
A Minimalist Head-corner

Parser

Mettina Veenstra

University of Groningen, Dept. of Computational Linguistics

P.O. Box 716, 9700 AS Groningen

The Netherlands

e-mail: mettina@let.rug.nl

Abstract

In this paper a head-corner parser for a fragment of the Min-

imalist Program (Chomsky 1992) is described. It will be ar-

gued that because of the nature of Generalized Transformations

(GT) and Move-� head-corner parsing is a suitable parsing

technique for the Minimalist Program.

Furthermore a proposal is made to treat functional and lexical

heads di�erently. Functional heads are not treated as head-

corners of their mothers by the minimalist head-corner parser

that is described here.

1 The Minimalist Program

1.1 Word Order and Movement

Within the Minimalist Program, Move-� (`move something') is the central

mechanism for treating word order. In earlier versions of the Chomskyan the-

ory phrase structure took care of word order di�erences. X-Theory (Chomsky

1970; Jackendo� 1977; Stuurman 1985; etc.) was developed to constrain the

possible phrase structure rules; it describes a uniform structure where every

XP has at least a head, and possibly a speci�er and/or a complement. The

relative order of those three elements of the XP is not �xed, but is subject to

parametric variation.

Within the minimalist framework all languages have the same phrase struc-

ture consisting of a lexical domain (VP) and a functional domain. The most

general functional projections are CP (Complementizer Phrase), AgrSP (Agree-

ment Phrase for the Subject) and AgrOP (Agreement Phrase for the Object)

(see �gure 1). The lexical domain is the locus of insertion of verbs and their

arguments. These are inserted in fully in
ected form (stem plus in
ectional

a�xes). The functional projections are occupied by features associated with

in
ectional morphology. The phrase structure is built up in a bottom-up way

by GT and Move-� (see section 2).

181



A MINIMALIST HEAD-CORNER PARSER

CP

C

,

,

,

C

that

l

l

l

l

AgrSP

,

,

DP

she

i

l

l

AgrS

�

�

AgrS

�

�

V

likes

k

A

A

AgrS

@

@

AgrOP

�

�

e

j

T

T

AgrO

�

�

AgrO

�

�

V

e

k

A

A

AgrO

@

@

VP

�

�
�

e

i

L

L

V

�

�

V

e

k

A

A

DP

cats

j

Figure 1: A simpli�ed tree for a transitive subordinate clause in English

A parameter for the relative order of the head, speci�er and complement

is no longer necessary within the Minimalist Program. All languages have the

same X-structure with the same order, namely speci�er, head, complement

(see �gure 1).

1.2 Spell Out and Phonetic Form

Within the minimalist approach not only phrase structure, but also possible

movements are universal. Hence it follows that a certain constituent (e.g. the

subject) has to cover the same path through the tree in all languages. A

constituent always travels from its position of lexical insertion below in the

tree, to its logical form (LF) position higher up (see �gure 2).

Constituents move from point to point along a path in the tree. Phonetic

form (PF) is a snapshot (using Spell Out) of the tree at one point of the

derivation process (see �gure 2). Since languages may di�er in word order,

they may di�er about when Spell Out (a moment in the derivation in which

instructions are given to the articulatory-perceptual system | PF) occurs.

182



METTINA VEENSTRA

Thus only the movements that take place before Spell Out in
uence PF. For

this reason the part of the derivation before Spell Out is called the overt

syntax. The movements between Spell Out and LF are called covert syntax.

The moment of Spell Out is the only mechanism that accounts for word order

di�erences between languages and within a single language (for di�erent kinds

of sentences such as questions an topicalized sentences). The mechanism is

triggered by features (see Section 1.3).

Lexicon

overt

8

>

>

<

>

>

:

?

?

?

?

?

?

?

?

�����������!

Spell Out

covert

8

>

>

<

>

>

:

?

?

?

?

?

?

?

y

LF

Logical Form

PF

Phonetic Form

Figure 2: The derivation of a sentence

1.3 Movement and Feature Checking

All movements are caused by the necessity of feature checking. A tree contains

features such as case and agreement. Movement enables the features of the

moved constituent to be compared with those of the landing site. Such a

comparison is called `checking'; after features are checked they are deleted.

Features can either be strong or weak. Weak features are `invisible' and strong

features are `visible' at PF. At PF all `visible' features of the landing sites

have to be deleted. That is why only strong features have to be eliminated by

checking in overt syntax. Languages that di�er in word order di�er only in

having di�erent positions for the strong features in the tree.

