
Filtering Left Dislocation Chains

in Parsing Categorial Grammar

Crit Cremers

�

Maarten Hijzelendoorn

�

Abstract

This paper reports on a way to reduce the complexity of the process of left

dislocation (re)construction for categorial grammar in the case of lexically

assigned gaps, as an additional restriction on the complexity arising from

lexical polymorphism in general. Specifying extraction sites lexically has the

advantage that the combinatory explosion can be contained in the preparsing

track by a specialized constraint on the expansion of sequences of categories.

This constraint is called the Left Dislocation Chain Filter and is implemented

by a Finite State Transducer. It is shown that the Filter can reduce the

number of full string assignments under consideration prior to parsing with

an average of one half to one order of magnitude, depending on the nature of

the sentence.

1 Parsing Left Dislocation

Left dislocation is a very common, almost universal phenomenon in natural lan-

guages. It establishes the relation between an element at the left periphery of a

clause and a particular, lexically open position in its right context. The leftward

nature of dislocation is explained in Kayne (1994). The most prominent of these

relations are invoked by so called wh-elements at the leftmost edge of questions and

relative clauses. If a language has left dislocation, however, many other constituents

can occur in a left dislocated position. Here are some examples from Dutch; the

distinguished position in the right context is marked by t .

(1) Mimi vroeg zich af [wie] Jan dacht dat t zou gaan winnen

Mimi wondered (herself) who Jan thought that would go win

`Mimi wondered who Jan thought would win'

(2) [De �lm [die] ik heb t gezien] kan jij niet t gezien hebben

The movie that I have seen can you not seen have

`You cannot have seen the movie I have seen'

�

Department of General Linguistics, Leiden University

42 Filtering Left Dislocation Chains in Parsing Categorial Grammar

In (2) we see two dislocations, one (a wh-induced type) within the boundaries of the

other (a fronting of a `normal' constituent). We will call the structure relating the

left dislocated constituent and the empty position a left dislocation chain. We will

refer to the two positions involved as the landing and the launch site, respectively,

pursuing the dislocation metaphor. The lexical material at the landing site is also

often referred to as the `�ller', and the other position as the `gap'.

The properties and parameters of left dislocation chains are surely among the

major topics of syntactic research in our days. It has become abundantly clear

that there are major restrictions on these chains - represented by weak and strong

islands for extraction - although there are many positions that may be part of one.

Natural language grammar is supposed to establish left dislocation chains, as the

interpretation of left dislocated constituents is determined by their chain. Parsing

natural language grammars therefore involves the (re)construction of left disloca-

tion. The nature of this construction will correlate to the grammar's speci�cation

of dislocation, but the problem of parsing dislocation is quite general. At least the

launch site of a chain is not explicitly marked - leaving aside prosodic information

- and often, the lexical material in the landing site is not recognizable as being dis-

located during lexical look-up. Consequently, a parser must actively compute the

left dislocation chain in accordance with the grammatical nature of the relation;

Van de Koot (1990) e.g. has an insightful treatment of the computational problem

of left dislocation for Marcus-parsing. The need for the computation is evident: if

a parser deduces that a certain noun phrase may be left dislocated, it has to check

the possible noun phrase positions in the right context for being the launch site.

This kind of parsing problem does only occur if the left-peripheral constituent of

a clause is selected by an entity to its right. Adverbial adjuncts, for example, do

not necessarily belong to this class of chain inducing entities: they are modifying

other constituents, rather than being selected by them. One might, however, �nd

good reasons, along with Bouma and Van Noord (1994), to consider adjuncts as

arguments after all. In that case, their occurrence at the left periphery of a clause

must be seen as dislocation and gives rise to chains that have to be computed as

well. The present study is not biased with respect to this alternative.

In categorial grammar, one can think of at least two ways of establishing left

dislocation chains. For categorial grammars exhibiting a full hypothetical logic, the

`gap' is constructed by withdrawing a hypothetical occurrence of a category and

thus, by introducing a complex category; this approach is pursued e.g. in Hepple

(1990) and Morrill (1994; ch.8).

Alternatively, gaps can be introduced as elements of lexical categories which

are related to the �ller by some form of `gap threading' (cf. Pereira and Shieber

1987). This is the approach taken in delilah, a grammar/parser system for Dutch

developed by the authors. In the latter system, gaps are introduced as such in lexical

assignments of categories to words, alternating with assignments providing lexical

arguments (see below). In any case, the parser of a categorial grammar has to check

several �ller-gap combinations in a trial-and-error mode in order to determine a

left dislocation chain. This paper reports on a way to reduce the complexity of the

process of left dislocation (re)construction for categorial grammar in the case of

Cremers and Hijzelendoorn 43

lexically assigned gaps, as an additional restriction on the complexity arising from

lexical polymorphism in general.

