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Abstract

In his book `Mechanisms of Implicit Learning' (1993) Axel

Cleeremans describes how �nite state grammars can be mod-

eled successfully with connectionist networks namely with Sim-

ple Recurrent Networks (SRNs) developed by Je�rey Elman.

However, SRNs cannot be used for modeling arbitrary �nite

state grammars. In this paper I describe the limitations of this

approach.

1 Introduction

In my thesis research I am comparing the performance of three di�erent ma-

chine learning techniques on the problem of acquiring models for the phono-

tactic structure of Dutch (Tjong Kim Sang 1996). A good phonological model

is able to make the distinction between words that are in a language and words

that cannot be part of the language because of their structure (for example

bda in English). My goal is to �nd out what machine learning techniques are

well suited for linguistic problems and I am also interested in the possible gain

the learning processes can have from being supplied with initial knowledge.

One of the three learning techniques behaved surprisingly worse than could

be expected from the results reported in the literature. The connectionist Sim-

ple Recurrent Networks (SRNs) were developed by Je�rey Elman to be applied

for generating or recognizing sequences (Elman 1990). In (Cleeremans et al.

1989), (Servan-Schreiber et al.1991) and (Cleeremans 1993), Axel Cleeremans,

David Servan-Schreiber and James McClelland report experiments in which

they modeled �nite state grammars with SRNs. The experiments were very

successful: after a training phase in which the network only received positive

examples it modeled the grammar perfectly, accepting all valid strings and

rejecting all invalid strings.

The results reported in (Cleeremans 1993) motivated me to use SRNs for

modeling the phonotactic structure of Dutch mono-syllabic words. Earlier ap-
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proaches to this problem which used the statistical Hidden Markov Models

and a rule-based learning technique have produced satisfactory results. There-

fore we can safely assume that �nite state grammars exist that are reasonable

models for the phonotactic structure of Dutch mono-syllabic words. To my

surprise SRNs failed in �nding such a model. The SRNs reached the 100%

acceptance rate for valid Dutch monosyllabic words but they never rejected

more than 6% of the random strings.

In this paper I will explain why SRNs performed bad on my problem while

their performance was excellent on the problem posed to them in (Cleeremans

et al. 1989), (Servan-Schreiber et al. 1991) and (Cleeremans 1993). First I will

describe the structure of an SRN and give a description of the main experiment

described in the literature. After that I will present a summary of my own

experiments and give an description of the problematic di�erence between my

experiments and the experiment described in the literature. In the �nal part

of the paper I will give two extensions of the grammar modeled by Cleeremans

et al. and I will show that the performance of the SRNs degrades when they

are required to learn grammars of increasing complexity.

2 The Simple Recurrent Network

Standard feed-forward connectionist networks (Rumelhart et al. 1986) consist

of a sequence of layers of cells. Usually three layers of cells are present in the

network: the input layer, the output layer and the in-between hidden layer

(�gure 1). Signals in these networks are represented by numbers between 0

and 1. The input layer cells receive signals from outside and send them to

the hidden layer cells. They perform a computation on these signals and send

the result to the output layer cells. These cells perform a computation on the

signals and send their output to outside. This type of network is a pattern

transformation system.

Networks of this type are capable of handling context insensitive pattern

transformations (A! a: replace A by a regardless of the context of A). How-

ever, they cannot perform context sensitive pattern transformations (bA! ba

: replace A by a only if A is preceded by b). For this purpose Je�rey Elman

developed the Simple Recurrent Network (SRN) (Elman 1990). This network

is equal to a feed-forward network expanded with some context cells that are

connected to the cells in the hidden layer with forward and backward connec-

tions (�gure 1). These cells store the output signals of the cells of the hidden

layer and output these signals at the next processing step. They give the net-

work the memory that is necessary for performing context sensitive pattern

transformations.

