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Abstract

In this paper we describe research on compound analysis in the UPLIFT

information retrieval project. Results of earlier experiments indicated that

splitting up compounds in the query and forming new compounds by com-

bining query terms improves recall while precision does not deteriorate. We

investigated whether adding syntactic constraints to the compound splitting

and formation processes would improve our initial results. We compared dif-

ferent strategies for compound formation and we also investigated the e�ect

of adding compound constituents as separate index terms. The results of our

experiments show that using information about head-modi�er relationships

to create complex index terms can improve both recall and precision signi-

�cantly but only if all constituents are also added separately. We found that

using both noun-adjective and noun-noun head-modi�er pairs produced the

best results.

Introduction

The work described in this paper is part of the UPLIFT project

1

. UPLIFT in-

vestigates whether linguistic tools can improve and extend the functionality of

vector space text retrieval systems (cf. Salton (1989), p. 312 �). Earlier exper-

iments in the UPLIFT project focussed on improving recall by using stemming

algorithms

2

. This paper describes an experiment with syntactic phrase indexing

techniques for Dutch texts, aimed at improving precision as well as recall. The

basic idea behind phrase indexing is that phrases characterize document content

more e�ectively than single word terms. When a single word index is used, a query

containing the phrase information retrieval will also match with documents con-

taining only information or retrieval. If information retrieval is recognized as a unit,

however, these matches may be avoided or given a much lower score (depending

on the matching strategy). Di�erent strategies have been used to identify suitable

�
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phrases for indexing, the most important distinction being between strategies based

on statistical co-occurrence data and strategies based on syntactic processing. So

far, both types of strategies have proven to be equally successful (cf. e.g. Fagan

(1987), Salton et al. (1990) and, more recently, Hull et al. (1997)). Results of

earlier experiments in the UPLIFT project motivated us to take compounds as a

starting point for our experimentation with phrase indexing. Our approach was

further inspired by the work of Strzalkowski, as described in Strzalkowski (1995)

and Strzalkowski and Perez Carballo (1996). Strzalkowski uses syntactic informa-

tion to identify phrases in queries and documents. These phrases are subsequently

normalized (i.e. semantically similar but syntactically di�erent constructions, e.g.

retrieval of information vs. information retrieval, are represented identically) as

head-modi�er pairs. Other recent work on syntactic phrase indexing includes Evans

and Zhai (1996) and Smeaton et al. (1995). In sections 1 to 5 we describe our ap-

proach and discuss the set-up and the results of the experiments. In section 6 we

present the conclusions and give some possibilities for further research.

1 Compounds and related constructions

Earlier research in the UPLIFT project showed that when a query is expanded

with the constituents of compounds already occurring in it

3

and new compounds

are added to the query by combining query terms, recall improves while precision

does not deteriorate. The following example illustrates this approach.

Query: Ik zoek documenten over computers en natuurlijke taalverwerking

(\I am looking for documents on computers and natural language pro-

cessing")

This query would result in the following index terms (after removal of stop words):

document

computer

natuurlijk

taalverwerking

taal compound splitting

verwerking "

computertaal compound formation

taalcomputer "

In the example, the compounds computertaal (computer language) and taal-

computer (language computer) are added to the query by combining computer and

taal. Both are valid compounds

4

but, although the second compound may retrieve

relevant articles for this query, the �rst (a synonym for programming language)

will probably retrieve many unrelated documents.

3

In Dutch, compounds are usually written as a single orthographic unit, e.g. levensverzeker-

ingsmaatschappij (life insurance company). As a result of this, compound constituents are nor-

mally not considered as separate index terms.

4

New compounds are validated using a list of all the compounds found in the document

collection.
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We decided to investigate whether it would be possible to improve precision

as well by using syntactic information to constrain the compound splitting and

compound formation processes.

