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Abstract

In this paper we look at a proposal by Nerbonne (1993) to deal with

the notorious scope-ambiguity problem by means of assigning semantic

representations to sentences that are underspeci�ed with respect to the

scope of their quanti�cational expressions. First, we compare this pro-

posal with other approaches that are suggested to solve this problem.

Second, we describe an implementation of this proposal in Carpenter's

Attribute Language Engine (ale, (1994)). In this implementation we

look at some classic problematic examples, like scope-islands caused by

e.g. relative clauses, intensional verbs and control verbs. Finally, we

look at possibilities to explore this idea in a wider range of ambiguity

problems.

1 Introduction

Disambiguation is a classic problem and turns out to be one of the more

challenging puzzles in the �eld of natural language processing. Ambiguities

arise in many situations, and information from various sources must be

considered to decide what is meant in a particular situation. Assigning

di�erent scopings to various quanti�cational expressions in a sentence is an

instance of this problem. It gives rise to multiple readings for sentences that

are assigned only one syntactic structure, turns out to be a major source of

ambiguity itself, and illustrates most of the di�cult problems which arise in

disambiguation.

1.1 Scope ambiguity

Scope ambiguity crops up in many situations. We do not intend to give here

a complete overview of situations in which scope ambiguity arises (for a good

overview the reader is referred to (Carpenter, 1993)), we just illustrate the

problem here with some examples. Later in this paper when we describe the

implementation some more cases are discussed.

(1) a. A student read each book
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b. An expert in every �eld read most books

The most obvious case is the subject/object scope-ambiguity in (1a). This

sentence can either mean that there exists a student who has read every

book (available in that speci�c context) or that for every book a student

can be found that has read that particular book. These two readings can

be expressed in the �rst order predicate-logic formulae (2a) and (2b) re-

spectively. These formulae also illustrate that the ambiguity is caused by

assigning di�erent scopes to the quanti�ers associated with the determiners

each and a.

(2) a. 9x (student(x) ^ 8y (book(y)! read(x; y)))

b. 8y (book(y)! 9x (student(x) ^ read(x; y)))

Example (1b) contains three quanti�ers. A naive algorithm for generating all

the possible quanti�er-scopings would generate six (all permutations of the

three quanti�ers) readings (see (Hobbs and Shieber, 1987) for discussion).

This illustrates two aspects of the problem. First, the exponential growth

of the number of readings with the number of quanti�ers in the sentence.

Computation of all the possibilities can become rather expensive. The sec-

ond aspect that can be mentioned, is that not all the readings generated by

the naive algorithm are legitimate. We will come back later to that issue.

In most situations it is clear for the participants of a dialog which of the

possible readings is meant by the one who uttered the ambiguous sentence.

Although the issue of scope determination is still a di�cult and open re-

search question, it is clear that it is not purely determined by the syntactic

structure of a sentence (Vanlehn, 1978). The choice of the preferred reading

is inuenced by lots of factors (syntactic, lexical and pragmatic). It might

be possible that at a given moment in a conversation the information that

is needed to choose the right reading is already available, but also that this

information will be added at a later stage. In both cases all the possible

readings might be considered. The extra (context-)information constrains

the number of possibilities.

A theory for processing natural language needs a component that can

cope with this problem. When a sentence is processed, these kinds of systems

must �rst be able to recognise the various possible readings. Secondly, they

need some way to decide whether a reading is compatible with the context-

information or not. And �nally, in case there are more potential readings,

there must be a possibility of choosing a preferred reading (e.g. on linguistic

or pragmatic grounds).
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1.2 Approaches to quanti�er scoping in natural language

processing

Many proposals regarding the characterisation of scope ambiguities have

been made. An important aspect of a proposal is naturally the ability of

predicting correctly all the possible scopings (completeness) without gener-

ating incorrect readings (soundness). This goal is the same for every ap-

proach and it is possible (and useful) to classify the proposals in terms of

success. A second way of classifying the approaches is looking at the strategy

they follow. We distinguish three strategies:

� Multiple representations (one representation for each reading): e.g.

Montague's PTQ (Gamut, 1991), Cooper Storage (Cooper, 1983; Keller,

1988), the deductive approach of Pereira (1990) or Carpenter (1993)

� Single (unscoped) representation for all the possible readings:

{ Special representational level (in algorithmic relation to represen-

tation of each reading): e.g. (Hobbs and Shieber, 1987; Gerde-

mann and Hinrichs, 1990), the Core Language Engine (Alshawi,

1992)

{ Underspeci�ed representation on the same representational level

as the (fully scoped) representations of the di�erent readings

(in subsumption relation to representation of each reading): e.g.

