
Two Levels of Semantic

Representation in DENK

Ren�e Ahn, Leen Kievit, Gerrit Rentier & Margriet

Verlinden

Dialogue-management & Knowledge Acquisition

1

Institute for Language Technology and Arti�cial Intelligence (ITK)

Tilburg University, PO Box 90153, 5000 LE Tilburg, The

Netherlands

e-mail: fahn,kievit,rentier,verlindeg@kub.nl

Abstract

In the DenK dialogue-system, we distinguish two levels of

semantic representation

2

. We employ typed feature struc-

tures (Carpenter 1992) at the �rst representation level, de-

riving context-independent semantic representations using in-

sights from Head-driven Phrase Structure Grammar (HPSG,

Pollard and Sag 1994). At the second representation level, we

use a form of Constructive Type Theory (Coquand and Huet

1988) to represent both the contextually determined meanings

of utterances as well as the information state of the system, the

latter containing the context with respect to which an utter-

ance must be interpreted. We discuss both levels of represen-

tation, speci�cally advantages of the levels w.r.t. underspec-

i�cation of semantic ambiguities related to pronouns and to

quanti�ers.

1 Introduction

The dialogue-system constructed in DenK has a user-interface consisting of

a graphical part and a lingual part, cf. Ahn et al. (1994). In the lingual part

utterances typed in by the user are changed in several steps from plain English

to reactions of the system.

In this paper we discuss two levels of semantic representation that can be

discerned in the process which maps English written utterances to updates of

1

Project sponsored by the Universities of Brabant Joint Research Organization (SOBU);

participants being the department of Mathematics and Computer Science of the Technical

University Eindhoven in collaboration with the Institute for Perception Research (IPO) in

Eindhoven and the Institute for Language Technology and Arti�cial Intelligence (ITK) in

Tilburg.

2

This notion of 'levels' originates with (Bronnenberg et al. 1979).

35

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

the discourse representation. Brie
y, in the �rst step we do the full syntactic

analysis, and part of the semantic interpretation without taking into account

any contextual knowledge. Here `context' means both world knowledge and the

knowledge of the context of the dialogue, both discourse context and physical

context.

3

At this level, all context-dependent interpretation is left underspec-

i�ed . Hence, the level is called Underspeci�ed Logical Form (ULF, Kievit

1994).

Of course, such underspeci�cation is not only common-place in natural

language processing,

4

also it is of limited use if one does not de�ne how the

underspeci�ed representations can be (e�ciently) mapped into representations

which are suitable for reasoning , cf. Allen (1993), Reyle (1992). In DenK

discourse representation, world and domain knowledge representation as well

as reasoning are expressed in Constructive Type Theory (CTT, Coquand and

Huet 1988; Martin-L�of 1984).

In this paper, we show how the combination of our architecture and as-

sumptions together with some especially useful properties of ULF and CTT

allow for interesting ways around the problem of excessive ambiguity. Speci�-

cally, we will discuss how we represent the 16 relevant di�erent interpretations

of sentence (1) in 1 ULF, arguably corresponding to 1 CTT segment:

(1) Could you tell me whether every highlighted button controls some

lens?

In this sentence, you and me are ambiguous as to whether they concern a male

or female referent; also, you remains ambiguous between plural and singular.

5

Moreover, the scope of the quanti�ers every and some is ambiguous, as we will

discuss below. In a straightforward uni�cation-based grammar

6

of English,

using disjunctions over atomic values and using Cooper storage (cf. Cooper

1983) for quanti�cation, this would lead to 16 derived interpretations. This

would, for instance, be the case for the grammar of English which is presented

in Pollard and Sag (1994).

Obviously, this is not a situation which suggests e�cient and e�ective in-

terpretation. More precisely, interpretation through this enumerate-and-�lter

3

In DenK the physical context consists of a graphical representation of a Philips CM-10

Electron Microscope. Both user and system (cooperative assistant) can perceive this domain

as well as manipulate objects in this domain.

4

Perhaps the most well-known form of underspeci�cation is Quasi Logical Form, as de-

�ned in the Core Language Engine (CLE) Project (Alshawi 1992) (but also see Nerbonne

1992; Reyle 1995). We will have more to say on the comparison between the CLE system

and ours in Sect. 2.3.

5

One might consider omitting agreement features from the grammar to avoid the pronoun-

related ambiguities discussed w.r.t. (1). However, arguably, this would induce serious prob-

lems since such agreement information can be quite crucial in anaphora resolution; e.g.

himself vs. herself vs. themselves.

6

Uni�cation-based grammar refers to a class of grammar formalisms (or `constraint-based'

formalisms) which are based on attribute-value logics, in which uni�cation is a particularly

useful operation: see Shieber (1986) for an excellent introduction, or Chap. 1 of Pollard and

Sag (1994).

36

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

approach (Allen 1993), is not monotonic (Alshawi and Crouch 1992). That

is, instead of having an interpretation of an utterance gradually become more

speci�ed during interpretation, we have a (huge) number of fully speci�c in-

terpretations of which all but one (!) must be discarded.

In Sect. 2 and Sect. 3 we will discuss our alternative for having a number

n of disjunctive feature structures as interpretation for an utterance which is

n-ways ambiguous. The speci�c properties of the representation levels ULF

and CTT will be shown to play a crucial role in this respect. In Figure 1

a schema of several levels of the architecture for interpretation in DenK is

given. As can be seen, grammatical interpretation is done in a �rst module,

in a stage of structural analysis. This results in expressions in ULF, which

can, for the moment, be thought of as boiling down to predicate/argument

structure. Extra-grammatical interpretation, which is the part of interpreta-

tion that involves processing on the basis of context knowledge, is performed

in a second module. The expressions in CTT that result from this module are

passed on to the other modules where, by pragmatic processing, the actual

behaviour of the system is computed.

-

-

?

?

?

?

�

-

.

-

lexicon

grammar

English

behaviour

analysis

processing

structural

pragmatic

ULF

CTT

context information

(in CTT)

error/help

conceptual

lexicon

further semantic

interpretation

Figure 1: Architecture for interpretation in DenK.

37

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

2 Underspecification and Typed Feature Structures

In DenK, we have chosen to use a constraint-based grammar which is in

important ways similar to Head-Driven Phrase Structure Grammar (HPSG;

Pollard and Sag 1994). The theoretical choice for HPSG practically implies

the use of a parser that handles typed feature structures. In fact, we use the

Attribute Logic Engine (ALE, Carpenter and Penn 1994) for parsing.

7

The

organization of the types

8

of a typed feature formalism in a type hierarchy

allows for a way around disjunction over atomic values.