We restricted compound splitting by creating system variants which only add

the heads or both heads and modi�ers as separate index terms. To split up com-

pounds into their constituents we used the dictionary-based compound splitter

developed by Theo Vosse for the CORRie project (cf. Vosse (1994)). The com-

pound splitter does not assign structure to the compound but simply yields a list

of constituents. Identifying head-modi�er relationships in compounds is not trivial

because of possible structural ambiguities. In Dutch, compounds existing of two

parts are usually right-headed (a �etswiel is a type of wiel) but compound construc-

tion is recursive and both the head and the modi�er can be compounds themselves,

resulting in structural ambiguities, e.g. [[X1 X2] X3] or [X1 [X2 X3]]. We have not

attempted to implement a strategy to solve all structural ambiguities in compounds

but we have applied two di�erent heuristics to assign probable structures. In a re-

cent study, ter Stal (1996) found that simply assuming that all compounds have a

left-branching structure produced � 70% correct results. Although his results are

for English, we decided to try this strategy. As an alternative, we also implemented

a strategy where we use unambiguous cases collected from the corpus to con�rm a

certain choice. If we �nd independent evidence for a left-branching structure (X1

modi�es X2 in unambiguous contexts) or a right-branching structure (X1 modi�es

X3) we select the appropriate structure. If we do not �nd independent evidence

for either structure we choose a left-branching structure by default

5

.

The formation of new compounds was restricted by using only terms which oc-

cur in a certain syntactic context to generate new complex terms. We restricted

compound generation to term pairs originating from complex Noun Phrases (NPs)

containing a speci�c type of Prepositional Phrase (PP) (with the preposition van,

voor or door) as a noun post-modi�er. The choice for this construction was mo-

tivated by the fact that many compounds in Dutch can be paraphrased using a

speci�c type of PP, e.g. �etswiel (bicycle wheel)$ wiel van een �ets (wheel of a bi-

cycle), see, for instance, Geerts et al. (1984) p. 103. The term pairs were created by

combining the head noun of the main NP with the head noun of the NP contained

in the PP. Figure 1 illustrates this process. PP-modi�cation structures exhibit

similar ambiguities to the ones in complex compounds, e.g. in the man with the dog

with the spots it is not clear whether the PP with the spots modi�es the man or the

dog. We decided to treat these structures analogously to the compound structures.

The default strategy we adopted was to assume that PP modi�cation structures

are right-branching (i.e. each PP modi�es the noun immediately preceding it).

We again also implemented a second strategy, using corpus data for disambigu-

ation. We later extended compound generation by using all PP post-modi�ers and

adjective pre-modi�ers as well.

To ensure matching, both original and new complex terms were normalized as

head-modi�er pairs. Complex constructions consisting of more than 2 constitu-

ents are represented as several head-modi�er pairs. See �gure 2 for an example.

5

A third option, where the structure is simply left ambiguous and all interpretations are

selected, was not implemented for lack of time.
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Furthermore, both queries and documents were treated analogously. This was not

possible in our earlier approach (combining all the terms in a document to create

compounds is clearly not feasible). In this way we ensured that matches between

compounds and equivalent constructions would be given the same score as literal

matches.
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Figure 1: Term pair extraction from NP with PP modi�er

N

�

�

�

�

H

H

H

H

MOD

�

�

H

H

MOD

�ets

HEAD

wiel

HEAD

klem

! wiel+�ets, klem+wiel

Figure 2: Term pair extraction from complex compound

2 Indexing module

Based on the options described in section 1 above we developed several di�erent

versions of an indexing module and integrated each of these with our retrieval

engine

6

to create di�erent system variants. The indexing modules consist of the

following basic sub-routines.

A string segmentation algorithm (tokenizer) is used to identify sentence and

word boundaries.

A lexical look-up algorithm, based on the CELEX lexical database for Dutch

(Baayen et al. (1993)) assigns part-of-speech tags to the words.

A tagger is used to resolve ambiguities in tag assignment. We used the Multext

tagger, (cf. Armstrong et al. (1995)), a Hidden Markov Model tagger, which has

6

The retrieval engine used in the UPLIFT project is the TRU vector space engine developed

by Philips Research (cf. Aalbersberg et al. (1991)).
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text! tokenizer ! lexical look-up ! tagger ! proper names ! NP-parser !

pair extraction ! stop words ! stemmer !simple and complex index terms

Figure 3: Indexing process

the advantage that it requires only a partially disambiguated corpus for training.