2 Lexical Ambiguity and Parsing Categorial Gram-

mar

Lexical ambiguity is known to be a major threat to e�cient parsing of natural

language. Barton, Berwick and Ristad (1987: ch.3) demonstrate that the combin-

ation of simple agreement and lexical ambiguity makes natural language parsing

NP-complete, i.e. a standard problem in the class of computationally intractable

problems. Evidently, agreement can be taken to go proxy for all kinds of mutual

dependencies between phrases in a sentence. Dependencies like agreement are at

the heart of natural language, and adequate grammars must account for it. As a

consequence, an adequate grammar of natural language can hardly be parsed e�-

ciently if it has to allow for lexical ambiguity. In this vein, Johnson (1991) proves

that even the Tomita algorithm for generalized LR parsing shows exponential com-

plexity when applied to lexically ambiguous grammars. In this proof, the exponent

is determined by the size of the grammar. These results con�rm the observation

in Gazdar and Mellish (1989: p.169) that \The cubic worst-case time e�ciency

problem for natural language parsers (...) is completely dwarfed in practice by a

much more serious problem, that of pervasive natural language ambiguity".

Unfortunately, this statement is fully applicable to categorial grammar. Cat-

egories can be seen as combinatorial agendas. Every category imposes a set of

requirements on its context. A string of categories represents a well-formed sen-

tence only if these requirements turn out to converge. A certain degree of lexical

ambiguity { or rather: polymorphism per lexical atom { seems inevitable. In cat-

egorial grammar, for example, di�erences in subcategorization (a verb may select

an in�nitival as well as a tensed complement), word order (a �nite verb may have

its complements to the left or to the right) or double functionality (a word might

be a preposition or a particle) must lead, in some stage of the parsing process, to

branching possibilities and an increase of search space. As an example of a lexical

item which introduces many combinatorial agendas, consider the case of Dutch wil-

len, `to want'. The lexicon of Dutch has to specify for willen at least the following

di�erent categories, which are casted here in a neutral format:

(3)

(i) vp/vp (in�nitival form with vp-complement)

(ii) vp/s sub (in�nitival form with tensed sentential

complement)

(iii) s/vp/np (�nite form with vp-complement for verb-second

and verb-�rst main sentences)

(iv) s/s sub/np (as (iii), but with sentential complement)

(v) s vnnnp/vp (as (iii), but for verb-�nal sentences)

(vi) s vnnnp/s sub (as (v), but with tensed complement)

This list is not necessarily complete. For example, if one needs to distinguish de-

44 Filtering Left Dislocation Chains in Parsing Categorial Grammar

clarativity from other sentential modes like questioning, more sentential categories

may be added. The variety that arises, cannot be handled by type changing rules.

As a matter of fact, none of the types listed in (3) can be deduced from another

type in the list by canonical type changing rules, though every �nite type is a

regular and predictable expansion of one of the basic in�nitival types.

In general, we can describe the problem of lexical ambiguity for categorial gram-

mar as follows. Let G

NL

be a categorial grammar for a language NL, and L a lexicon

with initial assignment A(w

i

) of nonterminals to the words w

i

of NL. For example,

A(willen) contains at least the categories given in (3). Let S = w

1

: : : w

n

be a sen-

tence over L. Deciding whether S is in NL amounts to searching some sequence C

= c

1

: : : c

n

, with c

i

2 A(w

i

) such that C is derivable under G

NL

. The solution to

the problem may require checking the derivability of many such Cs. Basically, for

a certain S the number of sequences the derivability of which must be checked is

�

n

1

jA(w

i

)j, the Cartesian product over w

i

, which is exponentially dependent on n.

�

n

1

jA(w

i

)j de�nes the search space for parsing S. The search space should not be

de�ned by spurious ambiguity, however. It makes sense to require for each c in the

lexical assignment of some word w that there is a sentence in NL containing w,

which can only be derived under G

NL

if c is in A(w). In this vein, we require every

initial assignment of a category to a word to be necessary with respect to G

NL

.

Note that the search space is not in
uenced by the algorithm of the theorem prover

itself. One can, however, represent lexical ambiguity as a complex category by

means of additional type constructors, as is suggested e.g. by Morrill (1994: ch.6).

To an ambiguous term a conjunction of categories and/or a disjunction of ar-

guments is assigned. At each deduction step in which this complex category is

involved, the theorem prover has to choose which of the coordinated types is ac-

tivated. No hope is o�ered, though, as to the e�ciency of this procedure.

This approach to ambiguity shows, however, that there is, to a certain degree,

a trade-o� between lexical ambiguity and properties of the grammar. In particular,

a grammar may assign nonterminals to certain lexically assigned nonterminals,

by having monadic rules or theorems of the type c ! c

0

. One can think of the

famous lifting rule x ! yn(y=x) and the Geach rule x=y ! (x=z)=(y=z). Their

presence, however, causes a serious problem for theorem proving itself, as they

induce spurious ambiguity (see e.g. Wittenburg 1986, K�onig 1990, and Hepple

1990 for analyses and performance-oriented remedies of this phenomenon). In these

cases, the search space for parsing S is partially constructed by the grammar itself.