2.1 Trading Disjunctions for Underspeci�cation

Constraint-based linguistic formalisms take as their informational domain a

system of objects based on features (or `attributes') and values. A set of

feature-value pairs is called a feature structure. A value can be either atomic or

complex; a complex value is again a feature structure.

9

In typed feature struc-

tures then, each structure has a type (as a left-subscript in the attribute-value

matrix) which generally determines the appropriate features in that structure.

For instance, some type index for the representation of agreement features

might `type' some feature structure which looks as follows:

(2)

index

2

6

6

6

4

GENDER male

NUMBER singular

PERSON third

3

7

7

7

5

Moreover, the atomic values are typed as well, in fact, values are types.

So in structure (2) male, singular and third are types. The nice thing about

these types is that all possible values of a certain feature, e.g. GENDER, are

hierarchically ordered. In tree (3) the type hierarchy for appropriate values

of GENDER is given. As can be seen the most general (appropriate) type for

GENDER is gend. This means, if nothing more is known of an object than that

it does have some gender, than GENDER is given the value gend. The logic

underlying this formalism makes such a hierarchy a bounded complete partial

order , which has pleasant computational properties.

10

7

Cf. Rentier (ms.) for a detailed description of a proto-type fragment; also, Rentier

(1995).

8

N.B.: Please note that types in typed feature logic should not be associated with types

in Type Theory. In HPSG a type is a symbol which gives a name to each ontological category

in HPSG. HPSG types have no combinatory potential. A type in Type Theory on the other

hand is a mathematical object which may have internal structure, and which de�nes the

combinatory potential of objects.

9

For more about feature structures the reader is once more referred to Shieber (1986).

10

Uni�cation can be performed in quasi-linear time in the size of the input, cf. Carpenter

(1992).

38

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

(3)
gend

�

�

�

�

H

H

H

H

male female neuter

Now, when features of an object can have a number of values, like for the

word you in example (1), an untyped feature structure with agreement features

would contain a disjunctive value for each ambiguity, see structure (4).

(4)

2

6

6

6

4

GENDER male OR female

NUMBER singular OR plural

PERSON second

3

7

7

7

5

Two disjunctions like this in a structure are generally at least as computation-

ally `expensive' as 4 separate disjunctive structures.

Thanks to the typed features the value of NUMBER can be replaced by the

most general type, usually having (nearly) the same name as the feature: numb.

The feature GENDER here, can have only two of the three values. For cases like

this, where a number of the values are allowed but not all, a somewhat more

complex type hierarchy gives the opportunity to underspecify the ambiguous

feature. For GENDER this means that we create a more general type for male

and female, called animate. The resulting type hierarchy is given in tree (5),

and the corresponding new feature structure for you in (6). This way the

subject and direct object of sentence (1) can both be represented by one feature

structure and as a consequence by one ULF expression. The (simple) relation

between feature structures and ULF is explained in Sect. 2.3.

gend

�

�

�

H

H

H

(5)
animate

�

�

H

H

male female

neuter

(6)

index

2

6

6

6

4

GENDER animate

NUMBER numb

PERSON second

3

7

7

7

5

2.2 Constraint-Based Context-Independent Event Seman-

tics

In the way we described above we reduced the number of analyses for the

example (1) from 16 to 2. But the ambiguity caused by the di�erent possible

interactions of the scopes of the two quanti�ers in the sentence remains if

we would still represent the semantics of the sentence as in (Pollard and Sag

39

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

1994). However, in contrast to the approach favoured and laid out by Pollard

and Sag, we do not use a combination of situation semantics and quanti�er

storage/retrieval, but have opted for a constraint-based context-independent

event semantics at the level of typed feature structures.

First of all, this means that we do not view reality as existing of parame-

terized states of a�airs (Barwise and Perry 1983), but as events in the sense of

Davidson (1967). In fact, in this choice our DenK grammar closely resembles

Uni�cation Categorial Grammar (UCG; Zeevat et al. 1987). Since we do not

incorporate any context information in the feature structures (as explained, we

choose to deal with context after parsing the sentence), we also abandon the

feature CONTEXT which ranges over presuppositions and the like, cf. Chap-

ters 1 and 8 of Pollard and Sag (1994)

11

. We will illustrate our approach with

our treatment of a quanti�er scope ambiguity which is analogous to example

(1).

Quanti�er scope ambiguity is one of the more stubborn problems in dia-

logue systems, cf. Calder et al. (1987), as it is in most applications of natural

language processing. Consider (7a)|which contains the same quanti�er scope

ambiguity as (1)|and its two predicate logic interpretations:

(7) a. Every button controls a lense

b. 8y:BUTTON(y)! 9z:LENSE(z) ^ CONTROL(y; z)

c. 9z:LENSE(z) ^ 8y:BUTTON(y)! CONTROL(y; z)

The more general reading of (7a) in (7b) concerns the case that for every but-

ton, there is a lense which is controlled by this button. The more restricted

reading in (7c) concerns a unique lense which is controlled by every button.

Since Montague (1974), in formal semantics it is generally the issue how to

derive both readings of an ambiguous sentence by separate derivations. But

arguably not for all kinds of ambiguity should all readings correspond to addi-

tional derivations c.q. structures. As pointed out by Kempson and Cormack,

quanti�er scope ambiguity is an entirely di�erent kind of ambiguity than struc-

tural ambiguity, as in (8) for instance (cf. Kempson and Cormack 1981):

(8) a. They saw her duck

b. Young men and women cause trouble

Kempson and Cormack argue convincingly that for structural ambiguities as

in (8), but not for quanti�cational ambiguity as in (7) more than one represen-

tation should be derived. This assumption is re
ected in our approach; we do

not follow the Montagovian tradition of deriving a disjunction of all possible

interpretations for a quanti�cationally ambiguous sentence. Consequently we

do not make use of quanti�er storage or retrieval in syntax, so-called \Cooper-

storage" (Cooper 1983), though this is very well possible in HPSG, cf. Chapter

8 of Pollard and Sag 1994.

11

See section 3.5 where we treat presupposition as accommodation at discourse level.

40

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

In such an approach one derives n disjunctive interpretations for n possible

quanti�er scopings. Instead, in DenK we would derive

12

only one interpre-

tation, e.g. the typed feature structure in Figure 2 as a context-independent

semantic interpretation for (7a).

Feature structures of type ulf introduce three features: QUANT, VAR and

RESTR. The value of QUANT is a quanti�er which we take to represent quan-

ti�cation over an event or object. Such events and objects correspond to a

variable, the value of VAR, which intuitively also corresponds to a discourse

referent in the sense of Kamp (1984).

Also, with common nouns as with events, RESTR takes as its value feature

structures which have features RELN and INST, indicating the nature of the

relation and an indication of the instance of this relation.

13

If the relation

involves thematic dependents, then these are represented on a list called ARGS,

for `arguments'. Since ARGS takes values of type ulf , these typed feature

structures are recursively de�ned.

