
Tree Logic: A Formal Perspective on

Transformations

Herbert Ruessink

�

, STT/OTS Utrecht University

Abstract

A formal framework is required to investigate the interaction between trans-

formations and constraints with respect to the manner in which linguistic struc-

tures are described in

(

Chomsky, 1992

)

. In this paper I will present the outline

of one possible instantiation of such a formal framework. The formalism, Tree

Logic, is based on First Order Predicate Logic and adopts a standard model-

theoretic semantics. Tree Logic is interpreted in the domain of tree structure

interpretations. Tree Logic is de�ned to a large extent analogously to Smolka's

Feature Logic

(

Smolka, 1989

)

.

1 Introduction

Linguistic theories in the Chomskyan tradition (eg. \Government and Binding The-

ory" and \The Minimalist Program") employ several levels of representation and each

linguistic utterance is associated with more than one (tree) structure. This approach

requires that the linguistic theories contain components to perform two general tasks:

(i) to describe which tree structures are well-formed at some level of representation;

and (ii) to describe which tuples of (tree) structures together form a well-formed

representation of a single linguistic utterance. The �rst task can be regarded as well-

formedness conditions on structures and the second can be regarded as wellformedness

conditions on the relation between structures.

In the earlier versions of the Chomskyan framework these two tasks were performed

by a single derivational component that consisted of a context-free base and a set of

(ordered) transformational rules. Since the early seventies the power of the trans-

formational component has been reduced and an additional constraints system was

introduced to describe well-formed structures at the levels of representation. However,

even in the most recent development in the Chomskyan framework (the \Minimalist

Program"

(

Chomsky, 1992

)

) the transformational component also contributes to de-

termining the well-formedness of the structures at the levels of representation: the

elimination of D-structure implies that the transformations that apply before the

�

This researched described in this paper was supported by the CEC project LRE{61{061 \The

Reusability of Grammatical Resources"

121

spell-out mapping to pf only serve to determine admissable structures at pf and

lf.

This state of a�airs is a less elegant property of the Chomskyan tradition: one

component contributes to two tasks and one task is performed by two components.

Posing two components (transformations and �lters) to perform a single task does

not agree with the declared aim of simplicity and the complex interaction between the

transformation and the constraints does not present an clear insight into the properties

of the structures at the representational levels.

Two related questions arise from this observation. Firstly, is it possible to separate

the transformational component into one part that describes admissable tuples and

another that describes admissable structures? Secondly, is it possible to unify the

second part within the general framework of well-formedness constraints? It is clear

that these questions can only be investigated within the context of a formal framework.

In this paper I will present the outline of one possible instantiation of the formal

framework that is required. The formalism, Tree Logic, is based on First Order Predi-

cate Logic and adopts a standard model-theoretic semantics. Tree Logic is interpreted

in the domain of tree structure interpretations. Tree Logic is de�ned to a large extent

analogously to Smolka's Feature Logic

(

Smolka, 1989

)

. Tree Logic is not a formali-

sation of the Minimalist Program or gb, just as a feature logic is not a formalisation

of hpsg. Tree Logic provides a framework within which Chomskyan theories can be

expressed. There exist alternatives to taking trees as the structural representation of

gb or the Minimalist Program. Ruessink

(

1994

)

investigates structures that are based

on the phrase-marker relations containment and inclusion.

In section 2 I will briey introduce the \Minimalist Program" and illustrate the

manner in which the transformations in the overt syntax component determine proper-

ties of admissable structures. In section 3 I will present Tree Logic. Section 4 presents

two brief examples of the way in which Tree Logic can be used to express linguistic

notions and constraints. The �nal section contains some concluding remarks.

2 Transformations in the Minimalist Program

In

(

Chomsky, 1992

)

, Chomsky presents a theory in which only the interface levels (pf

and lf) constitute representational levels. This section briey summarises a part of

his proposal to show how restrictions of the derivation constrain the structures that

are acceptable at the interface levels.

