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Abstract

An accountof parameter setting during grammatical acquisitionis presented in terms of Gen-
eralized Categorial Grammar embedded in a multiple default inheritance hierarchy, provid-
ing a natural partial ordering on the setting of parameters (Briscoe, 1997a). Experiments re-
ported show that several experimentally effective learners can be defined in this framework
capable of reliably acquiring a grammar from a sequence of triggers drawn from one of 70
full languages (or the 200+ more restricted subsetlanguages of these full languages). Evolu-
tionary computational simulations of evolving populations of such language learners/users
suggestthat: 1) languages evolve towards greater learnability, interpretability and/or expres-
sivity; 2) learning procedures evolve towards more efficient variants depending on the lin-
guistic environment of adaptation. The reciprocal evolution of language learning procedures
and of language creates a genuinely coevolutionary dynamic, despite the relative speed of
linguistic selection for language variants compared to natural selection for variant language
learning procedures.

1 Theoretical background

Itis now widely accepted that language acquisition is guided by an innate language
learning procedure and a partial innate specification of the form of language. Lan-
guage acquisition by children is a near-universal feat, where (partial) failure ap-
pears to correlate more with genetic deficits (e.g. Gopnik, 1994) or with an almost
complete lack of linguistic input during the critical period (e.g. Curtiss, 1988), than
with measures of general intelligence (e.g. Smith and Tsimpli, 1991) or the quality
of the learning enviroment (e.g. Ochs, 1982). Pinker and Bloom (1990) have ar-
gued for an adaptationist account of the evolution of the language acquisition device
(LAD) suggesting that the domain-specific linguistic (broadly grammatical) knowl-
edge required to supportreliable language learning was genetically assimilated via
natural selection for more successful language learners since the emergence of lan-
guage. Recently, Deacon (1997) has argued that there has been no genetic assimila-
tion of language-specific knowledge, rather languages themselves rapidly evolved
to be easily learnable given general domain-independent learning biases such as
working memory limitations.

Genetic assimilation is a neo-Darwinian mechanism supporting apparent ‘in-
heritance of acquired characteristics’ (e.g. Waddington, 1975). The fundamental
ingights are that: 1) plasticity in the relationship between phenotype and genotype
is under genetic control, 2) novel environments create selection pressures which
favour organisms with the plasticity to allow within-lifetime developmental adap-
tations to the new environment, 3) natural selection will function to ‘canalize’ these
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developmental adaptations by favouring genotypic variants in which the appropri-
ate trait develops reliably on the basis of minimal environmental stimulus, provid-
ing that the environment, and consequent selection pressure, remains constant over
enough generations.! Durham (1991) discusses in detail the case of widespread,
though by no means universal, lactose tolerance in adult humans. Many of us,
uniquely amongst mammals, continue to be able to easily digest milk after weaning.
In many parts of the world the growth of animal husbandry created a new and reli-
able source of nutrition— milk. Thus, individuals more able to exploit this resource
for longer periods of their lifetime were selected for. Lactose tolerance has been
genetically assimilated by the great majority in populations where milk has been
reliably available over many generations. Although it is not possible to relate lac-
tose tolerance directly to specific genetic differences (yet), Durham demonstrates
convincingly that the incidence of intolerance correlates, in a manner compatible
with a genetic explanation, with a fairly recent introduction of diary products and
with warm climates, where lack of Vitamin D is less potentially problematic.
Waddington, himself, suggested that genetic assimilation provided a possible
mechanism for the gradual evolution of a LAD: ‘If there were selection for the
ability to use language, then there would be selection for the capacity to acquire
the use of language, in an interaction with a language-using environment; and the
result of selection for epigenetic responses can be, as we have seen, a gradual ac-
cumulation of so many genes with effects tending in this direction that the char-
acter gradually becomes genetically assimilated.” (1975:305f). Pinker and Bloom
(1990:479-80) make the same suggestion, citing Hinton and Nowlan’s (1987) com-
putational simulation showing genetic assimilation of initial node settings facilitat-
ing learning in a population of neural networks.? Deacon (1997:102f,327f) rejects

