman (1992), Kohler (1993), and Lankhorst (1994). Here I brie
y discuss

the �ndings of Sen and Janakiraman (1992), because their results are most readily

comparable to mine. For further discussion, see Huijsen (1993b).

Sen and Janakiraman (1992) apply genetic algorithms to learn DPDA's that accept

context-free languages, given a number of positive and negative examples of the lan-

guage. They use only DPDA's, transitions always change the stack (either pushing or

popping), and transitions always process one input symbol (i.e. there are no lambda-

rules). The experiments use languages a

n

b

n

and PBP . Their experiments show that

GA's can e�ectively evolve control rules for a DPDA to accept instances of a deter-

ministic context-free language. However, their conclusions are based on single runs,

as opposed to an average over a number of runs in my experiments. An improvement

compared to the experiments of Zhou and Grefenstette is the automatic selection of

example sentences: all sentences up to a speci�ed length are used.

5 Experiments

The experiments have been grouped according to the recognizer types. Three types of

recognizers are considered: deterministic pushdown automata (subsection 5.2); non-

deterministic pushdown automata (subsection 5.3); context-free grammars

1

(subsec-

tion 5.4).

1

Strictly, context-free grammars are not recognizers. In combination with a parser they can be

used as a recognizer. For the sake of simplicity all three are called recognizers.

66



5.1 Mapping Chromosomes into Recognizers

The experiments implement chromosomes as integer arrays. In decoding the chromo-

some into a recognizer, the chromosome is read from one end to the other. Speci�c

integer values are taken to be start markers, signalling the beginning of a segment that

encodes one transition (or grammar rule, for CFG's). The subsequent array values are

interpreted as the details of the speci�cation of the transition (grammar rule). After

interpreting the segment, decoding scans the chromosome for the next start marker.

In this manner decoding yields a number of transitions (grammar rules), which to-

gether constitute the PDA (CFG). The exact workings are more elaborately described

in section 6.1 of Huijsen (1993b).

5.2 Inferring DPDA's

These experiments concentrate on learning the transitions rules in � of a DPDA. To

facilitate implementation, I use an alternative de�nition for pushdown automata.

A DPDA M is modeled as a septuple M = (Q;�;�; q

0

; q

r

; Z

0

; �):

� Q is a �nite, nonempty set of states. S = jQj.

� � is a �nite, nonempty set of input symbols.

� � is a �nite, nonempty set of stack symbols.

� q

0

is the start state.

� q

r

is the only reject state. Reject state q

r

is special: changing state to q

r

terminates evaluation immediately. Q

�

is Q minus the reject state q

r

.

� Z

0

�� is the initial stack symbol. �

�

is � minus the initial stack symbol.

� � : Q

�

� �� �! Q� 
� �

�

where 
 = fnop,pop,pushg.

Acceptance is by legal state and empty stack. Transitions of the form �(q; a; Z) =

(p; !; Y ) are represented by a directed arc from state q to state p labeled `a/Z/!' for

! = nop or ! = pop, and `a/Z/push Y' for ! = push.

5.2.1 DPDA Results for Parenthesis Balancing

Two experiments were conducted; one using the cumulative �tness function, and one

using the productive �tness function

2

. Parameter values are: population size 100,

chromosome length 200, elite percentage

3

5, maximum generation 2000, 20 runs.

Finding a global optimum took the genetic inductor 14.6 generations on the average

when using cumulative �tness, and 4.2 generations when using productive �tness.

Three actual DPDA's found are shown in �gure 5.7:

2

Cumulative �tness simply computes the number of correctly classi�ed samples; productive �tness

computes the product of the percentage correctly classi�ed postive examples and the percentage of

correctly classi�ed negative examples.

3

A special elite mechanism has been added to the standard genetic algorithm: a small percentage

of individuals from the old generation is retained in the next. This way the �ttest solutions are

maintained.

67



(A) The �rst inferred DPDA is straightforward, equivalent to the PDA

proposed in subsection 4.2.1.