A typical task of an SRN concerns modeling a �nite state grammar. Sup-

pose we want to model the grammar:

S!aaS

S!b
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Figure 1: A standard feed-forward network (left) and a Simple Recurrent

Network (right). Except when arrows indicate otherwise, all connections are

forward connections.

This grammar can be modeled by the SRN shown in �gure 1. Then a parse of

a string consists of successively feeding the SRN the characters in the string

and making it predict the next character. This task is non-deterministic: for

a substring aa which is generated by our small grammar we cannot predict if

the next character is a or if it is b. In the output of SRNs this is solved by

giving all possible continuation tokens a value which is as high as possible.

Usually in an SRN each di�erent token is assigned to a di�erent cell. I

de�ne a maximum signal of 1 at cell in

1

as current character is a and signal

of 1 at in

2

as current character is b. A maximum signal of 1 at out

1

means

that the network predicts that the next character is a and signal of 1 at out

2

means that it predicts that the next character is b. The output of feed-forward

networks and SRNs contains some noise. Furthermore, in this SRN set-up the

sum of the output values is equal to 1 and this means that we cannot expect

an output signal value larger than 0.5 if we have two valid continuations of a

string. For these two reasons, I will accept that an output signal indicates a

valid continuation character if the signal is larger than 0.3.

To make the SRN model the grammar, we will have to train it. I will not

describe the training process here. Interested readers are referred to (Elman

1990) and (Cleeremans 1993). Suppose the SRN has been trained to model

the grammar and that the training process terminated. Then a parse of the

string aab will evolve as follows:

1. (a): start with in

1

=1 and in

2

=0. The output of the network should be

out

1

�0.3 and out

2

<0.3. If that is the case, the network predicts that

the next character is a which is correct.

2. (a): start with in

1

=1 and in

2

=0. The output of the network should be

out

1

�0.3 and out

2

�0.3. If that is the case, the network predicts that

the next character is a or b which is correct.
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Figure 2: Finite state network representing the Reber grammar

3. (b): start with in

1

=0 and in

2

=1. The output of the network should be

out

1

<0.3 and out

2

<0.3. If that is the case, the network predicts no

next character which is correct.

The SRN accepts a string if at all processing steps the next character is among

the possible continuation characters according to the output of the network.

3 The Experiments of Cleeremans et al.

In experiments described in (Cleeremans et al. 1989), (Servan-Schreiber et al.

1991) and (Cleeremans 1993), Axel Cleeremans, David Servan-Schreiber and

James McClelland trained a network to recognize strings which were gener-

ated using a small grammar that was originally used by (Reber 1976) (�gure

2). They trained an SRN to predict the next character in a sequence of 60,000

strings which were randomly generated by the grammar.

1

This prediction task

is non-deterministic and the size of the network was too small to memorize the

complete sequence. Therefore the network cannot perform this task without

making errors. It was su�cient that the network indicated in its output what

characters are valid continuations of the preceding sequence. In the experi-

ments each possible character was represented by one cell in the input layer

and one cell in the output layer. The aim of the experiments was to make the

network output at least 0.3 in the cells that correspond to valid continuation

characters. So if the output of the network was something like:

B T S X V P E

0.0 0.0 0.4 0.5 0.0 0.1 0.0

1

Network training parameters: learning rate � and momentum � were in the range 0.01

to 0.02 and 0.5 to 0.9 respectively. The network contained seven input cells (BTSXVPE) ,

three hidden cells and seven output cells.
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possible continuation tokens were S and X because these receive an output

value higher than 0.3. If no character received a value of 0.3 the sequence was

considered to be invalid.

Cleeremans, Servan-Schreiber and McClelland tested their network with

20,000 strings generated by the grammar represented by the �nite state net-

work shown in �gure 2. For all characters in the strings the network output

in the corresponding cells was 0.3 or higher. Thus the network accepted 100%

of the strings. After this they fed the network 130,000 random strings built

from the same characters. This time the network accepted 0.2% of the strings.

It turned out that the accepted 0.2% of the strings were valid strings. All

other strings were invalid according to the grammar. The network separated

perfectly the grammatical strings from the non-grammatical strings.