(Nerbonne, 1993; Reyle, 1993)

The reason to make such a classi�cation is the computational attractiv-

ity of the algorithm. As we have pointed out, the number of readings grows

quickly with the number of quanti�ers involved in the sentence. It might

therefore be attractive to be able to postpone the computation of all the pos-

sible readings until the moment that they are really needed. In this paper

we have a closer look at the last strategy. This is done by explaining Ner-

bonne's proposal in the next section and by describing an implementation

of this approach in Section 3.

2 A feature based syntax-semantics interface

In the paper A Feature-Based Syntax/Semantics Interface (1993), Nerbonne

argues that in uni�cation-based approaches of natural language processing

syntactic processing not only harmonises well with the way in which syntax

is normally described, but that it further provides the possibility of coupling

syntactic and semantic processing as tightly as one wishes. Combining syn-

tax and semantics in feature-based formalisms has become popular practice

in the �eld of computational linguistics. Well known examples are described

in (Shieber, 1986) and the HPSG books by Pollard and Sag (1987; 1994).
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The rules for combining constituents must, apart from constraints on syn-

tax, also include constraints on how the semantics of those parts may be

combined. This way of integrating syntax and semantics provides the ma-

jor advantage that not only syntactic constraints on semantics are allowed,

but that also other information, e.g. context-information, can be employed

to compute the ultimate sentence-meaning. A simple example of how this

works is given in Figure 1:
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Figure 1: Combining syntax and semantics in a feature structure.

Here, feature structures are employed to describe the logical form of

the meaning of the sentence. Nerbonne argues that this way of describing

semantics provides the possibility of de�ning constraints on logical form

as well as the opportunity of underspecifying meanings \in ways di�cult

to reconcile with non-constraint-based accounts". He favours the view of

using an intermediate level of logical form for describing semantics above

the simpler view in which representations described by feature structures

may be interpreted as directly denoting elements within a semantic model.

The feature-based approach provides us with much exibility regarding

the choice of a semantic representation language. Feature structures, as

a formalised metalanguage for a semantic representation logic, allow us to

describe any logic we want. Here we have chosen to adopt the language

of generalised quanti�ers (LGQ). This well-known and well-understood lan-

guage has become popular in the �eld of computational linguistics.
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2.1 Scope Underspeci�cation

The expressive power of the syntax/semantics-interface proposed by Ner-

bonne, is illustrated by a characterisation of the classical scope ambiguity

problem. He claims that semantics conceived along these lines provides the

possibility of characterising scope-ambiguities completely within the formal-

ism. So, it is not necessary to make an appeal to auxiliary notions like Quan-

ti�er Store (Cooper, 1983; Keller, 1988) or Quasi Logical Form (Alshawi,

1992). A second aspect that is worth noting here, is that this framework pro-

vides a good basis for postponing the computation of all scoping-possibilities.

Considering the fact that a syntax/semantics-interface provides the possibil-

ity of using information from other sources, which may constrain the num-

ber of readings of a sentence, the scoping-problem may be resolved without

putting such a heavy computational burden on the formalism.

Even when you want to characterise the di�erent quanti�er scopings by

means of underspeci�cation, you still need the information that describes

the relation between the quanti�ers involved and their scope. The challenge

now is to express it in a more general way, without losing correct or adding

incorrect readings. In the remainder of this section we will give the idea of

how we can represent scope-ambiguities in this framework. In the section

on the implementation we will explain in more detail how to put constraints

on these feature structures to ensure that all and only the right solutions

are described by this representation. The �rst question we need to answer

is what is meant with scope. Nerbonne's observation with respect to the

representation of the quanti�er scopings in cle's Quasi Logical Form is that

they do not try to describe that a particular quanti�ed w� has a particular

scope, but that either a particular quanti�ed w� has a particular scope

or that its scope has a particular scope, or that its scope's scope has a

particular scope, etc. Let us call this piece of information the nuclear scope.

We know that this scope occurs somewhere in the formula, but we do not

want to say something about where it is found at this moment. Now we

need to express this nuclear scope, as general as possible. This is done by

adding the feature scope*. The relation between the nuclear scope and

the ultimate sentence-scope (that is given in words above), can easily be

expressed in the feature description language (see (3)).