(B) The second only seems to be di�erent. Nevertheless, it is equivalent

to the �rst type: only the stack symbols `(' and `)' have exchanged roles.

(C) The third is a variation on the �rst: it di�ers from (A) in that it rejects

strings that have a closing parenthesis that doesn't match an opening

parenthesis { by popping the empty stack instead of going to the reject

state.

Q0

Q1 REJECT

)  /  $  /  push )

(  /  (  /  push (

(  /  )  /  pop

(  /  $  /  push (

)  /  (  /  pop
)  /  )  /  nop

(A)

Q0

Q1 REJECT

(  /  (  /  pop
)  /  (  /  push (
)  /  $  /  push (

(  /  $  /  push )
(  /  (  /  push )
)  /  )  /  pop

(B)

Q0

Q1 REJECT

)  /  )  /  push (

(  /  $  /  push (
(  /  (  /  push (
)  /  (  /  pop
(  /  )  /  pop
)  /  $  /  pop

(C)

Fig.5.7. Inferred Deterministic Pushdown Automata for PBP .

5.2.2 DPDA Results for the AB Problem

Parameter values are: population size 200, chromosome length 200, elite percentage 5,

maximum generation 2000, number of runs 20. Finding a global optimum takes the

genetic inductor 13.7 generations on the average when using productive �tness.

As in the case of the PBP problem, the DPDA's found consist of two symmetrical

solutions that are functionally equivalent to the `prototype' (see �gure 5.8).

a  /  $  /  push a

a  /  b  /  pop
a  /  a  /  push a b  /  a  /  pop

b  /  b  /  push b

b  /  $  /  push ba  /  $  /  push b
a  /  a  /  pop
a  /  b  /  push b

b  /  $  /  push a
b  /  a  /  push a
b  /  b  /  pop

Q1 REJECT Q1 REJECT

(B)(A)

Q0Q0

Fig.5.8. Inferred Deterministic Pushdown Automata for AB .

68



5.2.3 DPDA Conclusions

� The genetic inductor has been shown to e�ectively evolve DPDA's for the

test problems selected.

� The results obtained support the theorem that there are an in�nite number

of languages that agree on any �nite set of sample strings.

� The comparison of the cumulative and productive �tness functions shows

that the productive �tness function signi�cantly increases convergence

speeds: the speed-up factor is 3.5 for PBP .

� The performance analysis shows that the GI is highly e�cient in the ex-

periments: only a very small part of the search space has to be sampled.

The productive �tness experiment for PBP searched 0.16% of the total

search space to arrive at a global optimum; 1.04% in the case of AB.

5.3 Inferring NPDA's

These experiments concentrate on learning the transitions rules in � of an NPDA.

The model used in the experiments on nondeterministic pushdown automata is an

extension of the DPDA model: the transition function now is de�ned as � : Q

�

���

�! P (Q

�

� 
� �

�

).

5.3.1 NPDA Results for Parenthesis Balancing

Two experiments were conducted: one using the cumulative �tness function, and one

using the productive �tness function. Parameter values are: population size 100,

chromosome length 100, elite percentage 5, maximum generation 2000, number of

runs 20.

Finding a global optimum takes the genetic inductor 8.9 generations on the average

when using cumulative �tness, and 4.2 generations when using productive �tness.

The actual NPDA's found can be classi�ed into two types (see �gure 5.9):

(A) The �rst type of inferred NPDA is again equivalent to the PDA proposed

in subsection 4.2.1.

(B) The second type is a symmetrical equivalent of the �rst: only the stack

symbols `(' and `)' have exchanged roles.

(  /  $  /  pop
(  /  $  /  push (
(  /  (  /  push (

)  /  $  /  pop
)  /  $  /  push )
)  /  (  /  pop

(  /  $  /  push )
(  /  (  /  nop
(  /  (  /  pop

(  /  )  /  push )

)  /  (  /  push )
)  /  )  /  pop

Q0

(B)

Q0

(A)

Fig.5.9. Inferred Nondeterministic Pushdown Automata for PBP .