Movement from the position of lexical insertion to the PF position of a

constituent occurs as follows. The constituent moves to its landing site. It

checks its features against the features of the landing site in the functional

domain and decides whether these features are weak or strong. Movement is

obligatory until a position with strong features is reached. The position with

strong features is the PF position of the constituent. Every movement leaves a

trace. The movements that take place between Spell Out and LF are invisible,

as was mentioned in Section 1.2. This does not imply that no feature checking

183



A MINIMALIST HEAD-CORNER PARSER

V

see

DP

her

V

�

�

V

see

A

A
A

e

V







V

see

J

J

DP

her

Figure 3: Generalized Transformations applied to the phrase markers V and

DP yielding V

takes place after Spell Out. The ending point of the path is the (universal) LF

position of the constituent.

2 Generalized Transformation and Move-�

The central operations of the Minimalist Program are GT and Move-�. GT

is a structure-building operation that builds trees in a bottom-up way as is

illustrated in �gure 3. Two phrase markers (V and DP) are combined into

one. One of these two is called the target (V). A projection of the target (V)

is added to the target. The projection of the target has two daughters: the

target itself and an empty position. The empty position is substituted for by

the second phrase marker (DP). This second phrase marker is itself built up

in other applications of GT and/or Move-�.

Move-� is a special kind of GT. It is an operation that combines a target

with a moved phrase marker. It is assumed that movement is always leftward

(Kayne 1994) and that in the universal trees of the Minimalist Program heads

and speci�ers, which are the only positions to move to, are always to the left

of the projection line. These two assumptions in combination with the fact

that GT and Move-� are bottom-up operations, e�ect that the moved phrase

marker has to be contained in the tree that was built so far

1

. Examples of

Move-� can be found in �gure 1. There is a DP in the speci�er position of

AgrSP. To move this DP to the speci�er position of AgrSP, AgrS is taken as

a target phrase marker (the projection above AgrS does not exist yet at that

moment). AgrSP is added as a projection of AgrS and an empty position is

created as the sister of AgrS. This empty position is substituted for by the

phrase marker in the speci�er position of the VP.

The tree in �gure 1 illustrates di�erent kinds of movement. The chain with

the index k illustrates head movement. The verb moves from its base position

in the VP to AgrO and AgrS. The verb adjoins to those heads to check its

object and subject features against the features that are present there

2

. The

1

See (Veenstra 1994) for further details.

2

See (Chomsky 1992, page 11)

184



METTINA VEENSTRA

chains i and j show movement to speci�er positions. The subject and the

object move to the functional domain to check their features. For example,

subject-verb agreement is checked in AgrSP by moving both the subject and

the verb to this projection.

The lowest position of each chain is the position where lexical insertion

takes place. The highest position is the LF (Logical Form) position of the

element in the chain. The PF position of a chain is the position that contains

a visible element instead of a trace. The PF position can be the same as the

LF position or the position were the lexical insertion takes place. For example

in chain i the visible element (PF) is situated in the highest position of the

chain (LF).

3 Head-corner Parsing

The main idea behind head-driven parsing (Kay, 1989) is that the lexical entries

functioning as heads contain valuable information for the parsing process. For

example, if a verb is intransitive it will not require a complement, if it is

transitive it will require a complement. Therefore the head is parsed before its

sisters in a head-driven parser. A head-corner parser (Kay 1989; Bouma and

Van Noord 1993) is a special type of head-driven parser. Its main characteristic

is that it does not work from left to right but instead works bidirectionally.

That is, �rst a potential head of a phrase is located and next the sisters of the

head are parsed. The head can be in any position in the string and its sisters

can either be to the right or to the left.

A head-corner parser starts the parsing process with a prediction step. This

step is completed when a lexical head is found that is the head-corner of the

goal (i.e. the type of constituent that is parsed). The head-corner relation is

the re
exive and transitive closure of the head relation. A is the head of B

if there is a rule with B as left hand side and A as the head daughter on the

right hand side. When a (lexical) head-corner is found an X rule is selected in

which the (lexical) head is on the right hand side. The sisters of the head are

parsed recursively. The left hand side of the rule contains the mother of the

head. If this mother is a head-corner of the goal, and the mother and the goal

are not equal the whole process is repeated by selecting a rule with the new

head-corner (i.e. the mother of the �rst head-corner) on its right hand side.