(3)
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The scope is only half the information we need to represent the possible

scopings. The other required information is, of course, the quanti�ers that

are involved. We have just de�ned scope* as the nuclear scope of a com-

plex formula. This feature can be seen as denoting a path. The quanti�ers
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involved can be encountered somewhere on the path that scope* denotes.

To keep it as general as needed here, we simply have to represent these

quanti�ers without saying anything about the order. Therefore once again

an extra feature is introduced: quant*. quant* is a feature that con-

tains the set of quanti�ers that are encountered along the path denoted by

scope*.The relation between the features quant and quant* is similar to

the one we de�ned for scope* and is given in (4).
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Nerbonne claims that with these two extra features a characterisation of

scope-ambiguity (of simple sentences like (1a))

1

can be given. That the

desired subsumption relation holds can easily be illustrated by (5{7).
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and:

1

For the (slightly) more di�cult case of (1b) we must account for the fact that the

restriction of a generalised quanti�er might be a quanti�ed w�. This means that we have

to introduce the feature rest* and de�ne the relation between rest and rest*. This

relation is de�ned in Section 3.5. It also complicates the relation between quant, scope

and quant* and we will have to rede�ne this relation. For details the reader is refered to

(Nerbonne, 1993) or (Koeling, 1994).
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He shows (1993, pp. 124{125), that all and only the possible scopings are

captured by this representation with underspeci�ed scope.

3 The implementation

Before we can describe the implementation of the grammar based on the

ideas we presented in Section 2, we have to say something about the gram-

mar development environment we used. We demand a certain expressive

power to be able to express what we need. The grammar is described by

presenting the four main components of the grammar in some detail. These

are the de�nition of the type-hierarchy, the phrase structure rules, the lexi-

cal entries and the de�nite clauses. We explain the most important part of

these components (for a full explanation the reader is refered to (Koeling,

1994)) and we demonstrate how particular scope-phenomena are handled.

3.1 Ale

We need a formalism in which we can express constraints on the terms we

have de�ned in feature structures. This yields problems in most feature-

based formalisms. Recursion for example, is often only allowed in the char-

acterization of the grammar-rules and not, as we need, in the description

of the feature structures itself. This can be illustrated by the impossibility

of expressing the constraints that we need (like the one in Figure 3) in a

system like pattr-ii (Shieber, 1986). HPSG, however, has adopted a richer

view of employing feature structures. It allows us to express the required

constraints, as well as to put restrictions on the appropriateness of attributes

and values by means of a type-hierarchy. This richer view provides further

the possibility of de�ning relations between terms and making reference to

sets.

The Attribute Language Engine (ale) is a grammar development envi-

ronment in which phrase structure parsing and de�nite clause programming

are integrated. It supports the richer view on feature structures that we

just described. This means in particular that grammars written in ale are

strongly typed (i.e. every feature structure is obligatory associated with a
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type). It further means that it is possible to de�ne relations between terms

by de�nite clauses. De�nite clauses can be associated with phrase structure

rules, which gives us great exibility in manipulating feature structures. The

way feature structures are employed for de�ning and parsing phrase struc-

ture rules is (apart from typing) fairly similar to for example patr-ii. Most

of the material we used here can be found in the ale users guide (1994) and

more theoretical details in (Carpenter, 1992).

3.2 The type-system

We have mentioned before that HPSG provides the right environment to

give a characterization of Nerbonne's syntax/semantics-interface. Although

the semantics for this approach are completely di�erent from those devel-

oped for HPSG, we gratefully made use of the grammar of HPSG that Bob

Carpenter has coded in ale. We have focussed on the semantic part of

the grammar and therefore we kept the syntactic part as simple as possible

while giving a correct account of the phenomena we wanted to describe by

means of a small fragment of English. This resulted in some modi�cations

in the syntactic part of the HPSG-grammar. In Figure 2 (a part of) the type

hierarchy is given for the semantic part of the grammar. It is a straightfor-

ward implementation of a part of the Language of Generalized Quanti�ers.

For every type the features are speci�ed so that for any type we see which

features are appropriate (notation: feature : type). It should be clear to the

reader that this hierarchy can easily be extended in many ways.