Again, the question whether G

NL

derives S, induces an explosion of queries as to

whether G

NL

derives a certain C.

Because of the logic of categorial grammar, theorem proving is a genuine model

for parsing these grammars (Hepple 1990). Propositions, which have to be checked

for being a theorem, are sequences of categories. If a sentence gives rise to more

than one sequence, all these sequences - i.e. all these combinations of combinatorial

agendas { have to be checked. Of course, the theorem prover itself can be trimmed

in several fashions, pertaining on the complexity of the proof-�nding process. If,

however, the categorial grammar involved is of a (mildly) context-sensitive nature

(as are the Combinatory Categorial Grammar of Steedman (1990) - see Joshi et. al.

(1991) { and the grammar in the present delilah system { see below) the theorem

Cremers and Hijzelendoorn 45

prover is confronted with the fact that context-sensitive recognition is PSPACE-

complete (Hopcroft and Ullman 1979; ch.13). But the major burden on the parsing

process is imposed by the multiplicity of potential theorems, independently of the

properties of the deductive system. Below we will discuss how the combinatorial

explosion of hypotheses can be controlled in delilah.

Here we will concentrate on the processing of a particular source of lexical poly-

morphism: the possibility that in a locally-de�ned argument structure one argument

may be missing as a result of left dislocation, also known as movement to [Spec,

CP]. The categorial lexicon of Dutch may specify as a category of the verb zien `to

see' not only vpnnp to indicate that it is meant to head a con�guration with an np

to its left, but also vpnnp

^

gap to indicate that that object may not be present.

If we consider the category vpnnp as introducing a local tree of type (4)(i), to

which a local tree with a root np can be adjoined at the node marked as such,

the category vpnnp

^

gap must be seen as the introduction of the local tree (4)(ii)

in which this node is barred by emptiness. Structurally, the trees are the same,

though they will be treated di�erently by the rules of grammar (see below).

(4)

(i) vp

np

�

�

� @

@

@

v

zien

(ii) vp

np

�

�

�

� @

@

@

v

zien

Gapped categories are invariantly speci�ed as left arguments, since dislocation is

leftward. Therefore, the gapped counterparts to the categories pp=np and vp=vp

are ppnnp

^

gap and vpnvp

^

gap, respectively.

The additional speci�cation of zien as a verb that may lack an adjacent object

is predictable { the objects of transitive verbs are generally available for extrac-

tion { but not trivial. Not all np arguments occurring in some lexically assigned

category are candidates for extraction; the np in a possessive determiner (np' s n),

for example, is not. Moreover, it is useful to store the information that, within a

certain complex category, at most one argument is available for extraction. The

verb geven `to give' has one category specifying a bitransitive in�nitive, but also

two additional categories specifying the separate extractability of each argument

of that in�nitive { only one argument can be dislocated, of course. Consequently,

in in�nitival position geven has three lexical options, instead of one; the number

of �nite lexical categories associated with geven multiplies accordingly.

The speci�cation of extractability, then, may increase the number of categories

assigned to a particular lexical item and contribute to a search space explosion for

parsing. As noted above, one could choose not to specify launching sites lexically,

but to compute the possibilities while parsing. For Lambek's categorial grammar,

there is the option of hypothetical reasoning, as in Morrill (1994), and in other

46 Filtering Left Dislocation Chains in Parsing Categorial Grammar

frameworks one can implement other forms of gap threading, as in Stabler (1992).

But deriving all possible extraction sites is not necessarily more e�cient than spe-

cifying them. In fact, we will show that specifying extraction sites lexically has the

advantage that the combinatory explosion can be contained in the pre-parsing track

by a specialized constraint on the expansion of sequences of categories. Moreover,

the lexical approach complies with the argument by Johnson and Kay (1994) that

gap hypotheses in a derivation must be licensed by lexical items in order to assure

termination of the parsing process.

To a large extent, the art of parsing is �nding secure means to restrict the num-

ber of possible assignments. Given the exponential function �

n

1

jA(w

i

)j, e�ciency

requires serious pruning of the search space. Optimally, the means to achieve this

are anchored in the grammar that is to be applied. Resource-sensitive categorial

grammar o�ers some options for pre-checking assignments. The parsing system de-

lilah incorporates an instance of a bracket-free, mildly context-sensitive categorial

grammar. It deals with various forms of discontinuity, like free coordination, verb

raising and long distance dependencies.

The grammar basically consists of one cancelling operation, generalized com-

position (cf. Steedman 1990, Joshi. et al. 1991), operating on two triples of the

form Head n LeftArgumentList / RightArgumentList.

Heads are basic types; they may be cancelled while the argument lists of their

categories merge with the argument lists of the category that provokes the can-

celling. The formalism and its applications are discussed in Cremers (1993; ch.2).

A related, but slightly less expressive formalism is de�ned in Milward (1995) as

AB Categorial Grammar with Associativity (AACG). delilah's grammar may be

taken to have at least mildly context-sensitive power, as it extends the concept of

generalized composition, which Joshi et al. (1991) prove to be in that class.