2.3 The Role and Status of Underspeci�ed Logical Form

In our view, then, the parser is merely responsible for deriving a context-

neutral interpretation of an utterance, where quanti�er scope ambiguities are

underspeci�ed.

14

The interface expressions between grammatical interpreta-

tion and extra-grammatical interpretation are referred to as Underspeci�ed

Logical Form. These expressions are linearizations of values of feature struc-

tures of type ulf .

15

E.g., the ULF for (7a) would be a linearization of the typed

feature structure values of Figure 2, to be represented as follows:

(9) ulf(event,X,[tense:pres],[control(X,[

ulf(every,Y,[pers:3d,num:sg,gend:neuter],[button(Y,[])]),

ulf(a,Z,[pers:3d,num:sg,gend:neuter],[lens(Z,[])])

])])

This will be input for a translation process, which translates this to the

most general reading of the sentence in a Type Theoretic representation (cf.

Sect. 3.5).

The use of ULF is merely as an interface between the level of structural

analysis and subsequent levels of knowledge representation and reasoning . At

the moment we are developing extended versions of ULF as de�ned in Kievit

12

Our grammar is syntactically inspired mostly by Chap. 9 of Pollard and Sag (1994), cf.

Rentier (1995).

13

Through structure-sharing, INST takes a variable that is token-identical to the value of

VAR.

14

It is also our intent to devise ways in which to underspecify structural ambiguities

(typically, ambiguous PP-attachment, cf. Kievit () for relevant discussion) at ULF. This is,

however, work in progress; also, the context-independent interpretation of operators remains

future work.

15

This view arose in the PLUS project, cf. Geurts and Rentier (1993) for further discussion.

41

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

ulf

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

QUANT event

VAR 1

�

TNS pres

�

RESTR

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

restr

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

RELN controls

INST 1

ARGS h

ulf

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

QUANT every

VAR 2

2

6

6

6

4

GENDER neuter

NUMBER sing

PERSON third

3

7

7

7

5

RESTR

8

>

>

>

>

<

>

>

>

>

:

restr

2

6

6

6

4

RELN button

INST 2

ARGS h i

3

7

7

7

5

9

>

>

>

>

=

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

ulf

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

QUANT a

VAR 3

2

6

6

6

4

GENDER neuter

NUMBER sing

PERSON third

3

7

7

7

5

RESTR

8

>

>

>

>

<

>

>

>

>

:

restr

2

6

6

6

4

RELN lens

INST 3

ARGS h i

3

7

7

7

5

9

>

>

>

>

=

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

i

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure 2: Feature structure for Every button controls a lens.

42

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

(1994), and a mapping toDenK's information state representation level, CTT,

which is discussed in Sect. 3.

Our work for DenK is in important ways based on the Core Language

Engine (CLE, Alshawi 1992) project, though we try to develop ideas further

and make the approach more e�cient. Like the CLE, we use ambiguous repre-

sentations to represent the results of structural analysis; and also like the CLE

project, we use an event based semantics at both levels. But unlike the CLE

project, we have chosen a lexicalist and principle based theory of syntax and

semantics, namely HPSG. The advantages of this choice are a.o. that we can

freely bene�t from insights that have been and will be developed in this the-

ory. Additionally the types in typed feature logic allow for underspeci�cation

of disjunctions as discussed in the previous subsection, which is not possible

using untyped feature logics.

16

Also, in the CLE, QLF's are translated to Logical Form; however, the

CLE's LF is a form of predicate logic, extended to deal with sortal constraints

and events, cf. Alshawi (1992). In contrast, in DenK we use segments of Type

Theory, as we will discuss in Sect. 3.2, which has several advantages. For one,

the fact that the CLE represents interpretations in predicate logic means that

their LF representation inherits most if not all problems which are inherent to

predicate logic. E.g., predicate logic by itself is not a dynamic semantic theory

in the sense that is common since Kamp (1984). This means, for instance, that

coreference across sentence boundaries is not provided for, and that there are

problems concerning the binding of existentially bound variables in so-called

donkey-sentences:

(10) a. A man

1

walks in the park. He

1

whistles.

b. If a farmer owns a donkey

1

, (then) he beats it

1

Such problems have been successfully addressed by Discourse Representation

Theory (DRT, Kamp 1984; Kamp and Reyle 1993) and its successors. Since

CTT can be seen as a generalization of DRT, cf. Ahn and Kolb (1990), our

approach does capture the advantages of a dynamic semantics, counter to the

CLE's.

Finally, due to interesting properties of CTT we do not need to expand

ambiguous ULFs like (9) into many di�erent representations at the level of

context-dependent interpretation. In an approach as the CLE's, one will still

derive several readings for ambiguous expressions. Though there will be, e.g.,

but 1 QLF for (7a), there will still be interpretations similar to (7b) and (7c)

for (7a) at LF. So n possible interpretations of quanti�er scope ambiguity

still correspond to n disjunctive interpretations, albeit at a di�erent level. In

contrast, CTT allows for truly monotonic interpretation in the sense of Alshawi

and Crouch (1992). As we will discuss in Sect. 3.5, a sentence like (7a) will,

in our approach, correspond to but 1 ULF and also to but 1 CTT segment.

16

However, there we may simply use some abbreviation for a disjunction: clearly, this

works as well, but without the theoretical and the e�ciency gains.

43

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

Discourse and other knowledge may urge the system to make this reading more

speci�c; this is also discussed.

In sum, though there are some obvious similarities between the CLE ap-

proach and the approach to natural language interpretation in DenK, it must

be clear that we may discern many interesting di�erences. We turn to the level

of full semantic interpretation.

3 Constructive Type Theory and Underspecified

Quantifier Scope

The idea behind the kind of semantics that we want to have in the DenK

system is closely related to the general aim of the project. That is, in DenK

we are trying to develop a cooperative assistant to help a user accomplish

some tasks in a speci�c domain. The user wants to perform some task, and

the system assists the user. To make this cooperation possible, the user and the

system must communicate about the task. This means a cooperative dialogue

takes place, in which both dialogue partners can ask for information, and

supply information, thereby enlarging the knowledge that the partners have in

common. By doing this they will work together on achieving the user's goal.

3.1 Cooperative Dialogues and Knowledge Representa-

tion

To model such a dialogue, we need to formalize what goes on when a dia-

logue takes place. Since we are interested in the information exchange aspect

of dialogues, we will give a precise description of the process of information

exchange. Exchange of information presupposes the presence of information:

both agents in a dialogue have some information. The information that one

agent has at a certain point in time will be called an information state. This

information state contains di�erent kinds of information, for instance infor-

mation about the world, about the task that needs to be performed, and, for

a truly cooperative dialogue, about the knowledge of the partner. The latter

kind of information enables the agent to respond adequately, since he knows

what the partner knows and doesn't know (cf. Beun (1993) for discussion).