2.1 Outline of the Minimalist Program

The basic structures of Chomsky's proposed approach are derived from elements taken

from the lexicon. Any item � in the lexicon can be freely projected to one of the

following

�

X structures:

1. (a) [

�

�]

(b) [

�

1

[

�

�]]

122

(c) [

�

2

[

�

1

[

�

�]]]

A set of such structures forms the base of the transformational operations. The bi-

nary operation gt combines two structures whereas the unary operation move-� maps

a single structure to another. A derivation is represented as sequences of operations

operating on the output of previous operations. At any stage the operation spell-

out may be applied to a single resulting structure. This will map the structure to pf.

The derivation then proceeds to lf, under the restriction that the lexicon no longer

can be accessed. This e�ectively restricts the derivation to applications of move-�.

The transformations gt and move-� are described as follows. The generalised

transformation gt takes a phrase-marker K, adds an empty node � somewhere in

the structure and replaces � by a second phrase-marker K

0

. The second operation,

move-�, maps a single phrase-marker K into a phrase-marker K

0

. It operates similarly

to gt: it creates an empty position � and substitutes an element � from K for �,

resulting in K

�

. This operation leaves behind a trace t for � and forms the chain

(�; t). The structures K

�

that are produced by the transformations must meet the

constraints of

�

X-Theory, which is extended to cover adjunction structures:

2. (a) [

X

Y X]

(b) [

X

Y X]

The two identically labeled nodes in an adjunction structure, eg. the two occur-

rences of X in 2b, are taken to be two components or segments of a single unit, the

category X. Only those categories that are dominated by all segments of a category

are dominated by that category. A category that is dominated by some segment is con-

tained by the category to which the segment belongs, and a category that is dominated

by no segment is excluded.

Substitution and adjunction by gt and sc move-� are constrained in overt syntax

(ie. before the operation spell-out) by the fact that that � must be external to

the targeted phrase-marker K. In other words, adding � to a structure X

1

results

in [

�

� X

1

]. The empty element can be replaced by either a di�erent structure Y or

by an element � from X

1

. Since this is subject to

�

X-Theory, both Y and � must be

maximal projections and � = X

2

.

2.1.1 The Role of Transformations

The role of the transformational component in overt syntax can only be that of de-

scribing admissable structures. With the elimination of d-structure only pf and lf

remain. LF is derived after spell-out has applied and the transformations that ap-

ply before that point do not contribute to constraining the relation between pf and

lf.

In addition, the restriction that substitution extends the targeted phrase-marker

serves to rule out certain structures as admissable representations at the interface

level.

(

Chomsky, 1992

)

indicates two consequences of this restriction. The �rst is

123

that it expresses the condition of the strict cycle. Take for instance the following

example where superraising applies to derive 3b from 3a. Subsequently it is inserted,

resulting in 4. The �rst step does not violate relativised minimality

(

Rizzi, 1990

)

as

the intervening phrase is inserted later. However, this insertion is prohibited by the

restriction on substitution. Consequently, example 4 is ruled out because it cannot be

the result of a correct derivation.

3. (a) [

I

1

seems [

I

1

to be certain [John to be here]]]

(b) [

I

2

John seems [

I

1

to be certain [t to be here]]]

4. John seems it to be certain to be here

The second consequence is that there cannot be any raising to complement position.

A structure of the form [

X

1

X Y P] cannot result in a structure [

X

1

X ZP Y P],

irrespective of whether ZP is raised from within Y P or inserted by gt.

3 Tree Logic

In this section I present a framework for the formalisation of linguistic theories in the

Chomskyan tradition. The framework is a logic for tree structures, called Tree Logic.

3.1 Labeled and Ordered Trees

The structures that are used to represent linguistic objects in the Chomskyan frame-

work are phrase markers. Phrase markers are none other than labeled, ordered trees.

These structures encode two kinds of information: con�gurational and categorial.

Con�gurational information is expressed in terms of the dominance and precedence

relations. Categorial information is represented by the labels associated with the

(roots of) the trees. For the representation of categorial information I will assume

sets Lab of labels such as fn; v; p; : : : ; bar0; bar1; bar2; : : :g. The symbols l; l

1

; l

2

; : : :

will denote labels. I also assume a set N of nodes. I will assume 5 as the de�nition of

a tree structure

1

.