In (5) we present the general scheme for a left-to-right cancelling. (Of course,

right-to-left cancelling also exists.)

(5) DELILAH's Grammar Format

If a string with category

PrimaryHead n LeftList / [SecondaryHead

^

Operator j RestRightList]

occurs to the left of a string with category

SecondaryHead n OtherLeftList / OtherRightList,

combine these strings { under some restrictions triggered by Operator with

respect to the content of the argument lists { to a string of category

PrimaryHead n NewLeftList / NewRightList,

where NewLeftList and NewRightList stem from appending the two left lists

and the two right lists, respectively, in either one of two possible orders, which

encode either continuity or discontinuity.

Cremers and Hijzelendoorn 47

In a rule notation we get (6), where append

o

(L1,L2) is some append-operation

triggered by some operator

^

o, yielding a list whenever it is de�ned for L1 and L2,

and non-executable otherwise. In the latter case, the two categories to the left of

the arrow cannot reduce to one by cancellation of Sec.

(6) PrimnLList1/[Sec

^

ojRList1] SecnLList2/RList2 !

Primnappend

o

(LList1,LList2)/append

o

(RList1,RList2)

A string is considered to be a well-formed sentence, i� the lexical hypotheses (cat-

egorial agenda's) can be reduced by recursive applications of (6) to one category

sn[]/[] . This grammar strictly preserves directionality (cf. Steedman 1990), only

cancels elementary types, and does not use hypothetical reasoning. Instead, be-

cause the composition rule takes into account the full internal structure of both

the primary and the secondary category, non-peripheral extraction can be treated

without specialized operators like the up and down arrows of Moortgat (1988). Dis-

location and other forms of word order variation can be handled by composition

alone. (7) shows two options of adjunction to a verb; both options are available

if the operator

^

o is de�ned for the relevant internal structure of the secondary

category at the stage of cancelling vp.

(7) (i) vpn[]/[vp

^

o] npn[]/[] vpn[np

^

]/[])

vpn[]/[vp

^

o] vpn[]/[])

vpn[]/[]

(ii) npn[]/[] vpn[]/[vp

^

o] vpn[np

^

]/[])

npn[]/[] vpn[np

^

]/[])

vpn[]/[]

The combination of directionality and the fact that the grammar only cancels basic

types - as does Milward's (1995) AACG - has interesting consequences for parsing.

For a given pre�x P (i) of assignments to the �rst i words of a sentence, we can

decide whether it makes sense to add to it a certain lexical category of the i+ 1th

word, that is, we can decide whether P (i) plus that certain category can be the

pre�x P (i+1) of a sequence of categories which may be parsed succesfully. If not,

that particular extension of P (i) is rejected, and with it all the (virtual) sequences

in the set with cardinality �

n

1

jA(w

i

)j that have it as a pre�x. Technically, these

pre�xes are best considered to be paths of a tree which is built tier-by-tier dur-

ing lexical look-up: a directed acyclic graph with categories as vertices and edges

between neighbours in a sequence. At the extreme vertex of every path, information

is accumulated on the type pattern of the path. A new category is added as a vertex

connected to a path and extending that path only if its agenda is not incompatible

with the information at the 'preceding' vertex. When the category is added as a new

vertex, it stores the updated information on the extended path. If no category of a

certain word is compatible with an existing path, the path is pruned; all remaining

(active) paths are of equal length. The main instrument here is an operationaliz-

ation of Count Invariance (Van Benthem 1986, Moortgat 1988, K�onig 1990): the

property that sequences of complex types can be derived only if they exhibit a

48 Filtering Left Dislocation Chains in Parsing Categorial Grammar

certain balance of primitive types. This is the central strategy used in delilah

to restrict the search space, even in the context of coordination (see Cremers and

Hijzelendoorn 1997 and Cremers 1989). Thus, the search space is considerably lim-

ited on-line. As a matter of fact, while building the tree, the pruning rate exceeds

the growth factor of the search space (cf. Cremers and Hijzelendoorn 1997). As

�

n

1

jA(w

i

)j explodes with n, the proportion #active-paths-of-length-n =�

n

1

jA(w

i

)j

decreases exponentially. The decrease of this proportion justi�es the construction

of the pruned tree of viable pre�xes-up-to-n. For a numerical illustration of this

e�ect, consider the parsing of the sentence

(8) Wie zegt de man, die ik wilde laten werken, dat hem gedwongen heeft mij

met de poppen te laten spelen?

Who says the man that I wanted let work that him forced has me with the

dolls to let play?

`Who does the man, I wanted to work, say that forced him to let me play

with the dolls?'