The information that an agent has can originate with di�erent sources.

Either the agent knows something because he saw it in the outside world, or

he knows it because it was communicated to him and he chose to believe it, or

he deduces it on the basis of information he already possesses.

The primary operation that an agent has for internalizing information

about the outside world is categorization. We assume agents have some in-

ternal technique that allows them to classify what they perceive. To put it

in another way: if an agent perceives something, he will immediately recog-

nize what kind of thing he is seeing. This means the primary relation in an

information state must be a classi�cation relation.

44

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

However, `new' information can only be understood by an agent, if he

already has some knowledge about the things that the new information is

about. In some way, new information must have some connection to the already

present knowledge. For it is possible that an agent perceives an object that

he cannot classify: this would mean that such an object was inconceivable to

the agent, given his information state. However, the fact that an object is

unconceivable to an agent at one time, does not preclude the possibility that

he might later learn to recognize the object. Information states are inherently

dynamic, and objects that cannot be categorized at a certain time, may be

categorizable at some other time.

As we saw, new information can also become available through communi-

cation with other agents, or from reasoning about the information the agent

already had. In the latter case, we cannot say that the agent has new infor-

mation, but rather that he is exploring the consequences of the information

that he has. So what is happening is that information that was implicit in an

agent's information state, becomes explicit. The agent may even realize that

his information is inconsistent, which he did not know before.

If new information is understandable for the agent, he can choose to add it

to his knowledge. This would mean he believes the information, and extends

his information state. It could turn out that the agent was wrong in accepting

the information, for instance if he accepted it from another agent, or his ob-

servation of the external world was for some reason wrong. As we have seen,

this inconsistency may not be recognized immediately by the agent.

Now we have seen some features that we think are important for formalizing

information states. The knowledge representation formalism that we use to

formalize these states is Constructive Type Theory (CTT) (Coquand and Huet

1988; Martin-L�of 1984). This is a mathematical formalism that has been used

to formalize theories in such a way that proofs in such theories can be checked

automatically.

The application of CTT as a formalism for natural language semantics is

relatively new. A related Type Theory, Martin-L�ofs Theory of Types (MLTT,

Martin-L�of 1984), was �rst recognized by G�oran Sundholm as a formalism

that could e�ectively solve some of the problems with donkey-sentences (cf.

Kamp 1984) in natural language (Sundholm 1986). Aarne Ranta (Ranta 1991)

introduced a set of rules for generating English sentences from MLTT expres-

sions. A way of introducing generalized quanti�ers in MLTT was investigated

by Sundholm in Sundholm (1989). The dynamic aspect of these type theo-

ries was made explicit in Ahn and Kolb (1990), where a translation of DRT

into CTT was given. An extension to CTT which is important for the DenK

project, is given in Borghuis (1994). Here, a modal extension of CTT is pre-

sented.

45

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

3.2 CTT Representations for Natural Language Expres-

sions

The form of Type Theory we use in DenK, is this modal extension of CTT

(cf. Borghuis 1994), which allows us to model the knowledge of the system

about the knowledge of the user. As we saw this is necessary since we want

the system to react in a cooperative fashion. Another addition is the inclusion

of � types, which were introduced in Martin-L�of (1984).

The building blocks of Type Theory are terms. The basic relation in CTT

is the typing relation. This is a relation between two terms. If the typing

relation holds between a term A and a term T , we write

A : T

We call A an inhabitant of T , and we call T the type of A. The expression

A : T itself is called a statement.

This typing relation is our formalization of the result of the categorization

operation that we assumed agents to possess. The types correspond to the

result of the categorization procedure. We noted that this categorization can

only be successful if an agent can conceive of the kind of thing he is trying to

categorize. In CTT this property falls out automatically. Information states

are formalized as sequences of statements, built up according to a certain set

of rules. Such a �nite sequence of statements is usually called a context. For

every statement A : T in this context, it must be the case that the type T has

some connection with the part of the context that precedes the statement. In

fact, the type must either occur in the preceding context in a statement of the

form T : K, i.e. it must occur as a term itself, with some type, or the type T

must be derivable as a term with a type K from the material in the context,

using the rules of Type Theory (Barendregt 1992).

Obviously, it cannot be the case that every type must have a derivable

type itself, since the preceding context is assumed to be �nite. Some types

are always considered well-formed. They are introduced by means of axioms.

These special types are usually called sorts. We will use two sorts here, �

t

and �

p

, which may be read as 'the sort of types' and 'the sort of propositions'

respectively.

It is now time for a small example. Imagine an agent who is able to

recognize objects in the outside world that are dogs. What this means in

CTT, is that there is a term of sort �

t

that corresponds to the category of

objects 'dog'. Call this term 'dog', then we can write down the information

state of the agent as a CTT context:

(11) [dog:�

t

]

Such inhabitants of sort �

t

are usually called types, which, admittedly, may be

confusing. The presence of such a type in a context represents the capacity of

the agent to recognize objects in the outside world of that type.

46

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

Now, if this agent sees an actual object, and classi�es it as being of this type

'dog', he can add this knowledge by creating a representation of the individual

object (a referent of that dog). Let us assume that the dog is called Max, then

we can use 'max' as the referent for this individual dog. The agent sees Max,

recognizes him as a dog, and a statement that signals this recognition is added

to the information state, which now becomes:

(12) [dog:�

t

, max:dog]

This context is well-formed, since 'dog' was introduced as a type (a term

of sort �

t

) before an inhabitant of the type was introduced.

17

3.3 Propositions and Predicates as Types

Now, the types in CTT that we use here to classify objects, serve a number

of goals. The type of an inhabitant tells us with which kinds of other objects

we can combine the inhabitant. It also tells us, what the type will be of the

resulting object of such a combination.

Compare this for instance to the lambda calculus that is used in Montague

Semantics (Montague 1974; Gamut 1991). There we have for instance inter-

pretations of adjectives like old , usually written as old', with a type (e; t), i.e.

a predicate on entities, which is a function, that, when applied to something

of type e, returns a truth-value. These kinds of objects can also be found

in CTT. We can interpret old as a predicate, but here this would not be a

function from entities to truth-values, but rather a function from some type

to propositions. However, before we can show this, we need to take a look at

what constitutes a proposition in CTT.

The inhabitants of the sort �

t

are the types of objects that we want to

talk about in the information state. We also need another sort, denoted by

�

p

, the inhabitants of which will be representations of propositions. As one

of the easiest examples of this we consider the sentence It is raining .

18

The

sort �

p

itself does not have to be introduced in the context. But as was the

case for the type 'dog', we must introduce the concept of raining before we can

add information about whether it is raining into our agent's information state.