I'Waddington's work on genetic assimilation is a neo-Darwinian refinement of an idea independently
discovered by Baldwin, Lloyd Morgan and Osborne in 1896, and often referred to as the Baldwin Ef-
fect (see Richards, 1987 for a detailed history). Waddington refined the idea by emphasizing the role of
canalization and the importance of genetic control of ontogenetic development —his ‘epigenetic theory
of evolution’. He also undertook experiments with flies which directly demonstrated genetic assimila-
tion for artificial environmental changes. Evolutionary biologists accept the possibility of genetic assim-
ilation (e.g. Maynard Smith, 1993:319f; Rose, 1997:217f), however, many (e.g. Dawkins, 1982:284)
regard it as a ‘hypothetical’ mechanism because, though it has been demonstrated experimentally, it
has not been conclusively demonstrated to occur in the field. It is extremely difficult to conclusively
prove a case of adaptive genetic assimilation. Nevertheless, the developmental view of evolution, which
Waddington pioneered, is gaining ground as more is understood about the relationship between genes
and environment in morphogenesis (e.g. Jablonka and Lamb, 1995).

2A complication for this account of language learning is that it does not explain why genetic assimila-
tion should not have continued until the point where a fully-specified language (or at least gramimnar)
had been assimilated, and learning became redundant. Waddington (1975:307) remarks: ‘Evolution is
quite capable of performing such a feat... But in the case of language, there is certainly little reason to
see why it would have been advantageous to press the matter further. If a child which had never met a
language-user developed the ability to talk, who after all would it talk to?” Nevertheless, the propensity
to use a fully-specified grammar given minimal triggering input would simplify the language learning
problemto one of vocabulary acquisition. Pinker and Bloom (1990:480), following Hinton and Nowlan
(1987), argue that selection pressure to set the remaining initial nodes in the neural networks is weak
once networks have evolved to learn reliably. However, Harvey (1993) demonstrates that this is an arti-
fact of Hinton and Nowlan’s simulation design — later more effective networks almost invariably evolve
from a single ancestor, causing ‘premature’ fixation of some unset nodes, and thus preventing the pop-
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this account though, on the basis that genetic assimilation requires an unchanging
environment to create the sustained selection pressure over the many generations
required for genotypic adaptation. Pinker and Bloom (1990) simply assume that
linguistic universals are evidence of enough constancy in the environment to allow
genetic assimilation. However, once we view language itself as an adaptive system,
this assumption, that universals are unambiguous evidence of genetic assimilation
of linguistic knowledge into a LAD, is no longer valid.

Hurford (1987) and Kirby (1996, 1997) argue that many linguistic universals,
and especially typological, implicational or statistical universals, are the result of
historical adaptations by languages to the capacities and limitations of language
users. Drawing on Hawkins’ (1994) work on constituent order universals and his
metric of parsability of different ordering configurations, Kirby demonstrates that,
on the assumption that differential parsability translates into differential learnabil-
ity, more learnable order variants will emerge and persist through the language
learning ‘bottleneck’ across generations of language users. Kirby’s simulations tied
to Hawkins’ theory of parsability and constituent order provide orie of the most
detailed demonstrations of the possibility of genuinely linguistic evolution, where
variant construction types compete for language users and more learnable variants
are selected.’®

In Hurford (1987) and Kirby’s work the term evolution is used in its technical
‘universal Darwinist’ sense of (random) variation, adaptive selection and differen-
tial inheritance applied to any dynamic system (e.g. Dawkins, 1983; Cziko, 1995).
Keller (1994) provides an extensive argument for the view that language is a “phe-
nomenon of the third kind’; that is, a human artefact which naturally evolves — a
type of (complex) adaptive system.* We will refer to linguistic selection, as op-
posed to natural selection, to emphasize the claim that evolution is operating here
on linguistic constructions, rather than on their users. Linguistic variants compete
for host minds/brains, as Dawkins (1989:192f) and Dennett (1991:341f) have ar-
gued that ideational units or ‘memes’ do. Given this perspective, linguistic univer-
sals could have arisen via historical linguistic evolution in response to similar pres-
sures for learnability, interpretability and/or expressivity. Therefore, Pinker and