After training, the tagger produced 91.5% correct results.

A very simple heuristic based on the distinction upper case{lower case is used

to glue sequences of proper names together (e.g. Verenigde Staten van Amerika

(United States of America)). In this way we ensure that proper names are treated

as a unit and term pairs are not extracted from them.

An NP-parser is used to identify NPs in the texts. The parser we use was

developed by TNO-TPD, (cf. van Surksum and den Besten (1993)). This parser

is deterministic and requires fully disambiguated input from the tagger. It is also

robust and fast (244 sentences per second on a Sun-Sparc 10/40). The coverage of

the NP-grammar is not complete

7

, but for the purpose of our experiment it was

considered to be su�cient.

Since the parser is deterministic and only generates one analysis for ambiguous

structures, separate pair extraction modules extract the appropriate word pairs

and single words from the output of the parser.

A stop word list is used to identify and eliminate so-called stop words (mostly

function words).

Finally, all remaining words (and compound constituents) are replaced by their

stem using a dictionary-based (CELEX) stemming algorithm. We used the best

variant of all the stemming algorithms tested in previous UPLIFT experiments (cf.

Kraaij and Pohlmann (1996)). This variant handles in
ection only. Figure 3 shows

how the di�erent sub-routines work together.

3 System variants

We developed and tested a large number of system variants (23). These variants

are summarized below. The names are abbreviations of the type vABC which

must be interpreted as follows: A refers to the syntactic context from which of the

head-modi�er pairs are generated, B to the strategy used for the disambiguation of

complex structures and C to the treatment of constituents of complex structures.

vXXX No compound analysis but tagging, proper name identi�cation and stem-

ming are included. We added this version to see whether tagging, stemming

and proper name recognition alone would already be su�cient to improve

precision.

vM.. Head-modi�er pairs are generated from compounds.

7

Relative clauses, for instance, are not included.
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vS.. Head-modi�er pairs from complex NPs with speci�c PP post-modi�ers (see

section 1 above) are added.

vP.. Head-modi�er pairs from all PP post-modi�ers are added.

vA.. Head-modi�er pairs from adjective pre-modi�ers are added.

vAP.. A combination of the two previous versions.

v.a. Complex terms are analyzed using the default strategies.

v.c. Complex terms are analyzed using corpus data.

v..1 All constituents of complex terms are also added separately to the index.

v..2 Only heads (including heads of complex modi�ers) are added to the index

separately.

v..3 Only the head of the entire complex construction is added as a separate index

term.

v..4 Constituents are not added separately.

We compared these variants with the following two versions:

vn Baseline. TRU retrieval engine, no extensions.

c4fow Best version from previous experiments, all constituents of compounds are

added to the query and new compounds are generated by arbitrarily combin-

ing query terms.

4 Test procedures

The test collection used for the experiments was compiled during previous research

in the UPLIFT project on stemming algorithms. It consists of a document collec-

tion of 59,608 articles published in Het Eindhovens Dagblad, Het Brabants Dagblad

and Het Nieuwsblad from January to October 1994 and 36 queries and relevance

judgements. Some general statistics for the document collection are given in table

1 below.

Total number of documents 59,608

Total number of words (tokens) 26,585,168

Total number of terms (types) 434,552

Max number of words per document 5,979

Av. number of words per document 446

Max number of terms per document 2,291

Av. number of terms per document 176

Table 1: Document collection statistics
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The queries were formulated by test subjects recruited among sta� and students

of Utrecht University. Test subjects also performed the relevance judgements for

their queries.

Retrieval performance is usually evaluated using measures derived from the

following two main parameters:

Recall =

number of relevant items retrieved

total number of relevant items in collection

Precision =

number of relevant items retrieved

total number of items retrieved

The values for recall and precision range from 0 (low) to 1 (high). When preci-

sion is high, recall is usually low and vice versa.