4 Experiments with the Phonotactic Structure of

Dutch

In my own experiments I have attempted to model the phonotactic structure

of Dutch monosyllabic words with SRNs. The purpose of these experiments

was to obtain an SRN that is able to recognize the di�erence between possible

monosyllabic Dutch words like for example bad and strings that cannot be a

monosyllabic word like for example bda. The words were represented in or-

thographic format (ordinary characters; no phonological representations) and

were taken from the Dutch corpus Het groene boekje (Nederlands-Belgische

Spellingscommissie 1954). From this corpus I obtained 3506 monosyllabic

words. I divided this set in two corpora: one 3206-word training corpus (train-

ing data) and a 300-word test corpus (test data). As an additional test corpus

I generated 300 random words (random data) of which 12 words (4.0%) were

acceptable. During the training phase the SRN will be fed the positive training

data only. After the training phase it has to accept as many of the test data as

possible and reject as many random data as possible. In an experiment with

the statistical learning technique Hidden Markov Models an acceptance rate of

99.3% (test data) and an rejection rate of 95.0% (random data) were achieved

for the same data (Tjong Kim Sang 1996). While these were non-perfect scores,

they indicate that reasonable models for the phonotactic structure of Dutch

monosyllabic words can be found.

I chose the same network learning parameters as in the experiments of

(Cleeremans 1993): learning rate �=0.01 and momentum �=0.5. The network

contained 27 input cells (a-z�) and also 27 output cells. All words received a

special word-end character � because the words will be presented to the net-

work in one large sequence and the network needs a word-end character in

order to know where the current word ends and the next word starts. De-

termining the number of hidden cells of the SRN is a problem. This number

cannot be derived analytically from other network parameters or from network

input data. Yet the size of the hidden layer has some in
uence on the perfor-
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mance of the network. Therefore I performed three di�erent experiments with

hidden layer sizes of 4, 10 and 21 cells respectively.

Network training was carried out in steps of 50 training rounds. In each

training round the SRN was presented the complete training data and the

network was forced to adapt its internal weights in order to get its output as

close to being perfect as possible. After a 50-rounds training period I examined

the in
uence training had on the total sum squared error the network made

for the training data. When the value of this error had changed more than 1%

training was continued. I continued this process until the total sum squared

error stayed within 1% distance of the previous value.

Before training the network weights were initialized with random values.

I noticed that random initialization of the networks had some in
uence on

their performance. In order to get a network performance that is reliable and

stable, I performed �ve parallel experiments with each network con�guration.

Of these �ve experiments I chose the one with the lowest total sum squared

error for the training data and tested its performance on the test and the

random data. My motivation for choosing the performance of the network

with the smallest error rather than the average performance of the networks is

that I am interested in the best achievable performance of the network. This

approach to learning to solve a problem is not uncommon.

Because there are more valid continuation tokens in the grammar I am

looking for than in the Reber grammar, the output signals of my SRN will

be smaller than the SRN modeling the Reber grammar. The output signal

threshold of 0.3 used in (Cleeremans 1993) would reject almost all words.

Therefore I changed the string score measure used in (Cleeremans 1993) into:

1. The score assigned by an SRN to a character X in a string Y is the value

of the output cell which was assigned to X after processing the pre�x of

Y before X.

2. The score of a string is the lowest score assigned by the SRN to any of

the characters in the string.

3. The string acceptance threshold is equal to the lowest string score

assigned by the SRN to a string of the training data.

So instead of determining a standard threshold value in advance, I have made

the string acceptance threshold value depend on the scores of the training

words. Strings in the test data and the random data will be rejected if they

receive a lower score than the string acceptance threshold. All other strings

will be accepted.