In section 2 it is assumed that movement is invariably leftward and that

GT and Move-� are bottom-up mechanisms. GT builds the VP before other

projections. Constituents of VP are moved to higher projections by Move-�,

which is a special kind of GT. Suppose that the parser should consider AgrS

as the head-corner of AgrSP, which accords with X-Theory. Then the head

(AgrS) that should be �lled with an adjoined verb by movement from AgrO

(in a transitive sentence) or V (in an intransitive sentence) is created before

AgrO and V. To avoid moving constituents from a part of the tree that has

not been built yet, the head-corner table for the minimalist head-corner parser

185



A MINIMALIST HEAD-CORNER PARSER

is not constructed completely according to X-Theory (see (1)).

(1) hc(AgrS,AgrSP). hc(V,VP).

hc(AgrOP,AgrS). hc(V,V).

hc(AgrO,AgrOP). hc(N,NP).

hc(VP,AgrO). hc(N,N).

For example, instead of AgrO, VP is the head-corner of AgrO. This solution

is compatible with the Minimalist Program in the sense that in this way the

tree is built up in an absolute bottom-up way (i.e. starting from V) so that a

position that should be �lled by movement is always created after the position

from which the moved element comes. The head-corner table in (1) illustrates

that functional heads like AgrO and AgrS are not processed as heads. Lexical

projections like VP and NP are treated according to X-Theory. If we follow (1)

in combination with the tree in �gure 1 we establish the fact that the parser

searches its way down to the verb as soon as possible. The top-down prediction

step moves from the goal AgrSP to AgrS to AgrOP to AgrO to VP to V and

�nally to the lexical head-corner V where the bottom-up process starts as the

Minimalist Program requires.

4 Comparison of the Structure-building

Operations of the Minimalist Program and

Head-corner Parsing

If we have a closer look at the de�nitions of GT and Move-� we see that they

resemble the strategy of head-corner parsing a lot. In both cases we start with

a head. In the case of GT and Move-� this is called the target phrase marker,

in the case of head-corner parsing it is called the (lexical) head-corner.

In both cases we use an X rule to obtain more information about the mother

and the sister of the head. In the de�nitions of GT and Move-� the sister also

has to be built up by GT and/or Move-� or it is an XP that is moved from a

position lower in the tree to this position. In the parser that is discussed here

a sister is parsed or the sister is linked to a lower position (see section 5).

The next step for GT and Move-� is to consider the new phrase marker

that is built as the new target phrase marker and apply GT or Move-� to this

phrase marker. The next step in the parsing process is to check if the mother

of the head-corner is a head-corner of the goal. If this holds the whole process

starts again with the mother as a head-corner.

5 The Algorithm

The parser that is discussed here is based on the head-corner parser in (Bouma

and Van Noord 1993). Our minimalist head-corner parser mainly consists of

the following 3 predicates: parse, head corner and predict. The parsing process

186



METTINA VEENSTRA

starts with calling parse. As we see below parse calls among other things the

predicates predict and the head corner.

% parse(Cat/CatTree,P0,P,E0,E) if there is a Cat from P0 to P,

% within the range E0, E

parse(Goal/GoalT,P0,P,E0,E) :-

predict(Goal,Lex/LexT,Q0,Q),

between(Q0,Q,E0,E), % Q0 and Q are between E0 and E

head_corner(Lex/LexT,Goal/GoalT,Q0,Q,P0,P,E0,E).

The predicate predict locates a lexical head-corner. The relation hc imple-

ments the head-corner table.

% predict(Goal,Lex/LexTree,Q0,Q)

% if Lex from position Q0 to Q may be head-corner of Goal

predict(Goal,Lex/t(Lex,w(Word)),Q0,Q) :-

hc(Lex,Goal),

chart(Word,Q0,Q),

lex(Word,Lex).

Because phrase markers in the Minimalist Program are at most binary

branching, there will never be both left and right daughters in the same rule.

Furthermore there is always at most one right or left daughter in each rule. It

is impossible to parse both the left and the right daughters within the same

head corner clause. We need separate clauses to parse left and right daughters

(see respectively the third and the second head corner clause given below).

For example, the second head corner clause parses a sister of the head-corner

which is to the right of the head-corner. The position of the head-corner is

from Q0 to Q1. The position of the sister is from Q1 to Q, with Q <= E and

Q0 <= Q1 <= Q (see parse(Dtr/DtrT,Q1,Q,Q1,E)). If Q0 = Q1 the head is

empty (e.g. because it moved to another position in the tree).