ulation from evolving further. As long as there is selection pressure for a fully-developed capacity and
no premature fixation, we expect no learning, and thus no delay in acquisition of the trait, to be the
optimal solution. Ackley and Littman (1991) and Cecconi ef al. (1995) describe quite unrelated sim-
ulations which, unlike Hinton and Nowlan, distinguish phenotype and genotype, do not make use of a
fixed externally-defined fitness function, and do model learning cost — in these simulations learning is
eventually entirely displaced, given a constant environment.

3Though the idea is not new: Miiller, Schleicher and other 19th century linguists speculated that lan-
guages evolved according to Darwinian theory, and Darwin (1871) endorsed the idea, quoting with ap-
proval from Miiller: ‘A struggle for life is constantly going on amongst the wordsand grammatical forms
in each language. The better; the shorter, the easier forms are constantly gaining the upper hand, and
they owe their success to their own inherent virtue.' See Harris and Taylor (1997:ch14)and McMahon
(1994:ch12)for more discussion of the relationship between Darwinian and linguistic theory, and Keller
(1994:46f) for a critical discussion of Miiller and Schleicher’s theory of language.

4Complexity in dynamic (adaptive)systems has many sources (see Casti, 1994 for an overview). One
source of complexity in natural language arises from the often conflicting selective pressures of learn-
ability, expressivity and interpretability. Different languages represent different and unpredictable re-
sponses to such pressures.
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Bloom (1990) are not justified in assuming that the existence of universals, whether
absolute or statistical, is incontrovertible evidence that genetic assimilation of such
universals into a LAD has occurred.

Deacon (1997:116f) independently argues for the even stronger position that all
linguistic ‘universal[s]... emerged spontaneously and independently in each evolv-
ing language, in response to universal biases in the selection processes affecting
language transmission. They are convergent features of language evolution in the
same ways as dorsal fins of sharks, ichthyosaurs, and dolphins are independent con-
vergent adaptations of acquatic species.” He suggests, in particular, that languages
have evolved to be easily learnable by a learning procedure which ‘starts small’ (El-
man, 1993) with a limited working memory only capable of ‘seeing’ local gram-
matical dependencies. It is known that working memory grows through childhood
(e.g. Baddeley, 1992), and this may assist learning by ensuring that trigger sen-
tences gradually increase in complexity through the acquisition period by obliging
the learner to ignore more complex potential triggers that occur early in the learn-
ing process. However, this working memory matures towards the end of the criti-
cal period into a system with adult working memory performance capable of pars-
ing long-distance grammatical dependencies too. Thus, maturing working mem-
ory acts as a filter on linguistic input. Crucially though, there is nothing language-
specific in this learning bias. Furthermore, Deacon (1997:328f) argues that the sur-
face grammatical organization of languages changes with such speed relative to ge-
netic evolution that there could not have been consistent enough selection pressure
for genetic assimilation. He, therefore, rejects Pinker and Bloom’s (1990) argu-
ment for the evolution of a LAD, arguing that languages are learnable because they
have evolved to be so, rather than because we have evolved machinery to make them
learnable.