The computation of recall is a traditional problem in IR evaluation. It is im-

possible to estimate the total number of relevant items in a document collection

for a certain query without doing relevance assessments for nearly the complete

collection. The common solution to this problem is to use the so-called pooling

method

8

. This method is based on the assumption that if one uses a variety of

di�erent retrieval systems to create a document pool for each query, the probability

that most relevant documents will be contained in the pool is high. The list of rel-

evant documents for each query is then compiled by judging only those documents

contained in the pool.

We used 4 di�erent derived measures to evaluate retrieval performance for this

experiment. These measures are: average precision, ap5-15 (precision at 5, 10 and

15 documents retrieved, averaged), R-recall (recall at R, where R is the number of

relevant articles for a particular query) and recall1000 (recall at 1000 documents re-

trieved). Average precision and R-recall measure general performance for precision

and recall respectively. The ap5-15 measure should give an idea of the perform-

ance of the system variants for shallow searches where only the �rst few documents

will be considered and the recall1000 measure is aimed at more in-depth searches.

We also performed statistical signi�cance tests to establish whether the di�erences

between values are signi�cant or should be attributed to chance. The design chosen

for these statistical tests is based on Tague-Sutcli�e (1995a) and Tague-Sutcli�e

(1995b). Details on the statistical tests can be found in the appendix.

5 Results

The results of the experiment are summarized in table 2. The percentages indicate

improvement/decrease compared to the performance of the baseline (vn)

9

. The

results of the statistical signi�cance tests are summarized in tables 3, 4, 5 and 6.

In these tables system versions have been divided into equivalence classes indicated

by numbers.

The results show that tagging, proper name recognition and stemming alone are

not su�cient to improve average precision signi�cantly (vXXX is assigned to the

8

See Harman (1993), p. 9 �.

9

Note that �gures have been rounded. This accounts for small di�erences between seemingly

equivalent versions.
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version avp % change ap5-15 % change

vXXX 0.330 (0.218) + 5.4 0.420 (0.285) + 8.4

vMa1 0.350 (0.215) + 11.9 0.443 (0.284) + 14.3

vMc1 0.350 (0.215) + 11.8 0.444 (0.284) + 14.4

vMa2 0.340 (0.225) + 8.7 0.448 (0.309) + 15.6

vMc2 0.341 (0.225) + 9.0 0.446 (0.308) + 15.0

vMa3 0.344 (0.227) + 9.9 0.451 (0.311) + 16.3

vMc3 0.344 (0.227) + 9.9 0.450 (0.311) + 16.2

vMa4 0.330 (0.212) + 5.4 0.427 (0.274) + 10.0

vMc4 0.330 (0.212) + 5.6 0.426 (0.274) + 9.9

vSa1 0.346 (0.214) + 10.7 0.441 (0.283) + 13.9

vSc1 0.348 (0.213) + 11.3 0.443 (0.282) + 14.3

vSa2 0.284 (0.240) � 9.3 0.366 (0.334) � 5.7

vSc2 0.286 (0.239) � 8.6 0.365 (0.331) � 5.8

vSa3 0.285 (0.240) � 8.9 0.361 (0.335) � 6.9

vSc3 0.286 (0.238) � 8.6 0.363 (0.331) � 6.3

vSa4 0.277 (0.236) � 11.3 0.349 (0.329) � 10.0

vSc4 0.279 (0.235) � 10.8 0.349 (0.329) � 10.0

vPa1 0.354 (0.221) + 13.2 0.451 (0.282) + 16.2

vAa1 0.347 (0.210) + 11.1 0.443 (0.277) + 14.3

vAa4 0.309 (0.216) � 1.0 0.383 (0.277) � 1.3

vAPa1 0.358 (0.217) + 14.6 0.448 (0.276) + 15.7

c4fow 0.319 (0.200) + 2.2 0.427 (0.277) + 10.0

vn 0.313 (0.214) 0.388 (0.291)