There are a few things to say about this de�nition. First, we want to

note the reliance on type inheritance in the de�nition of relation and

wff. Second, the existence of type ind expr was motivated by the fact

that we needed the feature index at the level of wff (we will explain why

in Section 3.3). We had to introduce an index anyway for the type term.

One may not introduce the same feature twice, so we needed a most general

uni�er of term and wff. It was of course possible to introduce this feature

at the level of expr, but that would result in an obsolete feature index on

gen quant, relation, etc. Finally, freevars and quant* are de�ned

as set bearing features. ale, however, does not provide the possibility of

using sets. Although we have de�ned the type set, sets are simulated by lists

and the de�nition is thus just a copy of the list-de�nition. A set consists

therefore (as in Prolog) of a head element (elt) and a rest-set of elements

(elts).

3.3 Rules

First we describe the phrase structure rules that are necessary to give an

account of the theory described in Section 2. Later we will also show how

this theory is exploited to characterise other quanti�cation phenomena. We
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EXPR

IND EXPR

index : name

TERM

VAR

index : var name

CONST

index : const name

WFF

free vars : set var

A WFF

relation : relation

Q WFF

quant : gen quant

scope : w�

quant* : set quant

scope* : w�

GEN QUANT

qdet : qdet

qvar : var name

q freevars : set var

rest : w�

rest* : w�

RELATION

UN RELATION

�rst : term

STUDENT

...

BIN RELATION

second : term

READ

...

QDET

FORALL

EXISTS

Figure 2: The type-hierarchy for the semantic part of the grammar. Under

the types are given the features that are introduced at that type.
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have kept the number of grammar rules as small as possible. It is not our

intention to cover the largest possible fragment of English; we just want to

demonstrate how quanti�cation phenomena are represented in this frame-

work.

We will focus on those parts of the grammar rules that are of primary

interest for our problem. That is why we do not say anything about syntactic

phenomena other than subcategorization. Our main interest here is the

interaction between the features quant*, scope* and rest*: how these

features receive values and how their contents ow in the derivation tree.

Most of the work presented here is in the spirit of HPSG, but we deviate

from this framework in the de�nition of the rules in the implementation.

Even though the lexical entries bear full subcategorization information, we

have spelled out the phrase structure rules completely in our grammar. As

a consequence of this, the grammar contains redundant information. Of

course, we did not design for redundancy, but it evolved while developing

the grammar. It is still possible to adapt the grammar in such a way that we

can rely on HPSG's principles without spelling out all the phrase structure

rules. Most rules we present in this section, for example, are instances of

the single HPSG-rule:

(8) x ! h c

�

And also the principles we present later in this section for passing up the se-

mantic contents of constituents in the analysis tree do not contradict HPSG.

Even though they are listed on every single rule and are not represented by

a principle that must be obeyed by the grammar.

The Quanti�er Principle

We need some principle for distributing the contents of the features quant*

and scope*. Recalling that we have de�ned the feature quant* as bearing

the quanti�ers that occur on the path denoted by scope* (containing the

nuclear scope of the formula), we let the head daughter provide the scope-

information and we collect all the quanti�ers involved in the formula. This

is formulated in the principle in Figure 3. All the phrase structure rules that

we have de�ned in our grammar are instances of this general rule. Consider

the rule for the last step to form a sentence in Figure 4. Although not all the

information is given in this �gure, most aspects of the grammar we want to

mention here are shown. First, it is clear that this rule follows the quanti�er

principle which we have just de�ned. The �rst goal takes care of collecting

the quanti�ers by joining the sets of quanti�ers of the daughter nodes. This

rule shows further that during the derivation the feature structures remain

underspeci�ed with respect to scope. We can specify the scope at any time

we want by calling the goal solve underspec/5. For this grammar we have

chosen to do that at sentence level. In Section 3.5 we give details of how
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this goal is evaluated. The feature freevars remains also underspeci�ed

during parsing. This feature, which is used as a constraint on the well-

formedness of formulae, is instantiated during the evaluation of the goal

solve underspec/5. It is associated with the empty set at sentence level

to exclude open formulae. The rule for constructing the semantic contents

of a NP is given in Figure 5. Note that this rule follows the earlier formu-

lated principle for distributing the contents of the quant* and the scope*

feature. The contents of the determiner consists of a generalized quanti�er

whose variable is restricted by the contents of the NP. This is done by as-

signing the value of scope* of the Nbar to the rest* of the determiner. It

might be possible that the Nbar is complex. In that case the quant* of the

Nbar will not be empty and those quanti�ers are added to the quant* of

the NP. A consequence of this is that the quanti�ers inside the Nbar are not

restricted to the restriction of this quanti�er, but that they are also allowed

to take wide scope over this noun phrase.
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Figure 5: The construction of the semantic contents of a noun phrase