Under delilah's present lexicon, the search space �

n

1

jA(w

i

)j for this sentence con-

sisting of 20 words contains 822,528,000 possible assignments (paths). Building

and pruning the tree with a remainder of 109 paths takes 6,120 ms cpu time (ex-

cluding time for garbage collecting, stack shifting, or in system calls) on a Silicon

Graphics Indigo R4000 workstation; this includes the time taken by the special

pruning algorithm for gapped categories to be discussed below. Parsing these 109

non-rejected sequences takes 360 ms, say 3 ms for each. Since there is no principal

di�erence between paths which were pruned and paths which survived pruning, we

can deduce that parsing the whole tree of sequences would have taken 822,528,000

times 3 ms is 2,467,584,000 ms. This is about 411,000 times as much as delilah

needed to construct-and-prune the search space.

It is worth noting that the pruning does not put any claim on the parsing

strategy that is applied. The dynamic application of Count Invariance only selects

what has to be parsed, not how this task is performed. In particular, since not

all the remaining paths will di�er from each other at any node, one can think of

a form of chart parsing to exploit the remaining hypotheses space. On the other

hand, little is known about e�cient parsing of context-sensitive grammars.

Under the grammar sketched above, left dislocation is solved syntactically by bring-

ing together the left dislocated constituent and a unique gap. The gap is transported

leftwards by generalized composition: in fact, a gap is `inherited' by every category

of every string that contains the word introducing the gap. Finally, the gap is the

only left argument of the constituent to the right of the dislocated phrase. In the

example derivation (9) with a left dislocated noun phrase, X and Z are sequences of

categories. Only a few stages of the derivation are made explicit; they are connected

by subsequent application of generalized composition (5{6).

Cremers and Hijzelendoorn 49

(9) npn[]/[] sn[]/[...] X yn[. . .]/[vp

^

o] vpn[. . . ,np

^

gap]/[. . .] Z)

npn[]/[] sn[]/[...] X yn[. . . ,np

^

gap]/[])

npn[]/[] sn[]/[x

^

o] xn[np

^

gap]/[])

npn[]/[] sn[np

^

gap]/[])

sn[]/[]

Except for special circumstances, which we will not consider here (e.g. parasitic

gaps; for a treatment see Morrill 1994), gaps and dislocated constituents are related

one-to-one.

3 Filtering Left Dislocation Chains

Although Count Invariance (exploiting the resource sensitivity of certain categorial

systems) is operationalized in delilah for on-line reduction of search space prior to

proper parsing, it cannot discriminate between con�gurations (possible pre�xes of

sequences of lexical assignments) other than by the mere occurrence of basic types.

Gaps have to be marked in the lexicon for the category they represent. If a gap is to

be bound to a preposed np, it has to be marked for this binding as a gap or variable

of that particular type. Consequently, the introduction of gaps may increase the

number of categories of a certain lexical item that looks for a particular type to

the left; gaps are always bound by left dislocated constituents (cf. Kayne 1994). As

for the application of Count Invariance, there is no di�erence between a category

vpn[np]/[] and its gapped relative vpn[np

^

gap]/[] : they expand the same tree in

terms of number, labels, and structure of nodes (cf. (4)). If Count Invariance allows

for the attachment of one of them to a pre�x P (i), it also allows for the attachment

of the other. In this case, the number of sequences to be checked for grammaticality

is doubled by the mere presence of a gapped category in the lexicon for the i+1th

word in the sentence. In general, Count Invariance is underspeci�ed with respect

to the grammatical extension of pre�xes, as it is applied prior to parsing.

The main contribution of gapped categories to the extension of the search space

is caused by the gap's location being undetermined. In a given string of words,

there are many possible candidates that introduce a gapped category, though in

the �nal parse only one of the candidates will turn out to be the real gapped

category. Sequences like the following are hardly candidates for succesful parsing if

only one of the categories introduces a �nite domain.

(10) np . . . sn[np

^

gap]/ . . . vpn[np

^

gap]/ . . .

It makes sense, then, to look for additional means to prevent spurious accumulation

of gapped categories in a sequence, just to accommodate the gap's indeterminacy

a priori .

For every pre�x of a sequence of lexical categories, we use a Finite State Transducer

(FST) in delilah to keep track of the maximal number of gaps that must be made

available in the su�x of that sequence. This FST performs its tasks in the very

50 Filtering Left Dislocation Chains in Parsing Categorial Grammar

same pre-parsing track in which Count Invariance is used dynamically to prune

the search space. The timing for the pre-parsing procedure for (8) given above,

included the operations of the FST.

The general idea is as follows. Every pre�x P (i) of a sequence of assignments

S(n) is associated deterministically with a state of an FST and a number generated

by that state. Recall that these pre�xes can be seen as paths of a tree under

construction. The number that the FST provides, is associated with the extreme

vertex of that path. This number indicates how many gap `slots' are available for

a su�x to that pre�x. The states of the FST represent the relevant features of a

particular P (i). The i + 1th word may introduce a category for which the FST

is de�ned in that state, or not. If the category is in the domain of the state of

the FST with which P (i) is associated, it will force the FST to move. This move

may involve adding 1 or subtracting 1 from the counter, or even a reset of the

counter. Addition moves are forced by types which introduce a syntactic domain

from which extraction is permitted. Finite verbs, for example, force addition moves.