version R-recall % change recall1000 % change

vXXX 0.316 (0.206) + 12.1 0.855 (0.166) + 11.8

vMa1 0.344 (0.186) + 22.1 0.914 (0.102) + 19.5

vMc1 0.343 (0.186) + 22.0 0.914 (0.102) + 19.5

vMa2 0.313 (0.206) + 11.2 0.879 (0.136) + 14.8

vMc2 0.312 (0.207) + 10.8 0.873 (0.145) + 14.1

vMa3 0.312 (0.207) + 11.0 0.875 (0.141) + 14.4

vMc3 0.312 (0.207) + 11.0 0.875 (0.141) + 14.3

vMa4 0.311 (0.201) + 10.3 0.850 (0.165) + 11.1

vMc4 0.310 (0.201) + 10.3 0.849 (0.167) + 10.9

vSa1 0.343 (0.184) + 21.7 0.918 (0.104) + 19.9

vSc1 0.343 (0.184) + 21.8 0.918 (0.104) + 19.9

vSa2 0.260 (0.212) � 7.7 0.783 (0.230) + 2.4

vSc2 0.260 (0.210) � 7.6 0.778 (0.232) + 1.7

vSa3 0.254 (0.216) � 9.6 0.758 (0.246) � 0.9

vSc3 0.256 (0.214) � 9.2 0.760 (0.241) � 0.7

vSa4 0.246 (0.212) � 12.5 0.746 (0.249) � 2.5

vSc4 0.248 (0.210) � 11.8 0.746 (0.247) � 2.6

vPa1 0.348 (0.189) + 23.6 0.919 (0.100) + 20.2

vAa1 0.343 (0.188) + 21.8 0.920 (0.100) + 20.2

vAa4 0.279 (0.204) � 1.0 0.818 (0.461) + 6.9

vAPa1 0.354 (0.195) + 25.8 0.918 (0.105) + 19.9

c4fow 0.317 (0.191) + 12.7 0.881 (0.148) + 15.1

vn 0.281 (0.195) 0.765 (0.216)

Table 2: Evaluation measures averaged over queries (including variance)
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system avp