Deacon’s strong position can be criticized on two levels. Firstly, it is unclear
that he recognizes the import of linguistic learnability arguments and the relevance
of abstract universals (without clear ‘surface’ effects). For example, the language
learning procedure presented below can parse and learn grammatical constructions
involving cross-serial grammatical dependencies, such as those exemplified in the
formal language a™b"c", Swiss German syntax and Bambara morphology (e.g.
Shieber, 1985; Gazdar 1988), but not constructions involving the MIX or Bach lan-
guage variant in which any ordering of equal numbers of the as, bs and cs is gram-
matical, creating arbitrarily intersecting dependencies. Furthermore, no formal or
computational demonstration of learnability for such ‘mildly context-sensitive’, in-
dexed languages has been presented (Joshi ef al., 1991) — Elman’s (1993) neural
network experiments, cited extensively by Deacon, demonstrate, at best, an abil-
ity to learn an approximate context-free language recognizer. Whether a language
exhibits cross-serial or arbitrarily intersecting dependencies is an apparently rather
abstract feature which does not fit well into traditional more ‘surfacy’ characteri-
zations of languages as, say, inflecting, agglutinating or isolating. Nevertheless, it
has profound consequences for the kind of rule system capable of expressing the
mapping from surface syntax to meaning / logical form. The genetic assimilation
of a language-specific rule system (the UG component of a LAD) remains a theo-
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retical possibility even if the emergence of such abstract universals can be traced to
non-domain-specific factors, such as working memory limitations.

Secondly, Waddington’s work on genetic assimilation is not the only approach
relevant to evolutionary interactions between distinct evolving systems. In re-
cent years, the increased use of mathematical tools and computational simulation
has demonstrated the probability of extensive coevolutionary interactions between
species, such as predator-prey interactions, competitive and benign host-parasite
interactions, plant-insect interactions, and so forth (e.g. Futuyma and Slatkin,
1983; Kauffman, 1993). Most of these interactions involve species evolving at dif-
ferent rates, as the lifespan of the parasite is usually far shorter than that of the host.
Though Waddington’s neo-Darwinian mechanism of genetic assimilation remains
the basis for (co)evolution in response to environmental change, this work suggests
that relative speed alone cannot conclusively be used to reject the possibility of ge-
netic assimilation in response to pressure from an evolving linguistic environment.
Interestingly, though Deacon (1997:112-13) draws the analogy between language
and symbiotic bacteria (for example, those found in the human gut which aid di-
gestion) and subtitles his book ‘co-evolution of language and brain’, he does not
explicitly discuss the recent literature on coevolution, or whether this might war-
rant reconsideration of how environmental changes affect genetic assimilation.

In the simulation model described below, the fitness functions, when utilized,
assume a benign, symbiotic relationship between languages and their potential
users in which the ability to communicate via language confers selective advan-
tage, but additionally the ability to communicate using a more learnable, expres-
sive or interpretable variant language can confer greater relative advantage. Rough-
garden (1983) argues that mutualistic coevolution between ‘host’ (language users)
and ‘guest’ (language idiolects) organisms will only occur when the host benefits.
Linguistic variants compete for language users on the basis of their relative learn-
ability, interpretability and/or expressivity. In this sense, a language is a parasitic
coevolving species. However, there is a critical difference: language is a human
artefact, and not self-replicating. Language variants may compete for brains, but
they cannot have a fitness, in the technical sense of expected number or proportion
of offspring. Rather the primary mechanism of linguistic inheritance is through a
child language learner actively learning her idiolect (rather than the gene actively
promoting its replication). Idiolects also change through an adult’s within-lifetime
responses to the changing linguistic environment, and the needs of interpretability
and expressivity. Thus, the speed at which linguistic changes can diffuse through
a population will be potentially far faster than that at which genetic change can do
so. However, there is clearly a speed limit to linguistic change within a successfully
communicating population and that speed limit means that only a small part of the
space of possible grammars may be sampled over the period required for biologi-
cal evolution. This may lead to a constant selection pressure capable of supporting
genetic assimilation of a LAD.

Experiments with the (co)evolutionary simulation model and model of a lan-
guage learner/user, described in section 2 and section 3 respectively, demonstrate
that: 1) language can be insightfully modelled as a complex adaptive system, con-
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stantly evolving under often conflicting linguistic selection pressures of learnabil-
ity, interpretability and expressivity; 2) some universals may be a consequence of
such linguistic selection; 3) specifically, constituent order universals of the type
studied by Hawkins (1994) largely follow from the model of differential parsability
based on working memory limitations; 4) Elman’s (1993) ‘starting small’ hypoth-
esis, modelled as differential parsability and combined with a leamning procedure
incorporating grammatical knowledge, creates linguistic selection for more mem-
ory efficient ordering configurations and languages; 5) nevertheless, a language-
specific innate learning system (i.e. a LAD) can emerge through a coevolutionary
process, despite the potentially rapid pace of linguistic evolution relative to biolog-
ical evolution.