This is done in CTT by introducing a constant that represents the proposition

It is raining as an inhabitant of sort �

p

:

(13) [rain:�

p

]

17

Note that the classi�cation procedure must be a function. We cannot have two di�erent

types for a single inhabitant. Suppose the agent has some knowledge about dogs, he may

also know that Max is a retriever. But we cannot formalize this in CTT by simply adding

a type 'retriever:�

t

' and the statement 'max : retriever'. This means that one must be very

careful when formalizing information states, what types to choose and how one wants to

classify objects. We will not go into this here but will address this problem in future work.

18

What is easy about this proposition is that it does not involve a predicate that needs

arguments: 'raining' does not need an agent, or indeed any other thematic dependent.

47

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

Note that this does not represent that the agent believes that it is raining.

It merely re
ects the fact that the agent can recognize instances of situations

that involve raining. If we want to add It is raining to an agent's information

state as a fact, we need to �nd an inhabitant of 'rain'. This means that we

treat 'rain' as a type, and introduce some new constant, which is given that

type:

(14) [rain:�

p

, p:rain]

So, 'p' is added as a constant of type 'rain'. But how should we interpret this

'p'? What does it represent?

It is well-known in mathematical logic, that there is a precise connection

between Natural Deduction type proof systems for logic, and certain type-

theories. This connection is usually called the Curry-Howard-DeBruijn iso-

morphism. Because of this connection between type-theory and various logics,

we can interpret certain types as propositions, and their inhabitants as repre-

sentations of proofs of those propositions. This is known as the Propositions-

as-Types interpretation of Type Theory.

So, in our example in (14), 'p' can be seen as a proof of the fact that it

rains. Now it will become clear that if an agent's information state contains a

proof of a proposition, this is interpreted as saying that the agent believes the

proposition. This is why 'p:rain' has the desired interpretation that the agent

believes that it is raining.

Predicates can be interpreted as functions from some object to a proposi-

tion. To build types of functions, we have a special constructor in CTT, the �

constructor. Suppose we want to interpret the expression 'old' in Type The-

ory. This predicate should be applicable to dogs. This means 'old' must be

a function from the type 'dog' to a proposition (the proposition has type �

p

,

since that is the sort of propositions). Using the � constructor, this predicate

'old' can be introduced into the information state as follows:

(15) [dog:�

t

, max:dog, old:(� x:dog.�

p

)]

Note that, here, for 'old:(� x:dog.�

p

)', we could also have written 'old:dog!

�

p

'. But in general this is not so, since the types that are build with � allow

the result type to be dependent on the inhabitant that the function is applied

to. In the case of 'old', the result of applying the function to some argument,

will always have the type �

p

.

Of course, since 'old' is now a function from dogs to propositions, this

function, when applied to 'max' should yield a proposition. And indeed the

following is derivable in CTT:

(16) [dog:�

t

, max:dog, old:(� x:dog.�

p

)] ` old(max):�

p

Again, the fact that this is derivable in an agent's information state, does

not mean that the agent believes the propositions. It only means that he

acknowledges that this is something which might be true or false. If in fact,

48

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

Max is an old dog, and the agent knows this, this would again be indicated by

the presence of an inhabitant of 'old(max)'.

3.4 Universal and Existential Quanti�cation in CTT

The meanings of sentences, which typically involve predicates as well, would

be represented in a similar way. The meaning of the verb 'run' for instance,

can also be de�ned as a function from dogs to propositions. Let us intro-

duce another dog in the agent's information state, and also the concept of

`running':

19

(17) [dog:�

t

, max:dog, old:(� x:dog.�

p

), lassie:dog, run:(� x:dog.�

p

)

]

Now we may turn to the interpretation of quanti�ers.

We begin by looking at universal quanti�cation. A sentence like Every dog

runs should have an interpretation such that we can derive for every individual

dog, that this particular dog runs. This implies that there must be a function

which returns for every dog x, an inhabitant of 'run(x)'. Such a function is

again an inhabitant of a � type. So we will use a dependent

20

� type to

represent the meaning of Every dog runs. The interpretation of Every dog

runs will then read as follows:

(18) � x:dog.run(x)

Since this � type itself represents a proposition, it must be of the sort �

p

. We

do not need to add this explicitly in the information state, since it follows from

some axioms in CTT. That is, the following may be derived in CTT:

(19) [dog:�

t

, max:dog, old:(� x:dog.�

p

), lassie:dog, run:(� x:dog.�

p

)

] ` (� x:dog.run(x)):�

p

Again, to assert the truth of this proposition in the agent's information state,

an inhabitant of this type must be added:

(20) [dog:�

t

, max:dog, old:(� x:dog.�

p

), lassie:dog, run:(� x:dog.�

p

),

q:(� x:dog.run(x))]

This proof object 'q' is a function, which for every argument x (of type 'dog'),

returns an object of the type 'run(x)'. This means that the interpretation of

Every dog runs makes the following derivable:

(21) [dog:�

t

, max:dog, old:(� x:dog.�

p

), lassie:dog, run:(� x:dog.�

p

)

q:(� x:dog.run(x))] ` q(max):run(max)

19

For expository reasons, the examples concern a perhaps somewhat peculiar information

state, where running is categorized as something which is only typical for dogs. More

`realistic' information states are left up to the imagination of the reader, as is so often the

case with expositions of formal semantics.

20

A dependent � type is a � type where the variable occurs in the `result' type.

49

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

So, by combining the proof 'q' for Every dog runs with the individual dog

'max', we get a proof object of type 'run(max)', i.e. the agent can derive a

proof of the proposition Max runs. The same is of course true for Lassie runs.

Existential quanti�cation is expressed by using the � type operator. On

the surface � types resemble � types. However, the inhabitants of � types are

not functions, but pairs of objects. As an example, consider the interpretation

of A dog runs, which gets interpreted using a � type:

(22) � x:dog.run(x)

We will call 'x:dog' the abstraction part of the � type, and 'run(x)' will be

called the body . This type itself has the sort �

p

, since it represents a proposi-

tion.