The predicate rule implements X rules. The �rst argument indicates at

which side of the head-corner (Small) the other daughter of Mid (Dtr) can be

found. The third argument is the left hand side of the X rule. The second and

the fourth argument represent the right hand side of the X rule.

head_corner(Small,Small,P0,P,P0,P,_,_).

head_corner(Small/SmallT,Goal/GoalT,Q0,Q1,P0,P,E0,E) :-

rule(right,Small,Mid,Dtr),

parse(Dtr/DtrT,Q1,Q,Q1,E),

hc(Mid,Goal),

head_corner(Mid/t(Mid,[SmallT,DtrT]),Goal/GoalT,Q0,Q,P0,P,E0,E).

head_corner(Small/Small,Goal/GoalT,Q1,Q,P0,P,E0,E) :-

rule(left,Small,Mid,Dtr),

parse(Dtr/DtrT,Q0,Q1,E0,Q1),

hc(Mid,Goal),

head_corner(Mid/t(Mid,[DtrT,SmallT]),Goal/GoalT,Q0,Q,P0,P,E0,E).

187



A MINIMALIST HEAD-CORNER PARSER

Furthermore we need separate clauses for GT and Move-�. As we concluded

in section 4 GT has a lot in common with head-corner parsing. Therefore the

plain head corner clauses as given above represent GT. To account for Move-�

we added movement predicates after the call to parse in a head corner clause.

The example given below is the clause that describes movement to speci�er

positions.

head_corner(Small/SmallT,Goal/GoalT,Q1,Q,P0,P,E0,E) :-

rule(left,Small,Mid,Dtr),

parse(Dtr/DtrT,Q0,Q1,E0,Q1),

to_specifier_movement(MidT,_SubT,DtrT)

hc(Mid,Goal),

head_corner(Mid/MidT,Goal/GoalT,Q0,Q,P0,P,E0,E).

DtrT is the constituent that is moved to a speci�er position. The root of

MidT takes the moved constituent as its left daughter. SubT contains the posi-

tion where the moved constituent comes from. To check if it is possible to move

the constituent from SubT to MidT a simple solution is chosen. Possible move-

ments are not determined by Economy like the Minimalist Program prescribes

(Chomsky 1992; Zwart 1993). Instead a table with possible movements is con-

sulted: move(speci�er:X, speci�er:Y) or move(complement:X, speci�er:Y). X

and Y represent respectively the category of the root of SubT and the cate-

gory of the root of MidT. If a possible movement from SubT to MidT exists,

the features and the chain indexes of the starting and �nal position of the

moved constituent are uni�ed. Head movement is treated in a way similar to

movement to speci�er positions.

The fact that functional heads are not head-corners causes the necessity of

an unusual head corner clause. The following clause is needed to be able to

consider the linguistic head as a daughter and the complement as a head-corner

(compare the arguments 2 to 4 of rule in the following clause with the same

arguments within the head corner clauses above). The following clause uses a

rightward rule to �nd a daughter to the left of the head-corner. The type of rule

that is used is comparable with the head corner clause above that is used to

parse right daughters, but the indexes for the sentence positions in this clause

are the same as the indexes in the head corner clause above that is used to parse

left daughters. The predicate functional ensures that Dtr is a functional head.

In the head corner clause for movement to speci�er positions, Mid should also

be functional. Here is is not necessary to add the predicate functional because

all possible movements are movements to functional projections. Therefore it

would be redundant to prove that Mid is functional.

head_corner(Small/SmallT,Goal/GoalT,Q1,Q,P0,P,E0,E) :-

rule(right,Dtr,Mid,Small),

functional(Dtr),

parse(Dtr/DtrT,Q0,Q,E0,Q1),

hc(Mid,Goal),

head_corner(Mid/t(Mid,[DtrT,SmallT]),Goal/GoalT,Q0,Q,P0,P,E0,E).

188



METTINA VEENSTRA

An example of the application of the head corner clause that is given above

is the case in which Small is a VP. A rule that could apply in this case is the

rule where Dtr is AgrO and Mid is AgrO. AgrO is the regular head of the rule,

but VP is the head-corner in our parser. Therefore the rigtward rule can be

applied to �nd a daughter that is to the left of the head-corner.

6 Parsing vs. Generation

At the end of section 3 we chose not to consider functional heads as head-

corners of their mothers. This choice was made because GT starts with con-

structing a VP before the projections to which constituents from VP are moved

are constructed. Another motivation to start with VP is that V contains in-

formation that is useful for the rest of the structure building process. For

example, if the verb is intransitive we know that V does not require a comple-

ment sister, and we know that we do not need an AgrOP on top of VP. The

fact that V contains lexical information and functional heads like AgrO and

AgrS do not, could be used as a justi�cation for the fact that the latter are no

head-corners. The main idea of head-driven parsing is, as was stated before,

that heads contain relevant information for the parsing process, and that they

therefore should be parsed before their sisters. In the Minimalist Program not

all heads are lexical. Functional projections do not have a lexical head. They

obtain their contents via movement of elements from positions lower in the

tree. This special status of functional heads makes them less useful.