69



5.3.2 NPDA Results for the ww

R

Problem

Three experiments were run, buth using productive �tness. Parameter values were:

population size 100 and 200, chromosome length 200, elite percentage 10, maximum

generation 1000 and 2000, number of runs 10. In a total of 21 completed runs of the

inductor, only two optimal NPDA's were found (see �gure 5.10):

(A) The third run of the �rst experiment found an optimal NPDA after 635

generations. The NPDA correctly classi�es all sample sentences, but sig-

ni�cantly di�ers from the `prototype' of section 4.2, most notably so in the

transition �(q1; b; b) = f[q1; �; b b]g.

(B) The seventh run of the third experiment found an optimal NPDA after

1156 generations. This automaton is functionally equivalent to the pro-

totype. The additional transition `a / $ / pop' from state q1 leads to a

rejection, which is equivalent to the action the prototype would take.

Q0 Q1

a  /  $  /  push a
a  /  a  /  push a
a  /  b  /  push a

b  /  a  /  push b

a  /  a  /  pop
b  /  $  /  pop
b  /  $  /  push b

b  /  a  /  push b
b  /  b  /  push b

b  /  b  /  push b a  /  $  /  pop
a  /  a  /  pop
b  /  b  /  pop

b  /  $  /  push b

(A)

Q0 Q1

a  /  $  /  push a
a  /  a  /  push a
a  /  b  /  push a

b  /  a  /  push b

a  /  $  /  pop
a  /  a  /  pop
b  /  b  /  pop

b  /  $  /  push b

b  /  b  /  push b

a  /  a  /  pop
b  /  b  /  pop

(B)

Fig.5.10. Inferred Nondeterministic Pushdown Automata for WWR .

5.3.3 NPDA Conclusions

� It has been shown that the genetic inductor can e�ectively evolve nonde-

terministic pushdown automata for the test problems selected as well.

� The comparison of the cumulative and productive �tness functions again

shows that the productive �tness function signi�cantly increases conver-

gence speeds. The speed-up factor is 2.1 for PBP .

70



� The performance analysis again shows that the GI is highly e�cient in the

experiments: The productive �tness experiment for PBP searched only

0.0025% of the total search space to arrive at a global optimum.

� Comparing the DPDA and NPDA experiments for the PBP experiments,

I conclude that the NPDA is faster than the DPDA:

experiment deterministic nondeterministic

cumulative PBP 14.6 8.9

productive PBP 4.2 4.2

Fig.5.11. DPDA/NPDA Comparison: No. of Generations.

This can be explained by the fact that a DPDA has to meet more strin-

gent demands: an NPDA already accepts a sentence if any of all possible

computations succeeds.

5.4 Inferring Context-Free Grammars

The aim is to evolve context-free grammar rules. The context-free grammar rules are

required to be in Chomsky Normal Form.

5.4.1 CFG Results

Although a lot of time has been spent on the implementation and improvement of the

direct inference of context-free grammars, the experiments did not produce perfect

grammars. The most extensive experiment is presented here. Parameter values are:

population size 100, chromosome length 200, elite percentage 10, maximum genera-

tion 300, 10 runs. None of the experiments converged within 300 generations.

5.4.2 CFG Conclusions

� The direct inference of context-free grammars has not been successful.

Possible explanations are: (i) The search space is much larger than with

PDA's; (ii) The �tness function used is not adequate.

� To get the direct inference to work, I see two approaches: (i) Run larger

(and thus more computationally expensive) experiments. (ii) Improve on

the �tness function. This is suggested by the belief that the �tness function

is not adequate.

6 Conclusions

� First and foremost, we conclude that the genetic inductor implemented as

part of the thesis work has been proven to e�ectively evolve both DPDA's

and NPDA's from a �nite number of example sentences.