Subtraction moves are forced by categories containing gaps, or { in certain states

{ by categories that indicate closure of extraction domains. No subtraction move

can be made if the counter is zero. In that case, the FST fails, and the category

will not be added to P (i) to form P (i + 1), since P (i + 1) cannot be associated

with a state of the FST. The category may be added to some other pre�x P (i),

though. Also, another category from the i+ 1th word's lexical assignment may be

added to P (i) to form a P (i+ 1).

Thus, the moves of the FST are triggered by types occurring in a category of

the i + 1th input word for a given pre�x of assignments P (i). In its actual form,

delilah activates the FST only if the category that is a hypothetical extension

of a pre�x of a sequence of assignments is either 1. headed by a main sentential

type, 2. has a �nite sentential type as an argument, 3. contains a gapped type, or

4. is headed by prepositions. The �rst two triggers will be evident: they are the

ones that indicate �nite domains, the main extraction �elds. They force the FST

to make an addition move. The third one is also evident: it is the one that forces

a subtraction move. PPs need a special treatment in order to account for certain

consequences of pied-piping. They have to make available an additional gap option,

apart from the option that allows for their own dislocation which is introduced in

a standard way.

Here is a description of the FST and some comments. The triggering types are:

head main s (hms) the type that is the head of a �nite verb in

main sentences; e.g. s in sn[np

^

gap]=[vp]

head embedded s (hes) the type that is the head of a �nite verb in

embedded sentences; e.g. s vn in

s vnn[np np]=[]

head pp (pp) the head of a prepositional category; e.g.

pp in ppn[]=[np]

Cremers and Hijzelendoorn 51

right argument embedded s (raes) the type that is a right hand side argument

of a complementizer, announcing the start

of an embedded sentence; e.g. s vn in

npn[np]=[s vn]

gap (gap) the left hand argument of any category that

is marked for gap; e.g. pp

^

gap in

vpn[np pp

^

gap]=[]

Of each type, the head is processed �rst, then its left searching arguments, and

�nally its right searching arguments. The transition scheme is given in (11) as a

relation between a triple <state, type, number> and a pair <state, number>. Some

very idiosyncratical transitions are left out for transparency reasons.

(11) Left Dislocation Chain Filter

initialization: <a, 0>

<a, hms, X>) <e, 1> �nite main verb resets gap options

<a, hes, X>) <a, X> �nite embedded verb does not change

options; necessary for coordinated structures

<a, gap, X>) <a, X�1 > if X > 0 consumption of gap option

<a, raes, X>) <b, X+1 > introducing a new domain for dislocation

<b, raes, X>) <b, X+1 > idem

<b, hes, X>) <b, X> as before

<b, gap, X>) <b, X�1 > if X > 0 as before

<c, hms, X>) <e, 1> all options not yet consumed are lost; number

of options reset to one

<c, hes, X>) <d, X> just a state transition

<c, raes, X>) <b, X+1 > as before

<c, gap, X>) <c, X�1 > if X > 0 consumption of gap option

<d, hes, 0>) <a, 0> re-initialization; the end of a domain is

introduced; all options used

<d, hes, X>) <c, X�1 > end of domain; gap option for that domain

not used; number of options decreases

<d, raes, X>) <b, X> idem, but also start of new domain: options

not changed

<d, hms, X>) <e, 1> as before

<d, gap, X>) <c, X�1 > if X > 0 consumption

<e, raes, X>) <b, X+1 > introduces new domain with additional

option

<e, gap, 1>) <a, 0> consumption

<S, pp, X>) <[S], X+1 > for every state S a special state [S] is needed

for pied-piping phenomena, introducing an

additional gap option

<[S], gap, X>) <S, X�1 > consumption in `pied-piping' state

<[S], �, X>) <S, X�1 > empty move otherwise; the extra option is

cancelled

A category C will be added to a pre�x of assignments P (i) in state S with number

N if the FST is de�ned in S for the types in C. A simple example is given in (12).

52 Filtering Left Dislocation Chains in Parsing Categorial Grammar

(12) Ik wil elke man een boek geven

I want every man a book give

`I want to give every man a book'

Let the string of categories in (13) be a pre�x of assignments (one of possibly many

more) to the �rst six words, up to boek , i.e. P (6).

(13) np sn[np

^

gap]/[vp] npn[]/[n] n npn[]/[n] n

That pre�x, just one among others that may have survived thus far, will be asso-

ciated with state <a,0>. This can be seen as follows. The FST is entered in state

<a,0>. The �rst type, np, is not a triggering type; the FST does not move. The

head of the second type, s is an hms; the FST moves to state <e,1>, creating an

option for a gap to be consumed later. The left searching category np

^

gap is a gap,

which brings the FST back to state <a,0>. The right searcher vp has no e�ect,

because it is not a triggering type. The same is true for the heads and searchers of

the third, fourth, �fth and sixth type in (13). Now geven will be considered. Among

its lexical categories we �nd some that contain gaps, like sn[np

^

gap np np]=[] and

vpn[np np

^

gap]=[]. Most of them will be rejected for concatenation to that pre�x,

since a category containing a gap cannot be processed from <a,0>. The only op-

tion for a gapped category of geven would be one that is headed by a �nite main

sentence type (hms), for this category would bring the FST in state <e,1>, in-

troducing a gap option. This option is rejected, however, because of other �ltering

mechanisms apart from the left dislocation FST. Only categories headed by vp with

no gapped argument remain as possible continuations of the pre�x. The number of

assignments that has to be parsed (checked for derivability) is seriously cut down.