All SRNs performed perfectly for the test words and accepted all 300 words

of the test data (�gure 3). However, their performance for the random words

was bad. The SRN with 4 hidden units got the highest rejection rate with

5.6% of the 300 random words. The network with 10 hidden units performed

worse and the network with 21 hidden unit even accepted all random words.
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training total sum accepted rejected

hidden rounds squared test random

units needed error words words

4 200 13750 300 17

10 250 13153 300 3

21 200 13060 300 0

Figure 3: The performance of three SRNs for the Dutch monosyllabic data.

The performance of the network is not anywhere near the 95-99% range of the

Hidden Markov Model on this problem or the 100% performance of the SRN

on the Reber grammar reported in (Cleeremans 1993).

5 The Influence of the Number of Possible Con-

tinuations of a String

My three experiments show that SRNs with the con�guration I chose are un-

able to acquire a good model for the phonotactic structure of Dutch mono-

syllabic words. While my target was rejecting 96% of the random strings the

SRNs never were able to reject more than 6%. This performance is a sharp

contrast with the performance on grammaticality checking reported in (Cleere-

mans 1993) in which all non-grammatical strings were rejected by the network.

This fact surprised me so I took a closer look at the di�erences between my

experiments and the experiment described in chapter 2 of (Cleeremans 1993).

The most obvious di�erence I was able to �nd was the maximal number

of valid continuations of grammatical strings. In �nite state model for the

Reber grammar used by Cleeremans et al. (�gure 2) the maximum number

of valid continuation tokens is two. This is very important for the format

of the network output. This output consists of a list of real values, each

roughly representing the chance that a certain token is the next one in the

string. For example, if a network trained for the Reber grammar is processing

a string, it might present on its output the pattern [ 0.00, 0.53, 0.00, 0.38,

0.01, 0.02, 0.00 ] (Cleeremans 1993, page 43). In this list the numbers indicate

the probability that B, T, S, P, X, V, or E is the next token in the string.

As we can see, the two valid continuations T (0.53) and P (0.38) receive an

output value that is signi�cantly larger than the output values of the other

tokens. The network does not perfectly predict the `correct' continuation but

it outputs some average pattern that indicates possible continuation tokens.

This network behavior was already recognized in (Elman 1990).

The fact is that in the phonotactic grammars for Dutch the maximal num-

ber of valid continuation tokens is much larger than two. For example, ac-

cording to my training corpus for the plain text experiments the number of
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tokens which are possible continuations of the string s is 17. Some continu-

ation tokens of s occur frequently, like c (23%) and t (24%), but others are

very infrequent: f, q, u and w occur less than 1%. The frequency of the con-

tinuation tokens will be mirrored by the network output, as in the example

from (Cleeremans 1993). Because the network output contains noise, it will

be impossible to distinguish between low frequency continuation tokens and

impossible continuation tokens, like b and x in this example.

In my experiments I chose the lowest character score in the training data as

the string acceptance threshold value. By chance some impossible tokens will

have received a character score which is larger than this threshold value. This

results in the reported failure to reject all non-grammatical strings. Remember

that the network output contains noise. For example, the output list in section

3 shows network output in which P receives value 0.1 (should be 0.0) and S

receives value 0.4 (should be 0.5). Cleeremans et al. detected in the output of

the network values of 0.3 where 0.5 was expected. One can understand that in

an environment where signals have an absolute variation of 0.2 the di�erence

between a signals 0.01 and 0.00 are in practice impossible to detect.
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Figure 4: Finite state networks representing a Reber grammar with three

continuation tokens (left) and one with four continuation tokens (right)

6 Can We Scale up the Cleeremans Experiment?

I decided to test the explanation I have given in the previous section by redo-

ing the experiment described in chapter 2 of (Cleeremans 1993). Apart from

training an SRN to decide on the grammatically of strings according to the

Reber grammar shown in �gure 2, I have trained SRNs with strings from two

alternative grammars. The �rst alternative grammar was an extension of the

Reber grammar such that valid substrings have 3 possible continuation tokens.