The Minimalist Program is a generation-oriented framework. Because we

are dealing with parsing (as opposed to generation) in this paper there are

certain discrepancies between the parser and the framework it is based on. In

the minimalist framework, lexical information belonging to a chain is available

from the moment that the �rst position of the chain is created, because that is

the moment when the lexicon is consulted. Lexical elements enter the tree at

the bottom of their chain and the lexical information that they bring can be

used during the whole length of the tree-building process. For example, a verb

enters the chain in the head position of VP. Therefore the lexical information

belonging to the verb can be utilized to determine whether the verb needs a

complement or not. Later on in the process, the lexical information can guide

the decision whether an AgrOP should be build. An AgrOP is namely only

needed in a transitive sentence.

When parsing a sentence the lexicon is not by de�nition consulted at the

beginning of the chain. Figure 1 shows a tree that contains traces and visible

constituents. The position containing a visible constituent is the Spell Out

position of that chain. The parser consults the lexicon at the moment in

which the Spell Out position of a chain is reached. Consequently, when a

trace is created before Spell Out, the features belonging to that trace are

unknown. Because all positions in a chain are linked, the features of all traces

of a chain are known as soon as the Spell Out position is reached. For example,

189



A MINIMALIST HEAD-CORNER PARSER

in the example sentence in �gure 1 we assumed that the PF position of the

verb is where is is adjoined to AgrS. In that case there is a trace in V and

at the moment in which it should be determined whether the verb needs a

complement or not, the features of V are still unknown. Therefore the parser

will have to backtrack to try di�erent possibilities.

It can be concluded that the absolute bottom-up approach for the building

of trees is more useful for generation than for parsing. When generating, lexical

information can be used as soon as a position that is the beginning of a chain

is created. When parsing we will have to wait until the Spell Out position is

reached. In spite of this, we chose not to consider functional heads as heads in

order to accomplish an absolute bottom-up process. This bottom-up approach

is preferred because in this way a position to which a certain constituent is

moved, is created after the position from which the constituent is moved. If we

do not choose this approach, sometimes positions will be created which need a

moved element from a subtree that does not exist yet. This could be ine�cient

and it is not a direct implementation of the ideas of the minimalist framework.

7 Conclusions and Future Work

It appeared to be possible to implement the ideas that are described here in

a head-corner parser. A distinction is made between lexical and functional

heads. Functional heads are not possible head-corners, while lexical heads are.

The parser can judge the grammaticality of simple declarative transitive and

intransitive sentences possibly with subordinate clauses. We will extend this

parser in such a way that it will cover more advanced linguistic phenomena

like anaphora and wh-questions.

Furthermore we will build a regular head-corner parser to be able to deter-

mine if this `lexical'-head-corner parser is indeed more e�cient than a regular

head-corner parser with respect to the Minimalist Program.

8 Acknowledgements

I would like to thank Gosse Bouma, John Nerbonne, Gertjan van Noord and

Jan-Wouter Zwart for their helpful comments on earlier versions of this paper.

References

Bouma, G., and Van Noord, G. (1993). Head-driven parsing for lexicalist

grammars: Experimental results. In 6th Meeting of the European chapter

of the Association for Computational Linguistics, Utrecht.

Chomsky, N. (1970). Remarks on nominalization. In R. Jacobs et al, editors,

English Transformational Grammar.

190



METTINA VEENSTRA

Chomsky, N. (1992). A minimalist program for linguistic theory. MIT Occa-

sional Papers in Linguistics.

Jackendo�, R. S. (1977). X'-Syntax: A Study of Phrase Structure. MIT Press,

Cambridge.

Kay, M. (1989). Head driven parsing. In Proceedings of Workshop on Parsing

Technologies, Pittsburg.

Kayne, R. S. (1994). The Antisymmetry of Syntax. MIT Press, Cambridge.

Stuurman, F. J. (1985). X-bar and X-plain: A Study of X-bar Theories of the

Phrase Structure Component. Foris, Dordrecht.

Veenstra, M. J. A. (1994). Towards a formalization of generalized transforma-

tion. In A. de Boer, H. d. H., and de Swart, H., editors, Language and

Cognition 4, Groningen.

Zwart, C. J.-W. (1993). Dutch Syntax. A Minimalist Approach. Groningen

Dissertations in Linguistics 10, University of Groningen.

191