If the Nbar is complex, the feature index will bear the value of the

argument position of scope* that must be bound by the quanti�er of the

determiner the Nbar combines with in this rule. The index of the resulting

NP will get the same value. The quant* of the NP contains two quanti�ers

in this case. When the NP combines with a VP, the free argument position of

the VP must be bound by the variable associated with the last encountered

determiner. This information would normally be hidden somewhere in the

(set-based) feature quant*, but is now accessible through index.
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The subject of sentence (9a) is a complex NP containing two quanti�ers.

It must be possible for the quanti�er inside a prepositional phrase to take

wide scope over the whole NP. This is required by the general principle

that quanti�ers may scope freely (in head-complement structures) and it

is implemented by the Det/Nbar rule shown in Figure 5. In this rule, the

quanti�ers that occur within the Nbar contribute to the NP in the same

manner as the quanti�er that is introduced by the determiner. One of the

six readings of (9b) is successfully ruled out by the free-variable constraint.

(9) a. An expert in every �eld attended the meeting

b. An expert in every �eld read most books

Relative Clauses

Unlike the quanti�ers that occur within a prepositional phrase, quanti�ers

inside relative clauses are (generally

2

) not allowed to take wide scope over

the NP.

(10) An ice-cream that everyone likes is sold out

So we need some way to prevent the quanti�er inside the relative clause

to take wide scope over the NP. As we have seen in the characterization

of the NP-rule, quanti�ers that occur within the quant* of the Nbar are

allowed to take wide scope (which is normally desired in case of complex

noun phrases). Figure 6 shows how the semantic contents of the relative

clause contribute to the contents of the Nbar. The contents of the quant*

of the relative clause is not joined with the quant* of the N', but forms

together with the scope* of the relative clause a local underspeci�ed wff.

This might at �rst blush seem to contradict the general quanti�er princi-

ple that we have formulated before. But we formulated that principle for sen-

tences of the head/complement-type. In HPSG, however, relative clauses are

not considered to be complement-daughters but adjunct-daughters, which

means that this rule does not have to follow this principle. Stating it this

way, the universal quanti�er of the relative clause contributes to the restric-

tion of the quanti�ed noun phrase, without being able to take wide scope

over the noun phrase.

3.4 Lexical entries

In this section we will not say much about what the lexical entries in general

look like. We will jump directly to the treatment of some special cases. For

a description of the other lexical entries the reader is refered to (Koeling,

1994).

2

Pereira (1990) presents some examples that contradict this.
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2

6

6

4

content

q w�

2

6

4

scope*

conn w�

2

4

1

^

q w�

"

quant*

2

scope*

3

#

3

5

3

7

5

3

7

7

5

Nbar

Nbar

"

content

q w�

�

scope*

1

a w�

h

icecream(x)

i

�

#

Relative clause

2

6

6

6

4

content

q w�

2

6

6

4

quant*

2

�

*

h

8 y person(y)

i

*

�

scope*

3

a w�

h

like(y,x)

i

3

7

7

5

3

7

7

7

5

Figure 6: Restricting the scope of a quanti�er inside a relative clause

Intensional verbs

Intensional verbs introduce a so-called de dicto/de re ambiguity. Sentences

like (11)a can be read in two ways. The de re reading implies the existence

of a unicorn, while the de dicto reading does not. We treat intensional

verbs in the Montagovian style (Gamut 1991 p. 185). That is, the de

dicto reading is obtained by allowing the object position of seek to take a

generalized quanti�er as argument. The two readings are then translated in

the following formulae:

(11) a. John seeks a unicorn.

b. 9 (x) (unicorn(x) ^ seeks(John; x) )

c. seeks(John;9 (x) unicorn(x))

Since we have de�ned arguments (of type term) to be constants or variables,

we need to modify the type-hierarchy slightly to be able to obtain the second

reading. That is, we need to allow some relations to take either terms or

gen quants as arguments. The verb seeks subcategorizes for two NPs:

(12) seek :

2

6

4

subcat

*

np

"

index j

. . .