5. A tree T is a 6-tuple T = hN

T

; D

T

; P

T

; r

T

; L

T

; Lab

T

i where

N

T

� N , a �nite set of nodes of T ;

D

T

� N

T

�N

T

, the reexive, antisymmetric, transitive dominance relation;

P

T

� N

T

�N

T

, the reexive, asymmetric, transitive precedence relation;

r

T

2 N

T

, the root of T ;

L

T

� N

T

� Lab, the labeling relation of T ;

Lab

T

is a set of atomic labels

1

This de�nition is a slightly modi�ed version of the de�nition given in

(

Wall, 1972

)

.

124

such that for all a, b, c and d 2 N

T

the following hold:

(i) The Single Root Condition: (r; a) 2 D

T

(ii) The Exclusivity Condition: ((a; b) 2 D

T

_ (b; a) 2 D

T

) $:((a; b) 2

P

T

_ (b; a) 2 P

T

)

(iii) The Non-tangling Condition: ((a; b) 2 P

T

^ (a; c) 2 D

T

^ (b; d) 2 D

T

) !

(c; d) 2 P

T

I will assume that labels represent various properties and that these properties are

not always mutually exclusive. The fact that a node x in a tree T is an np might for

instance be represented by \(x; noun); (x; bar2) 2 L

T

."

The symbol # (T; n) will refer to the subtree T

0

of T rooted in the node n:

6. # (T; n) is the subtree T

0

= hN

T

0

; D

T

0

; P

T

0

; n; L

T

0

i of the tree

T = hN

T

; D

T

; P

T

; r

T

; L

T

i where

(a) N

T

0

= fx 2 N

T

j(n; x) 2 D

T

g

(b) 8x; y 2 N

T

0

(x; y) 2 D

T

0

$ (x; y) 2 D

T

(c) 8x; y 2 N

T

0

(x; y) 2 P

T

0

$ (x; y) 2 P

T

(d) 8x 2 N

T

0

(x; y) 2 L

T

0

$ (x; y) 2 L

T

The subtree # (T; n) is de�ned by taking the set of nodes dominated by n in T as

the set N

T

0

and by retaining the dominance, precedence and labeling relations that

hold for these nodes in T . I will also employ the subtree relation between trees T

and T

0

, which holds if T

0

is a subtree of T . Subtrees are de�ned on the basis of the

dominance relation and the subtree relation therefore is reexive, antisymmetric and

transitive. An immediate subtree is rooted in a node that is immediately dominated

by the root of the larger tree.

Finally, T

NL

will refer to the set of all trees such that for each element T of this

set N

T

� V and Lab

T

= L, and t

NL

will be any subset of this set.

3.2 Interpretations

Tree Logic is intended to be able to model (derivational) relations between trees rather

than just relations between nodes. It di�ers in this respect from the formalisations of

tree descriptions presented by

(

Rogers and Vijay-Shanker, 1992

)

and

(

Blackburn et

al., 1993

)

. The domain of interpretation will therefore be a set of trees rather than a

set of nodes. This means that the precedence, dominance and labeling relations will

be represented as relations de�ned on trees, rather than relations de�ned on nodes.

The obvious step in determining the semantics of the formalism is taking a set of

trees as the domain of interpretation and deriving the interpretations of predicates

from the relations that exist within the structures. I will call such interpretations

\tree structure interpretations." This is similar to the approach to Feature Logic in

(

Smolka, 1989

)

.

125

I assume the set V of variables and a set P of predicate symbols. Let p stand for

any predicate symbol, and let Ar be the arity function P 7! N

+

. The set of predicate

symbols contains at least the predicates Dom and Prec and every label l in the set of

labels L.