4 The E�ect of Chain Filtering

We have tested the e�ect of chain �ltering by computing three values for a certain

set of sentences:

(a) the number of full string assignments left under chain �ltering

(b) the number of full string assignments left without chain �ltering

(c) the number of full string assignments in case the lexicon would have no gaps.

In the latter case chains must be identi�ed by hypothetical reasoning. In our ap-

proach gaps are �xed per full string assignment: no additional hypotheses as to the

possible occurrences of gaps are necessary while parsing.

In (�gure 1) at the end of the paper the table of results is given; the results

are presented as natural logarithms to express their order of magnitude. They are

ordered with respect to the length of the sentences in the test set (column a). All

counts are submitted to a cluster of other �ltering devices which are not related

to left dislocation, but which do a major job at distinguishing viable from inviable

pre�xes, as was discussed for example (8). The numbers of full string assignments,

which survived the general �ltering devices including and excluding the Chain Fil-

ter, mark a rather undetermined stage in the processing of the sentences; the strings

counted below are not necessarily all parsed. Most of the sentences are coordinated

Cremers and Hijzelendoorn 53

sentences, which complicates any �ltering of pre�xes: the selection is pre-parsing,

the coordinates are not yet determined at that stage, and this indeterminacy must

be re
ected in weakened application of the FST (which is not spelled out above).

The exponents given in column (f) of the table hold the main result of chain

�ltering. They indicate the di�erence between the number of sequences of cat-

egories that must be processed if chain �ltering is applied (column d) and the

number of sequences of categories that must be processed if chain �ltering is not

applied (column e). Both numbers can be compared to the number of sequences

that would survive Count Invariance if the lexicon would not contain gapped cat-

egories (column c). In that case, however, delilah will not be able to parse left

dislocation any longer. Column (b) lists the Cartesian product over w

i

, i.e. without

any �ltering, but including gapped categories. It de�nes the upper bound for the

exponents in the columns (c), (d) and (e).

From these �gures one can see that the Left Dislocation Chain Filter has a

measurable e�ect on the number of sequences that must be parsed. It can reduce

the number of full string assignments under consideration prior to parsing with an

average of one half to one order of magnitude (column f), depending on the nature

of the assignments, i.e. the nature of the sentence. In the �nal case, for example, the

application of the Chain Filter reduces the number of full string assignments at this

particular stage of processing by a factor of e

1:39

= 4. All possible analyses are kept

in store, however; in that respect, chain �ltering is as conservative as necessary.

The number of sequences left after chain �ltering is still considerably larger

than the number a parser checking dislocation by hypothesising gaps would have

to consider. This is not surprising. Specifying gaps lexically introduces at least n

additional sequences for every gap-less sequence of assignments with n extractable

arguments. It depends on the parsing procedure to what extent this complicates the

parsing of the sentence. delilah can parse these additional assignments marked

for gaps deterministically: the number of assignments is the only factor a�ecting

the complexity of the solution to the problem of left dislocation.

It is by no means clear that the Left Dislocation Chain Filter is stated in the

best possible way. It must be stressed, however, that in the presence of coordination

{ all but three of the sentences measured above are coordinated ones { �ltering left-

dislocated chains is weakened by necessary precautions with respect to across-the-

board phenomena. As long as one does not know what is coordinated exactly, the

substring to the right of a coordinating element may have to accommodate all the

chains that were possibly established at the left of the coordinator. In this respect,

the results show that chain �ltering keeps performing under di�cult conditions.

Acknowledgements

We would like to thank two anonymous reviewers for their valuable comments, Rob

Goedemans for checking our English, and Ton van der Wouden for translating the

text into L

A

T

E

X.

The system delilah is available at

http://fonetiek-6.LeidenUniv.nl/hijzlndr/delilah.html.