#

,

np

2

4

index

1

x

quant*

n

*

2

*

o

3

5

+

3

7

5
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The de dicto/de re ambiguity is characterized by allowing the second argu-

ment position to take values of both types.

(13) a. de re:

2

6

6

6

6

6

4

content

q w�

2

6

6

6

6

4

quant*

n

* 9x unicorn(x) *

o

scope*

a w�

2

4

relation

seek

"

first John

second

1

x

#

3

5

3

7

7

7

7

5

3

7

7

7

7

7
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b. de dicto:

2

6

6

6

6

6

6

6

4

content

q w�

2

6

6

6

6

6

6

4

quant*

n

* *

o

scope*

a w�

2

6

4

relation

seek

2

4

first John

second

2

gen quant

h

9x unicorn(x)

i

3

5

3

7

5

3

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5

Control verbs

(14) a. John believed everyone to be quiet.

8x(person(x)! believe(John; quiet(x)))

believe(John;8x(person(x) ! quiet(x)))

b. John persuaded everyone to be quiet.

8x(person(x)! persuade(John; x; quiet(x)))

Raising-control verbs (like believe in (14a)) allow quanti�ed formulae as

arguments.

TERM

S TERM

VAR

index : var name

CONST

index : const name

C TERM

form : w�

Figure 7: The revised de�nition of the type term.

This may be contrasted with equi-control verbs (like persuade in (14b))

whose second argument position is restricted to only (simple) terms. This

means that a quanti�er that binds a variable at the second argument posi-

tion must always have wide scope over the expression. To obtain the second
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reading of the raising-case, we need to extend the type-hierachy to allow

terms also to be well-formed formulae instead of just simple terms (Fig-

ure 7). The di�erent behavior of these control verbs can be characterized

lexically. We can account for the ambiguity that crops up in the raising-case

by allowing the object-position to take arguments of type a w� as well as

arguments of type q w�. The lexical entry for a raising-verb will then be:

(15) believe:

2

6

6

6

6

6

6

6

6

4

. . . j subcat

*

. . . ,

�n S

�

content

w�

h

scope*

1

i

�

+

. . . jcontent

a w�

2

6

4

relation

believe

2

4

first John

second

w�

h

scope*

1

i

3

5

3

7

5

3

7

7

7

7

7

7

7

7

5

This means however that we need to extend the type-hierarchy to allow

atomic w�'s to bear a value for scope*. The information that scope*

bears is in case of atomic w�'s equal to the information the atomic w�

bears itself. This is characterized by the constraint on the value of scope*

in atomic w�'s, as in (16) below:

(16)

1

a w�

"

relation

scope*

1

#

The ambiguity is still characterized by means of underspeci�cation. If the

second argument is taken to be of type q w� then the quant* feature

remains unspeci�ed. The value of quant* is determined by the constraint

we have given in Section 2 (Figure 4). The fact that persuade is unambiguous

can be enforced by restricting the type of the second argument to simple

terms.

3.5 De�nite Clauses

In our grammar, de�nite clauses are used in two ways. First, we need a

tool for dealing with set-expressions. quant* is a set-based feature. In the

section about the grammar-rules we have pointed out that the content of the

quant*-feature of the mother-node is composed of those of the daughter-

nodes. Union of sets is however not a standard operation in feature-based

grammar formalisms. Recalling that sets are simulated by lists, the de�nite

clause for this operation consists of a straightforward Prolog-goal for the

concatenation of lists.

With the grammar as we have developed it now, we can give a char-

acterization of scope-ambiguities. The various readings however are not

computed. Normally this is the desired situation. Computation of all the
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solve underspec(Quant star,Scope star,Quant,Scope,Freevars) if

/*1*/ remove(Quant,Quant star,Rest quant star),

/*2*/ gq constraint(

(Quant,@gen quant( Qdet,Qvar,Q freevars, Rest, Rest*))

),

/*3*/ solve scope(Rest quant star,Scope star,Quant,Scope),

/*4*/ solve rest underspec(Quant),

/*5*/ solve scope underspec(Scope),

/*6*/ scope fv(Scope,S freevars),

/*7*/ collect free vars(S freevars,Q freevars,Qvar,Freevars).