From the fact that in our context we had proof of Every dog runs, we

should be able to derive a proof object of Some dog runs. As we have said,

such inhabitants of � types are pairs. The �rst element must be an individual

of the type stated in the abstraction part of the � type; in this example we

need some individual dog. The second element of the pair must be a proof

that the property indicated in the body part of the � type, which in this case

is 'run', holds of the �rst element of the � type. Suppose we take for our �rst

element the individual dog 'lassie'. Now, we need for our second element an

inhabitant of 'run(lassie)', i.e. a proof object for Lassie runs. But we have

seen above how we can use the proof of Every dog runs to get proofs for x runs

for every dog x, namely by applying the proof object 'q' of Every dog runs to

an individual dog. So 'q(lassie)' is a proof of Lassie runs and this can be used

as the second element in our pair. Indeed, in CTT the following is derivable:

(23) [dog:�

t

, max:dog, old:(� x:dog.�

p

), lassie:dog, run:(� x:dog.�

p

),

q:(� x:dog.run(x))] ` h lassie, q(lassie) i:(� x:dog.run(x))

Note that there are also projection functions available in CTT, which allow

us to recover the individual elements of a pair that is an inhabitant of some

� type. These elements may be relevant when we need representatives of a

class of objects with some property. They also play a role in our account of

quanti�er scopes in CTT, as is shown in the next section.

3.5 Underspeci�cation of Quanti�er Scopes in CTT

So now we have seen how the meaning of some simple sentences can be rep-

resented in CTT. In the DenK system, these representations are created by

mapping the ULF expressions that were the result of the structural analysis of

a sentence, onto CTT expressions.

21

In the case of quanti�er scope ambiguities

like in (24), repeated here from (7), we map it to a representation of the most

general reading of the sentence (equivalent to (24b)):

21

The ULF expressions are related to CTT terms by means of a constraint-based mapping.

The constraints originate from several sources:

� The conceptual lexicon gives the possible CTT terms that a ULF is mapped onto,

50

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

(24) a. Every button controls a lense

b. 8y:BUTTON(y)! 9z:LENSE(z) ^ CONTROL(y; z)

c. 9z:LENSE(z) ^ 8y:BUTTON(y)! CONTROL(y; z)

Context and reasoning will then optionally allow us to decide whether the inter-

pretation should be `narrowed down' to the more restricted reading (equivalent

to (24c)). It is however equally possible to reason on the basis of the former

representation, without having to resolve the ambiguity.

In natural language processing systems (NLP systems), it is ultimately

reasoning with respect to context which is able to resolve quanti�er scope am-

biguity. If, indeed, quanti�er scope resolution is possible at all at the current

point in discourse. As argued by Allen (1993) and Reyle (1992), it is imper-

ative that an NLP system is able to have underspeci�ed representations of

expressions which are ambiguous w.r.t. quanti�er scope. Consider the tiny

discourse in (25):

(25) Every toddler climbed a tree. They were laughing and screaming. The

tree collapsed, and all toddlers fell out.

The �rst sentence is ambiguous in the same way as (24). The resolution of

the ambiguity in the �rst expression is resolved by the third expression; by

the singular de�nite use of tree in the third expression it becomes clear that

in the �rst expression the existentially quanti�ed tree should have wide scope.

This kind of reasoning for quanti�er scope resolution obviously takes place at

the extra-grammatical level. Furthermore, Allen (1993) argues that sometimes

quanti�er scopes in discourse do not get resolved at all, since the resolution

might be irrelevant and Gricean maximes apply.

The 'strengthening on demand' strategy can be implemented in CTT in

quite a straightforward way, since the functional relations between universal

and existential quanti�ers can be made explicit

22

, and additional restrictions

on these functions can be imposed whenever one pleases. As an example, let

us look at the small discourse in (25). We need a context to start with:

(26) [tree:�

t

, toddler:�

t

, mike:toddler, bob:toddler, jim:toddler,

climb:(� x:toddler.(� x:tree.�

p

)), collapse:(� x:tree.�

p

)]

So, 'toddler' and 'tree' are types, there are three toddlers, 'climb' is a function

from toddlers to a function from trees to propositions, i.e. a 2-place predicate,

� Since we are using a strictly typed system, we immediately get a form of selec-

tional/typing restrictions, which restricts the number of possible CTT translations

for terms,

� The dialogue context de�nes a saliency scale on concurring translations for terms.

22

For non-�rst-order quanti�ers, such a strategy is not generally available, as it is not

guaranteed that there will be a 'weakest' reading to start from. In such cases, the ambi-

guity must be resolved as part of the process of converting ULF's to CTT, for instance by

enumeration and checking for inconsistencies.

51

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

and 'collapse' is a 1-place predicate on trees. Now, Every toddler climbed a

tree is translated (ignoring tense) into (27):

(27) u:(� a:toddler.(� b:tree.climb(a)(b)))

From its type, we can see that the proof term 'u' of this proposition must be a

function that, given a toddler 'x', returns an object of type '� b:tree.climb(x)(b)'.

But this is the representation of the proposition 'x climbs a tree'.

So in fact 'u' is a function that for every toddler returns a proof that this

toddler climbed a tree. Look at these propositions of the form 'x climbs a tree'.

Their CTT representation contains a � operator. This means that proofs of

such propositions are actually pairs, the �rst member of which is the actual

tree, call it 'y', that toddler 'x' climbed, and the second member is a proof

that toddler 'x' climbed tree 'y'.

Now, we can create a function that, given a toddler 'x', returns the tree 'y'

that that toddler climbed. It is clear that we need the proof object 'u' to do

this. The function is constructed as follows: imagine we apply the function 'u'

to a hypothetical toddler x. This gives us 'u(x)' of type '� b:tree.climb(x)(b)'.

This 'u(x)' is an inhabitant of a � type, so it must be a pair. This means we

can use a projection which we shall call �

1

to get the �rst element of this pair

(which is the individual tree that we want). We get �

1

(u(x)) of type 'tree'.

We now abstract away from our hypothetical toddler x, by means of lambda-

abstraction in the proof object, and � abstraction in the type (since we create

a function).

This means we �nally get (28):

(28) (� x:toddler.�

1

(u(x))):(� x:toddler.tree)

Let us call this function 'p'.

We were trying to interpret the small discourse (25). The second sentence

does not tell us anything new about the preferred scoping of the �rst sentence,

but when we come to the third sentence, we discover that in fact, there should

be some unique salient tree. We take this to imply that we have a presupposi-

tion that there is some unique, salient tree in the preceding discourse; however,

the only representation we have to our disposal is our function 'p'.

But what can be done, is that we accommodate this presupposition by de-

manding that 'p' be a constant function, i.e. for every toddler 'x', 'p' should

return the same tree. It is possible to de�ne a predicate over functions, 'con-

stant', which demands exactly this.

23

The only thing that is needed then

23

The de�nition of this predicate is actually somewhat more complicated than may be

evident from the main text. Since functions can have all kinds of domains and codomains,

we either need a predicate 'constant' for every possible domain-codomain pair, or we must

make it a polymorphic predicate, i.e., we also abstract over the type of the function. In

the example, the function has type '(� x:toddler.tree)'. If we would add a di�erent pred-

icate 'constant' for every domain-codomain pair, the type of 'constant' would simply be

'(� f :(� x:toddler.tree).�

p

)', i.e. a function from functions of toddlers to trees, to proposi-

tions.