vAPa1 0.358 1

vPa1 0.354 1

vMa1 0.350 1 2

vMc1 0.350 1 2

vSc1 0.348 1 2 3

vAa1 0.347 1 2 3

vSa1 0.346 1 2 3

vMa3 0.344 1 2 3

vMc3 0.344 1 2 3

vMc2 0.341 1 2 3

vMa2 0.340 1 2 3

vMc4 0.330 1 2 3

vXXX 0.330 1 2 3

vMa4 0.330 1 2 3

c4fow 0.319 1 2 3 4

vn 0.313 2 3 4 5

vAa4 0.309 3 4 5

vSc2 0.286 4 5

vSc3 0.286 4 5

vSa3 0.285 4 5

vSa2 0.284 4 5

vSc4 0.279 5

vSa4 0.277 5

Table 3: Equivalence classes avp

system ap5-15

vMa3 0.451 1

vPa1 0.451 1

vMc3 0.450 1

vAPa1 0.448 1

vMa2 0.448 1

vMc2 0.446 1

vMc1 0.444 1

vSc1 0.443 1

vMa1 0.443 1

vAa1 0.443 1

vSa1 0.441 1

c4fow 0.427 1 2

vMa4 0.427 1 2

vMc4 0.426 1 2

vXXX 0.420 1 2

vn 0.388 2 3

vAa4 0.383 2 3

vSa2 0.366 3

vSc2 0.365 3

vSc3 0.363 3

vSa3 0.361 3

vSa4 0.349 3

vSc4 0.349 3

Table 4: Equivalence classes ap5-15

system R-Recall

vAPa1 0.354 1

vPa1 0.348 1 2

vMa1 0.344 1 2

vMc1 0.343 1 2

vAa1 0.343 1 2

vSc1 0.343 1 2

vSa1 0.343 1 2

c4fow 0.317 1 2 3

vXXX 0.316 1 2 3

vMa2 0.313 1 2 3

vMa3 0.312 2 3

vMc3 0.312 2 3

vMc2 0.312 2 3

vMa4 0.311 2 3

vMc4 0.310 2 3

vn 0.281 3 4

vAa4 0.279 3 4

vSc2 0.260 4

vSa2 0.260 4

vSc3 0.256 4

vSa3 0.254 4

vSc4 0.248 4

vSa4 0.246 4

Table 5: Equivalence classes R-recall

system r1000

vAa1 0.920 1

vPa1 0.919 1

vAPa1 0.918 1

vSc1 0.918 1

vSa1 0.918 1 2

vMc1 0.914 1 2 3

vMa1 0.914 1 2 3

c4fow 0.881 1 2 3 4

vMa2 0.879 1 2 3 4

vMa3 0.875 1 2 3 4

vMc3 0.875 1 2 3 4

vMc2 0.873 1 2 3 4

vXXX 0.855 1 2 3 4

vMa4 0.850 2 3 4 5

vMc4 0.849 3 4 5

vAa4 0.818 4 5 6

vSa2 0.783 5 6 7

vSc2 0.778 6 7

vn 0.765 6 7

vSc3 0.760 6 7

vSa3 0.758 6 7

vSa4 0.746 7

vSc4 0.746 7

Table 6: Equivalence classes recall1000
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same equivalence class (2) as vn). Results also show that our initial attempts to

improve precision by using a subset of PP post-modi�ers to create new compounds

(vS.. versions) were not successful. These versions are all in equivalence classes

which include vn. Compared to the vM.. versions which only normalize original

compounds, average precision even decreases, although in most cases the di�erence

is not signi�cant.

If we look at the results in more detail we see that the distinction head-

modi�er is not relevant for compound splitting. Versions v..1 which add all sub-

parts of a complex term to the index usually outperform the other versions (versions

v..2/3/4). If we only consider the �rst 15 documents retrieved (ap5-15) then ver-

sions vM.2 and vM.3 show a slight advantage over vM.1. However, this di�erence

is not statistically signi�cant. We also see that the two strategies for handling

ambiguous structures (versions v.a. and v.c.) are equivalent. It may be that our

corpus is too small to render su�cient data for the corpus-based approach. It may

also be that the default strategy simply works well for our data.

In table 7 some statistics for versions c4fow and vSa1 are given. The �gures

show that although the number of compounds found by c4fow in greatly exceeds

the number of compounds found by the syntactic version, the percentage of relevant

combinations (actually found in relevant articles) is higher for the syntactic ver-

sion. We concluded that the compound generation strategy employed by the vS..

versions was too restricted and should be extended to include other head-modi�er

pairs. We experimented with several extensions. We implemented a version which

instead of a subset of PP-modi�ers uses all PP-modi�ers for term pair generation

(version vPa1). Besides this version we also developed a version which adds noun-

adjective head-modi�er pairs to the index (vAa1). Version vAPa1 combines these

two strategies.

version number of compounds relevant compounds % relevant

c4fow 147 35 20.5

vSa1 46 18 39.1

Table 7: Relevant compounds found in queries by c4fow vs. vSa1

If we look at the results for these versions we see that version vPa1, the ver-

sion which adds noun-noun pairs from all PP post-modi�ers, improves precision

compared to the baseline (vn). In fact, there is a statistically signi�cant di�er-

ence between this version and vn for all 4 evaluation measures. Version vAa1, the

version which adds noun-adjective pairs is slightly worse than vPa1 if we look at

precision but the noun-adjective pairs seem to have a positive e�ect on recall (see

recall1000). If we combine the two types of head-modi�er pairs (version vAPa1)

we get the best overall results.

We may conclude that adding head-modi�er pairs to the index can improve

retrieval performance, but only if all constituents are also added as separate index

terms. Although c4fow, the version which does not use any syntactic information,

performs fairly well, especially when we look at recall, we are able to improve

results even further by adding syntactic information.
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6 Conclusions and future work

The results of our experiments have shown that it is possible to improve retrieval

quality for Dutch texts signi�cantly by using syntactic information to create com-

plex index terms. Without using syntactic information we were already able to

improve recall by up to 15%, but by adding syntactic information we are not only

able to improve recall even further (up to 25%) but we are also able to improve

precision as well (up to 16%), provided that all subparts of the complex terms

are also added to the index separately. For the experiments described above we

used a standard tf.idf term weighting scheme which does not di�erentiate between

simple and complex index terms. Since term re-weighting schemes have proven to

be successful in previous UPLIFT experiments, we intend to investigate the e�ect

of alternative weighting strategies in the future. We also plan to adapt our strategy

to English texts and investigate cross-language retrieval.
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Appendix: results of the statistical analysis