Figure 8: `Solving' underspeci�cation in ale

readings might be computationally expensive and the unscoped representa-

tion su�ces for linguistic purposes. As we have pointed out in Section 2,

the subsumption relation holds (which is in many cases

3

enough for decid-

ing whether a reading is compatible with the currently available informa-

tion about the situation) and is it possible to add information from various

sources. But sooner or later, we might want the fully speci�ed character-

izations of the possible scopings. So we have to create the possibility of

computing all the readings. We have de�ned de�nite constraints for this

purpose.

The clause for `solving' the underspeci�cation is shown in Figure 8

4

.

Here, Quant star and Scope star are the variables that are associated with

the values of the features quant* and scope* respectively. These features

bear the information of the quanti�ers and the scope involved in the formula.

Quant and Scope will get a value when this clause is evaluated. The object of

the feature freevars is to constrain the number of readings by excluding ill-

formed formulae (i.e. open formulae and formulae in which vacuous binding

occur). At sentence level no more free variables are allowed (variables that

are free at sentence level fall outside the scope of a quanti�er), we have

already seen that these formulae are excluded by associating freevars with

the empty set after evaluation of this clause.

In Clause 1, one quanti�er is taken out of the set of quanti�ers (quant*)

that occur on the path denoted by scope*, and is assigned to the feature

Quant. The backtracking mechanism takes care of trying all the available

quanti�ers at this position. Clause 2 is the implementation of the constraint

3

But not for example in case of negation for which additional reasoning is needed.

4

We make intensive use of templates (called macro's in ale) and variables in the

characterization of the de�nite clauses. For example the clause gq constraint/1 takes

a generalized quanti�er as an argument. Therefore the template @gen quant/5 is used.

This quanti�er is just taken out of the set of quanti�ers denoted by quant* (by clause 1

in Figure 8) and is associated with the variable Quant (which received its value on line 1).
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that de�nes the relation between the features rest and rest*:

(17)

gen quant

2

4

rest

1

h

scope*

2

i

rest*

3

3

5

Condition:

3

=

1

_

3

=

2

Clause 3 takes care of the distribution of the contents of the quant* and

the scope*-feature. Therefore it has just to obey the constraints on this

distribution that we described in Section 2.

(18) solve scope(Quant star 4,Scope star,Quant 1,Scope) if

q wff quant constraint(

Quant star 4,Scope star,Quant 1,Scope),

q wff scope constraint(Scope star,Scope).

The clauses 4 and 5 check whether the restriction and the scope of the

quanti�er involved at this level are complex or not. In case one of them

is complex, the formula will be underspeci�ed with respect to scope. So

solve underspec must be called recursively. This recursion will stop when

no more quanti�ers are available. Here we gratefully make use of templates.

Particularly clause 5 makes clear that, in order to express the notion of nu-

clear scope (a quanti�er has a particular scope, or its scope has a particular

scope, or its scope scope etc.) we must be able to construct feature structure

like in (19).

(19)
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The variable Scope in clause 5 is associated with a feature structure of type

w�. When it bears a quanti�ed w� (underspeci�ed with respect to scope),

solve underspecific/5 is called recursively. When the clause returns from

its recursive loop, the uni�cation of the value of the scope feature with the

original feature structure (which was not speci�ed for scope), is performed

by just associating the variable for Scope in the template with the returned

value for the scope feature.

To evaluate clause 4, the variable in the restriction that is bound by the

variable of the generalized quanti�er (Qvar) must be removed from the set

of free variables. In order to be able to remove a variable from a list of

variables we need the possibility to check the equality of variables ( == in

Prolog). The set of free variables is computed in the last clause (7). This

set is made up by the union of the set of free variables that occur in the

generalized quanti�er and those from the scope, with the variable bound by

the quanti�er removed.
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4 Conclusions

In this paper, we have described an implementation of an approach to the

quanti�er scope ambiguity problem in which it is possible to represent scope

ambiguities by means of underspeci�cation on the same representational

level as the fully scoped representations of the di�erent readings. We have

shown that the framework that Nerbonne provides in (Nerbonne, 1993) can

be implemented in a straightforward manner in a grammar development en-

vironment like ale. We have added analysis of some more cases in which

scope ambiguities occur. It might be interesting to investigate how other

phenomena can be described in this framework, like interaction with other

operators (e.g. negation or modals). Even more interesting seems to be to

investigate how this work can be used in disambiguation. The fact that the

underspeci�ed representations are part of the formalism, provides good op-

portunities to postpone the computation of all readings and perorm further

action on basis of the underspeci�ed representations (e.g. similar to those

described in (Reyle, 1995)).
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