52

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

to accommodate the presupposition is to subsequently add a proof object to

indicate that 'p' is constant:

(29) acc:constant(p)

The constant value that 'p' returns can subsequently be used to represent the

meaning of The tree collapsed :

(30) u3:collapse(p(jim))

Note that it doesn't matter which toddler we use as an argument to 'p'.

So we see how the use of explicit proof objects, which are inhabitants of types

that represent propositions, gives us precisely the tool we need to handle the

resolution, if necessary and possible, of scopal ambiguity via presupposition

accommodation.

This kind of approach to quanti�er scope ambiguity, using explicit func-

tions, the properties of which are determined as the need arises, is also explored

in the work of Van der Does and Verkuyl (to appear).

4 Conclusion and Future Work

We have discussed some

24

properties of the two main levels of semantic repre-

sentation in DenK, speci�cally those properties which turn out to be useful

w.r.t. the handling of potentially massive ambiguity. Of course, this short

In case we add a polymorphic predicate 'constant', we must abstract over the type of objects

in the domain and the type of objects in the codomain of the function, so 'constant' would

have the type '(� s:�

t

.(� t:�

t

.(� f :(� x:s:t).�

p

)))', which can be read as: for all types s and

t, from functions f from s to t, to propositions. Note that in this case the accommodation

statement must take into account the polymorphic nature of the predicate, and it would

have to be changed to:

acc:constant(toddler)(tree)(p)

Another problem is the way in which such a predicate 'constant' can be de�ned such that

we can actually use it to derive some information from it. There are two straightforward

possibilities for a de�nition of constant (restricting ourselves to the non-polymorphic case

for reasons of clarity):

� 'constant' = (�f :(� x:toddler.tree). (� c:tree.(� t:toddler. equal(f(t),c))))

� 'constant' = (�f :(� x:toddler.tree). (� t

1

:toddler.(� t

2

:toddler. equal(f(t

1

),f(t

2

)))))

Given a suitable de�nition of equality, it is worth noting that in the �rst option, we are

using a � type. This means that an inhabitant of 'constant(p)', as in example (29), must

actually be a pair, the �rst element of which is precisely the constant value of the function.

The solution to getting the constant value that is taken in the main text, is by using the

function applied to an arbitrary inhabitant of the domain type of the function, but note that

we may not even know an inhabitant of the domain type. In that case the constant value of

the function could not be represented in this way.

24

Most certainly we do not pretend to have discussed either formalism thoroughly: neither

do we pretend that the properties discussed here are the most interesting properties of either

formalism.

53

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

investigation into the practical and theoretical advantages of using ULF and

CTT for semantic representation cannot be more than preliminary. Many

formal and practical issues are left open, and structural ambiguity as well as

semantic vagueness have not been discussed here.

Moreover, the mapping from ULF to CTT has been left undiscussed: future

work will de�ne this, conceivably along lines as discussed in a.o. Pulman ()

and Crouch (1995). Also, we have mentioned neither the principles

25

nor any

speci�cs of the DenK grammar fragment. Thus we left it fairly implicit how

utterances of the user are transformed to typed feature structures containing

a feature structure of type ulf . Both mappings, from English to ULF and from

ULF to CTT, will be topic of future work by (subgroups and individuals of

the group of) the authors of the present paper.

However, we might conclude from the foregoing presentation that both re-

presentation formalisms have interesting properties to start out with. The use

of HPSG and typed feature structures brings a principled approach to syn-

tax as well as a formally well-founded and e�cient formalism for structural

analysis. As we have seen in Sect. 2.1, at the level of typed feature structures

we may use a straightforward method to avoid disjunction over atomic values.

By excluding all context-information from this level, we get a radically clear

distinction between context-dependent and context-independent semantic in-

terpretation, cf. Sect. 2.2. This level, ULF, can be linearized and viewed as an

interface between structural analysis and actual knowledge representation and

reasoning.

26

Furthermore, we have shown in Sect. 3 how CTTmakes available a powerful

knowledge representation formalism, which allows for reasoning, and all kinds

of interesting objects. As discussed in Ahn and Kolb (1990), this formalism

can be seen as a generalization of Discourse Representation Theory (DRT,

Kamp 1984; Kamp and Reyle 1993), and thus as a generalization of one of the

prevailing theories of dynamic semantics.

27

Also, cf. Sect. 3.5, the formalism allows for an interesting method for under-

speci�cation of quanti�er scopes. This is currently an important issue on the

agenda of many computational semanticists (cf. a.o. Alshawi (1992), Nerbonne

(1992), Allen (1993), Bos (1994), Reyle (1995)).

An interesting property of our approach is that no readings of a sentence

containing quanti�er scopes have to be destroyed. It is merely so that discourse

or other knowledge is allowed to command that the more general reading be

`narrowed down' to a more restricted reading. Thus, at least as far as quanti�er

scope is concerned, our approach allows for monotonic interpretation in the

sense of Alshawi and Crouch (1992).

25

But cf. Rentier (1995) for a �rst, tentative approximation.

26

A tentative de�nition of ULF has been described in Kievit (1994).

27

However, it di�ers from these and other approaches in many interesting ways: cf. Ahn

() for a preliminary discussion of ideas behind the use of CTT for representing knowledge of

natural language processing agents, as well as Sect. 3.1. For discussion of proof theory and

CTT, cf. Helmink and Ahn (1988).

54

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

Recapitulating, our two-level approach seems to allow for interesting meth-

ods of handling ambiguity resolution, discourse representation and reasoning

on the basis of discourse representations. We hope to extend this approach

both in breadth, by addressing more phenomena,

28

as in depth, by formalizing,

implementing and describing the levels and mappings in full detail.

References

Ahn, R. Dynamic knowledge states in type theory. In (Bunt et al. 1994), 1{10.

Ahn, R., Beun, R. J., Borghuis, T., Bunt, H., and Van Overveld, C. (1994). The

DenK-architecture: a fundamental approach to user-interfaces. Arti�cial

Intelligence Review Journal, 8(2). to appear.

Ahn, R., and Kolb, H. P. (1990). Discourse representation meets constructive

mathematics. In K�alm�an, L., and P�olos, L., editors, Papers from the

Second Symposium on Logic and Language. Akad�emia Kiad�o. Budapest,

Hungary.

Allen, J. F. (1993). Natural language, knowledge representation and logical

Form. In Bates, M., and Wieschedel, R. M., editors, Challenges in Natural

Language Processing. Cambridge University Press, USA.

Alshawi, H., editor (1992). The Core Language Engine. Cambridge, Mas-

sachusetts: MIT Press, USA.

Alshawi, H., and Crouch, R. (1992). Monotonic semantic interpretation. In

Proceedings 30th Annual Meeting of the Association for Computational

Linguistics, 32{39. Newark, Delaware, USA.