71



� Compared to the related research of section 4.3, the present work: (i) uses

a more general { and therefore more powerful { PDA model; (ii) is the

�rst to infer nondeterministic pushdown automata; (iii) tests the inductor

more thoroughly (for more testproblems); (iv) provides data on a su�cient

numbers of runs for each experiment to allow for conclusions on e�ciency.

� Quantitatively demonstrates the superiority of productive �tness over cu-

mulative �tness.

Further research could include (i) better tuning of the parameters to the genetic algo-

rithm; (ii) exploration of the use of other genetic operators (e.g. two-point crossover);

(iii) inclusion of �-transitions in the PDA-model; (iv) other selection strategies for

sample sentences; (v) more sophisticated �tness functions; (vi) induction of natural

language fragments; (vii) induction of context-sensitive languages.

References

� Angluin and Smith 1983; Dana Angluin, Carl H. Smith, `Inductive Inference: Theory and Models',

Computing Surveys 15, 3 (Sept.), pp. 237-269.

� Davis 1987; Lawrence Davis (ed.), Genetic Algorithms and Simulated Annealing, London: Pitman.

� De Jong 1985; Kenneth A.De Jong, `Genetic Algorithms: A 10 Year Perspective', In: John

J.Grefenstette (ed.), Proc. of an Int.Conf. on Genetic Algorithms and Their Applications, Erlbaum.

� Gold 1967; E.Mark Gold, `Language Identi�cation in the Limit', Information and Control 10,

pp. 447-474.

� Goldberg 1989; David E.Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Reading, Massachusetts: Addison-Wesley.

� Grefenstette et al. 1985; J.J.Grefenstette, R.Gopal, B.J.Rosmaita, V.Gucht, `Genetic Algorithms

for the Travelling Salesman Problem', In: Proceedings of an International Conference on Genetic

Algorithms and Their Applications, p. 160 �..

� Holland 1975; John H.Holland, Adaptation in natural and arti�cial systems: an introductory anal-

ysis with applications to biology, control, and art. intelligence, Ann Arbor: Univ. of Michigan Press.

� Huijsen 1993a; W.Huijsen, Exercises in Genetic Algorithms, internal report, Dept. of Computer

Science, University of Twente, Enschede, The Netherlands.

� Huijsen 1993b; W.Huijsen, Genetic Grammatical Inference: Induction of Pushdown Automata and

Context-Free Grammars from Examples using Genetic Algorithms, master's thesis, Dept. of Computer

Science, University of Twente, Enschede, The Netherlands.

� Kohler 1993; John D.Kohler, Genetic Algorithm Evolving Finite Automata Given Sample Strings,

personal communication. Kohler can be contacted at `drsa@netcom.com', or written to: John

D.Kohler, President of Arti�cial Systems, 1043 Electric St., Gardena, CA 90248.

� Lankhorst 1994; Marc M. Lankhorst, Breeding Grammars: Grammatical Inference with a Genetic

Algorithm, Comp. Science Report CS-R9401, C.S.Department, Univ. of Groningen, The Netherlands.

� Michalewicz 1992; Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-

grams, Berlin: Springer Verlag.

� Pinker 1979; Steven Pinker, `Formal Models of Language Learning', Cognition 7, pp. 217-283.

� Sen and Janakiraman 1992; Sandip Sen, Janani Janakiraman, `Learning to Construct Pushdown

Automata for Accepting Deterministic Context-Free Languages', In: Gautam Biswas (ed.), SPIE

Vol. 1707: Applications of Arti�cial Intelligence X: Knowledge-Based Systems, pp. 207-213.

�Wyard 1991; PeterWyard, Context-Free Grammar Induction using Genetic Algorithms, In: R. Belew,

L.B.Booker (eds.), Proc. of the 4th Conf. on Genetic Algorithms ICGA'92, Morgan Kaufmann.

� Zhou and Grefenstette 1986; Ha-Yong Zhou, John J.Grefenstette, `Induction of Finite Automata

by Genetic Algorithms', In: Proc. of the 1986 IEEE Int.Conf. on Systems, Man, and Cybernetics.

72