140



ERIK F. TJONG KIM SANG

The second alternative grammar was an extension of the �rst and there valid

substrings have 4 possible continuation tokens (�gure 4). For all grammars I

generated 3000 training words, 300 test words and 300 random words. Of the

300 random words for the standard Reber grammar 1 word was grammatical

and for the other two grammars respectively 5 and 8 words were valid.

I trained the SRNs in steps of 50 training rounds using learning rate �=0.01,

momentum �=0.5 and a network con�guration that was similar to the one used

in (Cleeremans 1993) (7 input cells, 3 hidden cells and 7 output cells). After

each 50-round step I checked if the total sum squared error of the network had

changed more than 1%. If this was the fact training was continued otherwise

training was stopped. As in the previous experiments words were rejected

when their score was below the string acceptance threshold, which was equal

to the lowest score of a string in the training data.

maximum training total sum rejected rejected

continuation rounds squared test random

tokens needed error words words

2 150 9079 0 299

3 250 12665 0 272

4 100 13944 0 240

Figure 5: The performance of the SRN network for Reber grammars of in-

creasing complexity.

As we can see in �gure 5 the performance of the SRN decreases when the

complexity of the grammar increases. The SRN accepted all valid words for

all grammars but the rejection rate of the random data decreased when the

number of valid continuation characters increased: for the grammar with 2 con-

tinuation characters (one valid string in the random data) 100% of the invalid

random strings were rejected, for 3 continuation characters (5 valid strings)

this dropped to 92.2% and for 4 continuation characters (8 valid strings) the

rejection rate was 82.1%. We can conclude that the number of valid continu-

ation tokens in
uences the di�culty of the problem. (Cleeremans et al. 1989),

(Servan-Schreiber et al. 1991) and (Cleeremans 1993), showed that SRNs are

capable of acquiring �nite state grammars in which a grammatical substring

has two valid continuation tokens. I showed that the performance of the SRNs

will deteriorate rapidly if the maximal number of continuation tokens increases.

7 Concluding Remarks

In this paper I have described the limitations of modeling �nite state gram-

mars with the connectionist Simple Recurrent Networks (SRNs). This ap-

proach was promising after the successful experiments described in (Cleere-

mans 1993). However, the unsatisfactory results of my own experiments in
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which the phonotactic structure of mono-syllabic Dutch words was modeled

with SRNs reduced this optimistic view. I have argued that the performance

of the SRNs in the problem of the acquisition of a grammar depends on the

number of valid continuations of a string. When there are more valid continu-

ations possible, the probabilities of the individual continuations decrease and

together with these the output values of SRN cells decrease. Lower cell output

values are more di�cult to distinguish from the inherent noise in the network

output and therefore the SRN will have more di�culty modeling grammars

with many possible valid string continuations. In the Reber grammar used

by Cleeremans et al. a string had a maximum of two continuation characters

while this number is 21 in a grammar describing the phonotactic structure

of Dutch monosyllabic words. This accounts for the performance di�erences

between these two experiments.

The problem described here is a fundamental problem of feed forward net-

works in this kind of experiment set-up. In the training data input-output

dependencies are encountered infrequently and when there are many depen-

dencies these are lost in the noise the network produces. This problem cannot

be solved by changing the con�guration or the size of the network. Still,

theoretical research has proven that connectionists networks as basic as the

McCulloch-Pitts networks can model �nite state grammars (Kleene 1956). The

SRNs I have used in my experiments should be able to model the �nite state

grammars shown in �gure 4.

I believe that it is possible to train SRNs to model those grammars if the

training data is adapted. Instead of supplying the network di�erent individual

relations one by one, it is necessary to supply them a group of relations: for

example B! [T; V;X; P ] instead of B! T , B! V , B! X and B! P . This will

able the network to reach output values for valid continuation characters that

are close to 1. However, I also believe that this is an unsatisfactory adaptation

of the data to the network. Therefore I would like to conclude that while

SRNs are theoretically capable of modeling �nite state grammars, in practice

training them to simulate a non-trivial grammar is next to impossible.
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