2 The language acquisition device

In this section, a parameter setting model of the language learning procedure is de-
scribed. Grammatical acquisition proceeds on the basis of a partial genotypic spec-
ification of (universal) grammar (UG) complemented with a genetically-specified
learning procedure enabling the child to acquite a target grammar given a sequence
of triggering sentence types. In the parameter setting framework of Chomsky
(1981) learning involves fixing the values of a finite set of finite-valued parame-
ters to select a single fully-specified grammar from within the space defined by
UG. Triggers are defined as presentations of particular sentence types in a context
which makes their meaning clear. Thus, the task of the learner is defined as that
of recovering the mapping between surface form (SF) and logical form (LF) given
a particular presentation sequence of such SF-LF pairings (e.g. Wexler and Culi-
cover, 1980). Formal accounts of parameter setting have been developed for small
fragments but even given this idealized model of language learning, search spaces
contain local maxima and subset-superset relations which may cause a learner to
converge to an incorrect grammar given a particulat presentation sequence of trig-
gers (Clark, 1992; Frank and Kapur, 1996; Gibson and Wexler, 1994; Niyogi and
Berwick, 1995). One possible solution to these problems involves defining default,
unmarked initial values for (some) parameters and/or partially ordering the setting
of parameters during learning (Briscoe, 1997a). Another possibility is that filter-
ing learning data, say, according to parsability, in accord with the ‘starting small’
hypothesis may avoid problematic presentation sequences.

Bickerton (1984) argues for the Bioprogram Hypothesis as an explanation for
universal similarities between historically-unrelated creoles, and for the rapid in-
crease in grammatical complexity accompanying the transition from pidgin to cre-
ole languages. From the perspective of the parameters framework, this hypothesis
claims that children are endowed genetically with a UG which, by default, speci-
fies the stereotypical cote creole grammar, with right-branching syntax and subject-
verb-object order, as in Saramaccan. Others working within the parameters frame-
work have proposed unmarked, default parameters (e.g. Lightfoot, 1991), but the
Bioprogram Hypothesis can be interpreted as towatds one end of a continuum of
proposals ranging from all parameters initially unset to all parameters set to default
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values. In work on formal learnability of parameters, it is usually assumed that the
‘starting point’ for learning is arbitrarily set parameters (i.e. any grammar in the
set defined by the model), leading to the negative results reported above. Though
the model we develop below makes no specific assumptions about the starting point
for learning, the evolutionary experiments reported in section 5 suggest that genetic
assimilation will result in a ‘bioprogram-style’ learner with a strong learning bias
in favour of specific default, unmarked parameter settings.

The model of the language acquisition device incorporates a UG with associated
parameters, a parser, and an algorithm for updating initial parameter settings on
parse failure during learning. The following subsections define such a model.

2.1  The grammar (set)

Classical (AB) categorial grammar uses one rule of application which combines a
functor category, containing a slash, with an argument category to form a derived
category with one less slashed argument category (e.g. Wood, 1993). Grammatical
constraints of order and agreement are captured by only allowing directed applica-
tion to adjacent matching categories. Generalized Categorial Grammar (GCG) ex-
tends CG with further rule schemata. The rules of forward application (FA), back-
ward application (BA), generalized weak permutation (P) and forward and back-
ward composition (FC, BC) are given in Figure 1 (where X, Y and Z are category
variables, | is a variable over slash and backslash, and . .. denotes zero or more
further functor arguments). Permutation enables cyclical permutation of argument
categories, but not modification of their directionality. Once permutation is in-
cluded, several semantically equivalent derivations for Kim loves Sandy become
available, Figure 2 shows the non-conventional left-branching one. Composition
also allows alternative non-conventional semantically equivalent (left-branching)
derivations (e.g. Steedman, 1988, 1996).