3.2.1 Tree Structure Interpretations

A tree structure interpretation will be a pair (U

I

; �

I

), where U

I

is a set of trees and

�

I

is an interpretation function that assigns to every predicate P with arity Ar(P) a

set of ordered tuples P

I

� U

IAr(P)

. The most obvious de�nition of the tree structure

interpretation is:

7. (a) U

I

= t

NL

(b) For all l 2 L and d 2 U

I

, d 2 l

I

i� (r

d

; l) 2 L

d

(c) For all d; e 2 U

I

, (d; e) 2 Dom

I

i� e is a subtree of d

(d) For all d; e 2 U

I

, (d; e) 2 Prec

I

i� there exists an e

0

2 U

I

such that d and

e are subtrees of e

0

and (r

d

; r

e

) 2 P

e

0

However, a tree interpretation de�ned in this manner is not suitable as an interpre-

tation for tree constraints. It has a serious drawback in that the precedence relation

is no longer an order relation. It will be the case that a pair of trees occur together as

subtrees of two di�erent larger trees, but in a di�erent order. For instance, U

I

may

contain the following four trees:

8. (a) T

1

= hfx; y; zg; f(x; x); (y; y)(z; z); (x; y); (x; z)g; fy; zg; x;

f(x;A); (y; B); (z; C)g; fA;B;Cgi

(b) T

2

= hfx; y; zg; f(x; x); (y; y)(z; z); (x; y); (x; z)g; fz; yg; x;

f(x;A); (y; B); (z; C)g; fA;B;Cgi

(c) T

3

= hfyg; f(y; y)g; ;; y; f(y; B)g; fA;B;Cgi

(d) T

4

= hfzg; f(z; z)g; ;; z; f(z; C)g; fA;B;Cgi

The trees T

3

and T

4

consist of the single root node y and z respectively. The �rst

two trees can be graphically represented as follows:

8. (e) T

1

: T

2

:

x

y z

�

�

�

@

@

@

x

z y

�

�

�

@

@

@

In this case trees T

3

and T

4

are both subtrees of T

1

and T

2

, but they occur in a

di�erent order. As a result both (T

3

; T

4

) and (T

4

; T

3

) will be in Prec

I

, and Prec

I

will

not be asymmetric.

126

There are three alternatives to amend this situation. The �rst is to abandon tree

structure interpretations as possible interpretations for tree constraints. The second

is to impose an additional condition on the domain of a tree structure interpretation.

The �nal alternative is to change the de�nition of the interpretation of the precedence

predicate in the de�nition above. Ignoring the �rst option, I will discuss the latter

two options in turn.

Conditions on U

I

The cause of the problems of the precedence relation is that a

tree can occur as a subtree in two other trees that do not stand in the dominance

relation to each other. This situation can easily be excluded by stating that for all

pairs of elements in the domain of an interpretation, their sets of nodes are disjoint

or one dominates the other. The de�nition of a tree structure interpretation then

becomes:

9. (a) U

I

= t

V L

such that for every pair d; e 2 U

I

, N

d

and N

e

are disjoint or d is

a subtree of e or e is a subtree of d

(b) For all l 2 L and d 2 U

I

, d 2 l

I

i� (r

d

; l) 2 L

d

(c) For all d; e 2 U

I

, (d; e) 2 Dom

I

i� e is a subtree of d

(d) For all d; e 2 U

I

, (d; e) 2 Prec

I

i� there exists an e

0

2 U

I

such that d and

e are subtrees of e

0

and (r

d

; r

e

) 2 P

e

0

This de�nition retains the properties of the relations of the tree structures.

Ternary Precedence The problems of the precedence relation in a tree structure

interpretation can be resolved by taking into account that the precedence order of

subtrees is determined relative to a larger tree in which they occur. The precedence

relation will then be represented by a ternary predicate. The de�nition of (U

I

and �

I

)

becomes as follows:

10. (a) U

I

= t

V L

(b) For all l 2 L and d 2 U

I

, d 2 l

I

i� (r

d

; l) 2 L

d

(c) For all d; e 2 U

I

, (d; e) 2 Dom

I

i� e is a subtree of d

(d) For all d; e; e

0

2 U

I

, (d; e; e

0

) 2 Prec

I

i� e and e

0

are subtrees of d and

(r

e

; r

e

0

) 2 P

d

It may be desirable to retain the possibility that a single subtree occurs in more

than one larger trees. Consider that in the Chomskyan theories a subtree at one level

of representation is often considered to be token-identical to a subtree at another. I

will therefore adopt this �nal de�nition of tree structure interpretations.