The design chosen for the statistical analysis is a repeated measures single factor

design, sometimes also referred to as randomized block design (see, for instance,

Hays (1978), chapter 13). This design has the advantage that the query (or subject)

e�ect is separated from the system e�ect. We know that di�erent queries will render

di�erent results so if we separate this e�ect from the system e�ect we are able to

single out the factor we are interested in. The statistical model for the randomized

block design can be summarized as follows:

Y

ij

= �+ �

i

+ �

j

+ �

ij

Y

ij

represents the score (e.g. average precision) for system variant i and query

j, � is the overall average score, �

i

is the e�ect of the ith system, �

j

is the e�ect

of the jth query and � is the random variation about the average.

The H

0

hypothesis which is tested by an analysis of variance (ANOVA) is:

The averages of the observed statistic are equal for all system versions,

i.e. the system e�ect (�) is zero.

If this hypothesis is falsi�ed, we can conclude that at least one pair of averages

di�ers signi�cantly. T-tests are subsequently applied to determine which pairs of

system versions really show a signi�cant di�erence. Tables 8, 9, 10 and 11 present

the results of the ANOVAs that were run on the data.

Source DF Sum of Squares Mean Square F val

system 22 0.6146 0.0279 3.9557

queries 35 35.5577 1.0159 143.8590

error 770 5.4378 0.0071

total 827 41.6101

s.e.d. (systems): 0.0198

Table 8: ANOVA table average precision

Source DF Sum of Squares Mean Square F val

system 22 1.1607 0.0528 4.6266

queries 35 65.6220 1.8749 164.4138

error 770 8.7808 0.0114

total 827 75.5635

s.e.d. (systems): 0.0252

Table 9: ANOVA table average precision at 5, 10 and 15 documents retrieved

The most important �gures in the ANOVA tables are the F-values in the right-

most column, which represent the quotient of the variance in measurements which

can be attributed to the e�ect we are interested in (Mean Square system or query)

and the variance due to chance (Mean Square error). This quotient is dependent
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Source DF Sum of Squares Mean Square F val

system 22 1.0440 0.0475 6.1685

queries 35 27.4588 0.7845 101.9800

error 770 5.9237 0.0077

total 827 34.4265

s.e.d. (systems): 0.0207

Table 10: ANOVA table R-recall

Source DF Sum of Squares Mean Square F val

system 22 3.2825 0.1492 7.3180

queries 35 15.4449 0.4413 21.6433

error 770 15.6995 0.0204

total 827 34.4269

s.e.d. (systems): 0.0337

Table 11: ANOVA table recall at 1000 documents

on the degrees of freedom (DF) of the variables in the model, i.e. number of system

versions and queries � 1. Because the F values exceed F

:99;22;770

10

= 1.85, we may

conclude that the system e�ect is signi�cant at the 0.99 level for all ANOVAS, This

means that we can reject the hypotheses that the system e�ects of the correspond-

ing measures are equal to zero with a certainty of 99%. The query e�ect is also

clearly signi�cant for all evaluation measures. The F-values exceed F

:99;35;770

=

1.55. This justi�es the choice for a randomized block design where the query e�ect

is separated from the system e�ect.

Because the ANOVA shows that there are signi�cant di�erences between sys-

tem versions, it is necessary to do multiple pairwise comparisons to detect which

speci�c versions are concerned. We have used T-tests to identify signi�cant dif-

ferences between speci�c versions. The standard error of di�erence (s.e.d.) values

rendered by the ANOVA are used to discriminate signi�cantly di�erent versions in

the following way:

j �x

1

� �x

2

j> 2� s:e:d:

The results of the T-tests are given in tables 3, 4, 5 and 6 in section 5 above.

10

The standard value for signi�cance level 1�0.01 and the degrees of freedom.