GCG as presented is inadequate as an account of UG or of any individual gram-
mar. In particular, the definition of atomic categories needs extending to deal with
featural variation, and the rule schemata, especially composition and weak permu-
tation, must be restricted in various parametric ways so that overgeneration is pre-
vented for specific languages. Nevertheless, GCG does represent a plausible ker-
nel of UG; Hoffman (1995, 1996) explores the descriptive power of a very simi-
lar system, in which generalized weak permutation is not required because functor
arguments are interpreted as multisets. She demonstrates that this system can han-
dle (long-distance) scrambling elegantly, and can generate mildly context-sensitive
languages, though not some MIX languages.

The relationship between GCG as a theory of UG (GCUG) and as a specifi-
cation of a particular grammar is captured by embedding the theory in a default
inheritance network. This is represented as a semi-lattice of typed default feature
structures (TDFSs) representing subsumption and default inheritance relationships
(Lascarides et al, 1996; Lascarides and Copestake, 1996, in press). The network
defines intensionally the set of possible categories and rule schemata via type dec-
larations on nodes. For example, an intransitive verb might be treated as a subtype
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Forward Application:
XIYY=X Ay XWI ) = X()
Backward Application;
YX\Y =X Ay X1 () = X(y)
Forward Composition:
XIYY/Z= X/Z Ay XM A z[Y(2)] = A z [X(Y(2))]
Backward Composition:
Y\ZX\Y = X\Z Az [Y@] Ay X = Az [X(Y(2)]
(Generalized Weak) Permutation:
XY - Yo =2 XY Y1 .o A¥n.oy1 X1 oyn)l =
A Y1LYn X1 5Y0))

Figure 1: GCG Rule Schemata

Kim loves Sandy
NP (S\NP)/NP NP
kim’ Ayx [love'(xy)] sandy’
P
(S/NP)\NP
A x,y [love' (x y)]
BA
S/NP
Ay [love/ (kim’ y)]
FA

S

love/ (kim' sandy’)

Figure 2: GCG Derivation for Kim loves Sandy
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NP N S gen-dir subj-dir applic
AT AT AT DR DL DT

NP gendir applic S N. subj-dir
AT DR DT AT AT DL
applic NP N gen-dir subj-dir S

DT AT AT DR DL AT

Figure 3: Sequential encodings of the grammar fragment

of verb, inheriting subject directionality by default from a type gendir (for general
direction). For English, gendir is default right but the node of the (intransitive)
functor category, where the directionality of subject arguments is specified, over-
rides this to left, reflecting the fact that English is predominantly right-branching,
though subjects appear to the left of the verb. A transitive verb would inherit struc-
ture from the type for intransitive verbs and an extra NP argument with default di-
rectionality specified by gendir, and so forth.

For the purposes of the evolutionary simulation described in section 3,
GC(U)Gs are represented as a sequence of p-settings (where p denotes principles or
parameters) based on a flat (ternary) sequential encoding of such default inheritance
networks. The inheritance hierarchy provides a partial ordering on parameters,
which is exploited in the learning procedure. For example, the atomic categories,
N, NP and S are each represented by a parameter encoding the presence/absence or
lack of specification (T/F/?) of the category in the (U)G. Since they are unordered
in the semi-lattice, their ordering in the sequential coding is arbitrary. However, the
ordering of the directional types gendir and subjdir (with values L/R) is significant
as the latter is a more specific type. The distinctions between absolute, default or
unset specifications also form part of the encoding (A/D/7). Figure 3 shows several
equivalent and equally correct sequential encodings of the fragment of the English
type system outlined above.