127

3.3 Tree Constraints

In this section I will present the tree constraints that are interpreted in the domain of

tree structure interpretations. These constraints are de�ned with Predicate Logic in

mind, but it must be noted that many alternatives are possible here (for instance, a

modal logic of tree structures).

Tree Logic does not have function symbols, and the only terms are variables.

Atomic constraints are p(x

1

; : : : ; x

Ar(p)

) (where p 2 P) and x

:

= y.

Tree contraints, the formulae of Tree Logic, are de�ned as follows (� and stand

for constraints):

�; �! x

:

= y equation

p(x

1

; : : : ; x

Ar(p)

) predication

� ^ conjunction

:� negation

� _ disjunction

�! implication

9x(�) existential quanti�cation

8x(�) universal quanti�cation

To interpret the denotation of the tree constraints we require variable assignments,

functions that map variables to objects in the domain of an interpretation (ie. functions

from V ar to U

I

). For a given interpretation I, an I-assignment � is a mapping from

the set of all variables to the domain U

I

of the tree interpretation I. Let �

x=d

be the

variable assignment identical to � except for �

x=d

(x) = d (ie. for all other variables y,

�(y) = �

x=d

(y)).

The three-place satisfaction relation I; � j= � holds if the formula � is satis�ed by

the interpretation I assuming the variable assignment �. It is de�ned as follows:

I; � j= x

:

= y i� �(x) = �(y)

I; � j= p(x

1

; : : : ; x

Ar(P)

) i� (�(x

1

); : : : ; �(x

Ar(p)

)) 2 p

I

I; � j= � ^ i� I; � j= � and I; � j=

I; � j= � _ i� I; � j= � or I; � j=

I; � j= :� i� I; � 6j= �

I; � j= �! i� I; � j= � implies I; � j=

I; � j= 9x(�) i� I; �

x=d

j= � for some d 2 U

I

I; � j= 8x(�) i� I; �

x=d

j= � for all d 2 U

I

A constraint � is satis�able or consistent if there exists an interpretation I and an

I-assignment � such that I; � j= �. An interpretation I satis�es a constraint � if for

all I-assignments �, I; � j= �. A constraint � is valid if for all interpretations I and

all I-assignment �, I; � j= �. Two constraints � and are equivalent (� �) if for

all interpretations I, the set of I-assignments � such that I; � j= � is identical to the

set of I-assignments � such that I; � j= .

At this moment there has been no investigation regarding the satis�ability of ar-

bitrary tree constraints or of restricted classes of tree constraints. The main interest

128

in developing the formalism was to establish its usefulness as a framework for the

expression of linguistic theories in the gb framework.

3.4 Transformations as Relations

Transformations are represented in Tree Logic as relations between trees. The set of

predicates is extended with suitable symbols for the general transformation gt and the

two instances of Move-� (substitution and adjunction) and a suitable interpretation

is assigned to each of these.

The general transformation gt will be represented by the predicate symbol GT .

This predicate takes three arguments: the two trees that are combined and the result-

ing structure. Recall the way in which gt operates: A phrase-marker K

1

is extended

with a new root, immediately dominating the original root, and K

2

is inserted as an

immediate daughter of this root. In other words, the root of the resulting structure

K

3

immediately dominates K

1

and K

2

and no others. The interpretation of GT can

then be de�ned as follows:

11. For all d; e; f 2 U

I

, (d; e; f) 2 GT

I

i� d 6= e, d and e are immediate subtrees of

f and for all immediate subtrees g of f either g = d or g = f

The two instances of Move-� both leave a trace behind for the moved subtree. Let

us �rst consider replacement of a subtree by a trace. I will assume that the notion \a

is a trace for b" is suitably de�ned and imposes the relevant constraints on the labeling

of the root of the trace (the linguistic literature is not speci�c about the precise nature

of traces). The substitution of a trace for a subtree can be de�ned as follows:

12. T

1

is the result of inserting the trace T

2

for T

3

in tree T

4

i�

(a) T

2

is a trace for T

3

(b) T

2

is a subtree of T

1

(c) T

3

is a subtree of T

4

(d) N

T1

�N

T2

= N

T4

�N

T3

(e) 8x; y 2 (N

T1

�N

T2

) (x; y) 2 Dom

T1

$ (x; y) 2 Dom

T4

(f) 8x; y 2 (N

T1

�N

T2

) (x; y) 2 Prec

T1

$ (x; y) 2 Prec

T4

(g) 8x 2 (N

T1

�N

T2

) (x; y) 2 L

T1

$ (x; y) 2 L

T4

(h) 8x 2 (N

T1

�N

T2

) (x; r

T2

) 2 Dom

T1

$ (x; r

T3

) 2 Dom

T4

(i) 8x 2 (N

T1

�N

T2

) (x; r

T2

) 2 Prec

T1

$ (x; r

T3

) 2 Prec

T4

(j) 8x 2 (N

T1

�N

T2

) (r

T2

; x) 2 Prec

T1

$ (r

T3

; x) 2 Prec

T4

These �rst three of these conditions are straightforward in stating that the inserted

subtree must be a trace for the structure that it replaces, that it must occur in

the result, and the replaced subtree must be part of the initial tree. The following

129

condition states that the initial tree and the result must share all nodes that do

not occur in the trace or the replaced tree. The next three conditions ensure that

the dominance, precedence and labeling relations are identical for the nodes that are

shared by the initial and the resulting tree. The �nal three conditions express the fact

that the trace and the replaced tree are positioned in the same location with respect

to the nodes shared by the initial and resulting tree.

The interpretation of the substitution operation can now be de�ned. Recall that

substitution must always extend the targeted phrase-marker. This means that the

resulting phrase-marker must immediately dominate the replaced subtree and the tree

that resulted from replacing the subtree by a trace, and no others. In other words,

the result of substition is the result of applying GT to the replaced subtree and the

tree in which it was replaced.

13. For all d; e 2 U

I

, (d; e) 2 Subst

I

i� there are f; g; h 2 U

I

such that f is the

result of inserting the trace g for h in d and (h; f; e) 2 GT

I

To de�ne the interpretation of the adjunction operation we need to make use of

an additional notion, namely that of the immediately dominating segment of a node

(in a given tree). Segments were briey described in section 2. A node a is the

immediately dominating segment of a node b i� a immediately dominates b and a and

b are segments of the same category (all this with respect to a given tree). Adjunction

proceeds by inserting an immediately dominating segment for a node and inserting

the moved subtree as an immediate daughter of the dominating segment:

14. T

1

is the result of adjoining T

2

to a node n in T

3

i�

(a) N

T1

= N

T3

[N

T2

[fmg

(b) m is the immediately dominating segment of n in T

1

(c) m immediately dominates r

T2

in T

1

(d) 8x; y 2 N

T3

(x; y) 2 Dom

T1

$ (x; y) 2 Dom

T3

(e) 8x; y 2 N

T3

(x; y) 2 Prec

T1

$ (x; y) 2 Prec

T3

(f) 8x 2 N

T3

(x; y) 2 L

T1

$ (x; y) 2 L

T3

(g) 8x; y 2 N

T2

(x; y) 2 Dom

T1

$ (x; y) 2 Dom

T2

(h) 8x; y 2 N

T2

(x; y) 2 Prec

T1

$ (x; y) 2 Prec

T2

(i) 8x 2 N

T2

(x; y) 2 L

T1

$ (x; y) 2 L

T2

The �rst of these conditions states that the nodes of the resulting tree are the nodes

of the original tree plus the nodes of the adjoined subtree plus the added segment. The

second and third condition require that the node that immediately dominates the root

of the adjoined structure in the resulting tree is the immediately dominating segment

of the targeted node. The next three conditions assert that the dominance, precedence

and labeling relations that exist for the nodes in the original structure are retained in

the resulting structure. The last three conditions state the similar requirement with

130

respect to the tree that is adjoined. Note that there are no constraints on the order

between the adjoined subtree and the bottom segment. This allows for both right and

left adjunction.

The interpretation of adjunction can now be de�ned as follows:

15. For all d; e 2 U

I

, (d; e) 2 Adj

I

i� there are f; g; h 2 U

I

such that f is the result

of inserting the trace g for h in d and e is the result of adjoining h to some node

in f .