54 Filtering Left Dislocation Chains in Parsing Categorial Grammar

column a: sentence length in words

column b: natural logarithm (ln) of the number of full string assignments

(un�ltered; �

n

1

jA(w

i

)j) for a lexicon with gapped categories

column c: (ln of the) number of full string assignments (�ltered by independent

checks) for a lexicon without gapped categories

column d: (ln of the) number of full string assignments (�ltered) for a lexicon

with gapped categories, and with application of chain �ltering

column e: (ln of the) number of full string assignments (�ltered) for a lexicon

with gapped categories, and without application of chain �ltering

column f: di�erence d� e; e�ect of chain �ltering, in orders of magnitude; a negative

e�ect means reduction of the search space

a b c d e f

#words Cart. product #assignments #assignments #assignments Chain

over w

i

-gapped cats. +gapped cats. +gapped cats. Filter

+gapped cats. -Chain Filter +Chain Filter -Chain Filter e�ect

7 1.60 0.69 1.09 1.09 0.00

8 4.02 2.07 3.17 3.17 0.00

9 9.91 4.14 6.76 6.83 -0.07

10 4.02 2.07 3.17 3.17 0.00

11 11.38 0.0 2.07 2.77 -0.70

13 10.13 3.17 5.41 5.77 -0.25

14 14.02 3.17 7.32 7.57 -0.25

15 6.10 3.46 4.85 4.85 0.00

16 15.02 4.27 8.58 8.95 -0.37

17 14.45 3.87 7.76 8.41 -0.65

18 18.65 1.79 5.54 7.56 -2.02

19 17.44 5.25 9.77 10.22 -0.45

20 16.60 5.06 10.06 10.63 -0.57

21 13.68 4.85 9.63 10.02 -0.39

22 20.06 3.46 9.10 10.58 -1.48

23 15.83 4.56 9.36 9.80 -0.44

24 8.05 3.46 6.64 6.64 0.00

25 18.31 7.09 13.66 13.99 -0.33

26 9.57 4.85 8.72 8.72 0.00

28 21.03 5.95 12.07 12.58 -0.51

29 26.36 5.50 13.10 14.08 -0.98

32 29.43 1.09 7.24 8.65 -1.41

34 23.12 5.25 12.79 13.64 -0.85

37 28.18 4.85 13.23 14.62 -1.39

Figure 1: Table of Results

Cremers and Hijzelendoorn 55

References

Barton, G., R. Berwick, and E. Ristad (1987). Computational Complexity and

Natural Language. MIT Press.

Benthem, J. v. (1986). Essays in Logical Semantics. Reidel.

Benthem, J. v. (1991). Language in Action. North-Holland. SLFM 130.

Bouma, G. and G. van Noord (1994). Constraint-based categorial grammar. In

Proceedings 32nd Annual Meeting of the ACL, pp. 147{154. ACL.

Cremers, C. (1989). Over een lineaire kategoriale ontleder. TABU 19 (2), 76{86.

Cremers, C. (1993). On Parsing Coordination Categorially. Ph. D. thesis,

Leiden University. HIL dissertations 5. Also available at

ftp://fonetiek-4.LeidenUniv.nl/pub/cremers/dissi.ps.

Cremers, C. and M. Hijzelendoorn (1997). Pruning search space for parsing free

coordination in categorial parsing. To appear in: Proceedings International

Workshop on Parsing Technologies , MIT 1997.

Gazdar, G. and C. Mellish (1989). Natural Language Processing in PROLOG.

Addison-Wesley Publ Cy.

Hepple, M. (1990). The Grammar and Processing of Order and Dependency.

Ph. D. thesis, University of Edinburgh.

Hopcroft, J. and J. Ullman (1979). Introduction to Automata Theory,

Languages and Computation. Addison-Wesley Publ Cy.

Johnson, M. (1991). The computational complexity of glr parsing. In

M. Tomita (Ed.), Generalized LR Parsing, pp. 53{42. Kluwer.

Johnson, M. and M. Kay (1994). Parsing and empty nodes. Computational

Linguistics 20 (2), 289{300.

Joshi, A., K. Vijai-Shanker, and D. Weir (1991). The convergence of mildly

context-sensitive grammar formalisms. In P. Sells, S. Shieber, and

T. Wasow (Eds.), Foundational Issues in Natural Language Processing, pp.

31{82. MIT Press.

Kayne, R. (1994). The Antisymmetry of Syntax. MIT Press.

K�onig, E. (1990). Der Lambek-Kalkul. Eine Logik f�ur lexikalische

Grammatiken. Ph. D. thesis, Universit�at Stuttgart. IWBS Report 146.

Koot, J. v. d. (1990). An Essay on Grammar-Parser Relations. Ph. D. thesis,

University of Utrecht.

Milward, D. (1995). Incremental interpretation of categorial grammar. In

Proceedings 7th EACL, pp. 119{126. Dublin: EACL.

Moortgat, M. (1988). Categorial Investigations. Foris.

Morrill, G. (1994). Type Logical Grammar. Kluwer.

Pereira, F. and S. Shieber (1987). Prolog and Natural Language Analysis. CSLI.

Stabler, E. (1992). The Logical Approach to Syntax. MIT Press.

56 Filtering Left Dislocation Chains in Parsing Categorial Grammar

Steedman, M. (1990). Gapping as constituent coordination. Linguistics and

Philosophy 13 (2), 147{171.

Wittenburg, K. (1986). Natural Language Parsing with Combinatory Categorial

Grammar in a graph-uni�cation-based Formalism. Ph. D. thesis, University

of Texas at Austin.