Barendregt, H. P. (1992). Lambda calculi with types. In Abramsky, S., Gabbay,

D., and Maibaum, T., editors, Handbook of Logic in Computer Science.

Oxford: Oxford University Press, UK.

Barwise, J., and Perry, J. (1983). Situations and Attitudes. Cambridge, Mas-

sachusetts: MIT Press, USA.

Beun, R. J. (1993). Rules in dialogue. In Proceedings NATO-ASI `Basics of

Human-Machine Communication for the Design of Educational Systems'.

Veldhoven, the Netherlands.

Borghuis, T. (1994). Coming to Terms with Modal Logic. PhD thesis, Univer-

sity of Eindhoven, Eindhoven, the Netherlands.

Bos, J. (1994). Underspeci�ed predicate logic. paper delivered at CLIN V.

28

For a tentative de�nition of the relevant fragment, cf. Verlinden and Rentier (1995).

55

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

Bronnenberg, W., Bunt, H., Scha, R., Schoenmakers, W., and Van Utteren,

E. (1979). The question answering system phliqa1. In Bolc, L., editor,

Natural Communication with Computers, vol. II. M�unchen, Wien: Carl

Hanser Verlag.

Bunt, H., Muskens, R., and Rentier, G., editors (1994). Proceedings of the

International Workshop on Computational Semantics. ITK. Tilburg Uni-

versity, the Netherlands. 239 pages.

Calder, J., Klein, E., Moens, M., and Zeevat, H. (1987). Problems of dialogue

parsing. Research Paper EUCCS/RP-1, Centre for Cognitive Science,

Edinburgh University, Scotland.

Carpenter, B. (1992). The Logic of Typed Feature Structures. Tracts in Theo-

retical Computer Science. Cambridge: Cambridge University Press, USA.

Carpenter, B., and Penn, G. (1994). The Attribute Logic Engine Users Guide.

Carnegie Mellon University, Pittsburgh, USA. manuscript.

Cooper, R. (1983). Quanti�cation and Syntactic Theory, vol. 21 of Synthese

Language Library. Dordrecht, the Netherlands: Reidel.

Coquand, T., and Huet, G. (1988). The calculus of constructions. Information

and Computation, 76:95{120.

Crouch, R. (1995). Ellipsis and quanti�cation: A substitutional approach. In

Proceedings of EACL 1995. Dublin, Ireland.

Davidson, D. (1967). The logical form of action sentences. reprinted in his

\Essays on Actions and Events", Clarendon Press, Oxford, 1980, UK.

Gamut, L. (1991). Logic, Language and Meaning. Chicago: the University of

Chicago Press.

Geurts, B., and Rentier, G. (1993). Quasi logical form in plus. internal report

ESPRIT P5254 (PLUS), ITK, Tilburg University.

Helmink, L., and Ahn, R. (1988). Goal-directed proof construction in type

theory. In Huet, G., and Plotkin, G., editors, Logical Frameworks. USA:

Cambridge University Press.

Kamp, H. (1984). A theory of truth and semantic interpretation. In Groenen-

dijk, J., Janssen, T., and Stokhof, M., editors, Truth, Interpretation and

Information. Dordrecht: Foris Publications.

Kamp, H., and Reyle, U. (1993). From Discourse to Logic. Dordrecht, The

Netherlands: Kluwer.

Kempson, R., and Cormack, A. (1981). Ambiguity and quanti�cation. In

Linguistics and Philosophy, vol. 4, 259{309. Dordrecht, the Netherlands:

Reidel.

56

RENÉ AHN, LEEN KIEVIT, GERRIT RENTIER & MARGRIET VERLINDEN

Kievit, L. Representing structural syntactic ambiguity. In (Bunt et al. 1994),

131{140.

Kievit, L. (1994). Proto-ulf. DenK Research Report 94/02, ITK, Tilburg

University, the Netherlands.

Martin-L�of, P. (1984). Intuitionistic Type Theory. Bibliopolis.

Montague, R. (1974). The proper treatment of quanti�cation in ordinary en-

glish. In Thomason, R., editor, Formal Philosophy: selected papers of

Richard Montague. New Haven, USA: Yale University Press.

Nerbonne, J. (1992). Constraint-based semantics. In Dekker, P., and Stokhof,

M., editors, Proceedings of the 8th Amsterdam Colloquim, 425{445. Uni-

versity of Amsterdam. The Netherlands.

Pollard, C., and Sag, I. A. (1994). Head-driven Phrase Structure Grammar.

University of Chicago Press and CSLI Publications.

Pulman, S. A computational theory of context dependence. In (Bunt et al.

1994), 161{170.

Ranta, A. (1991). Intuitionistic categorial grammar. Linguistics and Philoso-

phy, 14:203{239.

Rentier, G. (1995). Questions and left dislocation in DenK's hpsg Fragment.

DenK Research Report 95/05, ITK, Tilburg University, the Netherlands.

Rentier, G. (ms.). Head-driven phrase structure grammar and underspeci�ed

logical form: Documentation of plug 1.0. DenK-document, ITK, Tilburg

University, the Netherlands.

Reyle, U. (1992). Dealing with ambiguities by underspeci�cation: A �rst order

calculus for unscoped representations. In Dekker, P., and Stokhof, M.,

editors, Proceedings of the 8th Amsterdam Colloquim, 493{513. University

of Amsterdam. The Netherlands.

Reyle, U. (1995). On reasoning with ambiguities. In Proceedings of EACL

1995. Dublin, Ireland.

Shieber, S. (1986). An Introduction to Uni�cation-Based Approaches to Gram-

mar, vol. 4 of CSLI Lecture Notes. USA: Stanford: CSLI.

Sundholm, G. (1986). Proof theory and meaning. In Gabbay, D., and Guen-

ther, F., editors, Handbook of Philosophical Logic, vol. 3. Reidel Publishing

Company.

Sundholm, G. (1989). Constructive generalized quanti�ers. Synthese, 79:1{12.

57

TWO LEVELS OF SEMANTIC REPRESENTATION IN DENK

Van der Does, J., and Verkuyl, H. (to appear). Quanti�cation and predica-

tion. In Deemter, K. V., and Peters, S., editors, Semantic Ambiguity and

Underspeci�cation. Stanford, Ca.: CSLI Publications.

Verlinden, M., and Rentier, G. (1995). Towards a de�nition of the DenK

natural language fragment. DenK Research Report 95/07, ITK, Tilburg

University, the Netherlands.

Zeevat, H., Klein, E., and Calder, J. (1987). Uni�cation categorial grammar.

Research Paper EUCCS/RP-21, Centre for Cognitive Science, Edinburgh

University, Scotland.

58