4 Examples

This section is based mainly on

(

Haegeman, 1991

)

, which, being an introductory

textbook, is necessarily a compilation of a previous version of the theory. The following

should therefore be taken as an illustration of the manner in which constraints can be

expressed in the formalism rather than as a de�nitve formalisation.

4.1 Dominance Relations

In addition to the basic dominance predicate Dom, the theory employs two other

notions of dominance: immediate dominance and reexive dominance. These can be

de�ned on the basis of the Dom predicate:

16. immediate dominance

Idom(x; y) � 8z(Dom(z; y)! Dom(z; x) _ z

:

= x)

17. reexive dominance

Rdom(x; y) � Dom(x; y) _ x

:

= y

4.2 Command Relations

Haegeman Haegeman

(

1991

)

, p. 135 gives the following de�nition for generic command

relations:

18. A (c-)commands B i� A does not dominate B and every X that dominates A

also dominates B.

Haegeman remarks that \when X is equated with the �rst branching node. A c-

commands B. When X is interpreted as a maximal projection, A m-commands B."

It will be obvious that in the case of c-command the notion of �rst branching node

is not required. Interpreting X as branching node will have the same result. This

de�nition shows that any property that can hold of nodes gives rise to a command

relation (see also

(

Barker and Pullum, 1990

)

). The following formula schema shows

that any command relation can be expressed if the relevant property (represented by

P) can be expressed in the formalism.

131

19. Pcommand

Pcommand(x; y) � :Dom(x; y) ^ 8z(P (z) ^Dom(z; x)! Dom(z; y))

The properties of being a maximal node (for m-command) or a branching node

(for c-command) can be expressed as follows:

20. Maximal(x) � label(X;max)

21. Branching(x) � 9y; z (Idom(x; y) ^ Idom(x; z) ^ z 6

:

= y)

5 Conclusion

In this paper I have presented one possible instantiation of a formal framework for the

study of the interaction between transformations and constraints in the Chomskyan

tradition. The formalism is based on First Order Predicate Logic and is not geared

to one speci�c instance of Chomskyan linguistics. It must be noted that there are

many di�erent instantiations possible and that at this point in time it is hard to

determine if one formalism is better than another for the purpose in mind. Alternative

formalisms could for instance be based on Modal Logic, or assume a di�erent structure

as the representation for Chomsky's phrase-markers. They might possibly adopt a

domain-theoretic semantics rather than the standard model-theoretic semantics. The

study of the presented formalism and its alternatives will not only contribute to our

understanding of the properties of these frameworks, but will also be expected to

result in a better insight into the linguistic theories that assume trees (or tree-like

structures) as the representation of linguistic objects.

References

C. Barker and Geo�rey Pullum. A theory of command relations. Linguistics and

Philosophy, 13(1):1{34, 1990.

Patrick Blackburn, Claire Gardent, and Wilfried Meyer-Viol. Talking about trees. In

Proceedings of the 6th Conference of the European Chapter of the Association for

Computational Linguistics, pages 21{29, April 1993.

Noam Chomsky. A minimalist program for linguistic theory. MIT Occasional Papers

in Linguistics. MIT Linguistics Dept., Cambridge, Mass., 1992.

Liliane Haegeman. Introduction to Government and Binding Theory. Blackwell, Ox-

ford, UK., 1991.

Luigi Rizzi. Relitivized Minimality. Linguistic Inquiry Monograph 16. MIT Press,

Cambridge Mass., 1990.

132

James Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees. In Proceed-

ings of the 30th Annual Meeting of the Association for Computational Linguistics,

pages 72{80, 1992.

Gert Smolka. Feature constraint logics for uni�cation grammars. IWBS Report 93,

IWBS, IBM Deutschland, 1989. Also appeared in the Journal of Logic Program-

ming 1991.

Herbert Ruessink. Two levels of description: a formal interpretation of transforma-

tions. To appear in OTS Jaarboek 1993.

Robert Wall. Introduction to Mathematical Linguistics. Prentice-Hall, Inc., Engle-

wood Cli�s, NJ, 1972.

133