A set of grammars based on typological distinctions defined by basic constituent
order (e.g. Greenberg, 1966; Hawkins, 1994) was constructed as a (partial) GCUG
with independently varying binary-valued parameters. The eight basic language
families are defined in terms of the unmarked, canonical order of verb (V), sub-
ject (S) and objects (O). Languages within such families further specify the order
of modifiers and specifiers in phrases, the order of adpositions and further phrasal-
level ordering parameters. Figure 4 lists the language-specific ordering parameters
used to define the full set of grammars in (partial) order of generality, and gives ex-
amples of settings based on familiar languages such as “English”, “German” and
“Japanese”.’ “English” defines an SVO language, with prepositions (adpos R) in

5Throughout double quotes around language names are used as convenientmnemonics for familiar com-
binations of parameters. Since notall aspects of these actual languages are represented in the grammars,
conclusions about actual languages must be made with care.
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gen vl n subj obj v2 mod spec rcl adpos cpl
Engl | R F R L R F R R R R R
Ger | R F R L L T R R R R R
Jap | L F L L L F L L L L ?

Figure 4: The Grammar Set Constituent Ordering Parameters

which spec(ifiers), complementizers (cpl) and some mod(ifiers) precede heads of
phrases. There are other grammars in the SVO family in which all modifiers follow
heads, there are postpositions, and so forth. Not all combinations of parameter set-
tings correspond to attested languages and one entire language family (OSV) is ar-
guably unattested (though see Pullum, 1981). “Japanese” is an SOV language with
postpositions in which specifiers and modifiers follow heads. There are other lan-
guages in the SOV family with less consistent left-branching syntax in which speci-
fiers and/or modifiers precede phrasal heads, some of which are attested. “German”
is a more complex SOV language in which the parameter verb-second (v2) ensures
that the surface order in main clauses is usually SVO.°

There are 20 p-settings which determine the rule schemata available, the atomic
category set, and so forth. In all, this CGUG defines just under 300 grammars — in-
cluding 70 distinct full languages. Not all of the resulting languages are (stringset)
distinct and some are proper subsets of others. “English” without the rule of per-
mutation results in a stringset-identical language, but the grammar assigns differ-
ent derivations to some strings, though the associated logical forms are identical.
“English” without composition results in a subset language. Some combinations
of p-settings result in ‘impossible’ grammars (or UGs). Others yield equivalent
grammars, for example, different combinations of default settings (for types and
their subtypes) can define an identical category set.

The grammars defined generate (usually infinite) stringsets of lexical syntactic
categories. These strings are sentence types since each is equivalent to a finite set
of grammatical sentences, formed by selecting a lexical item consistent with each
lexical syntactic category. Such sequences of lexical syntactic categories can be
viewed as triggers (determinate SF-LF pairings) because in this framework know-
ing the lexical syntactic category of each word in a sentence is enough to deter-
ministically recover an unscoped LF. Languages are represented as a finite subset
of sentence types generated by the associated grammar. These represent a sample
of degree-0 or degree-1 learning triggers for the language (e.g. Lightfoot, 1991).”
Subset languages are exemplified by between 3 and 9 such sentence types and full
languages by 12 sentence types. The constructions exemplified by each sentence

SRepresentation of the v1/v2 parameter(s) in terms of type constraints determining allowable verbal
functor categories is discussed in more detail in Briscoe (1998).

TThe degree-1 triggers / sentence types for relative clauses are included because these sentence types are
important for distinguishing the languagesin terms of parsability. So no theoretical claim that degree-1
triggers are essential to learning is being made.



Language as a Complex Adaptive System 13

type and their length are equivalent across all the languages defined by the gram-
mar set, but the sequences of lexical categories can differ. For example, two SOV
language renditions of a sentence type / degree-1 trigger corresponding to The man
who Bill likes gave Fred a present, one with premodifying and the other postmod-
ifying relative clauses, both with a relative pronoun at the right boundary of the
relative clause, are shown below with the differing category highlighted.

Bill likes who the-man a-present Fred gave
NP, (S\NP,)\NP, Rc\(S\NP,) NP,\Rc NP,; NP,
((S\Nps)\NPo2)\NPal

The-man Bill likes who a-present Fred gave
NP,/Re NP, (S\NP,)\NP, Rc\(S\NP,) NP,, NP,
((S\NPS)\NP02)\NP01

The expressivity of a grammar/language is modelled (crudely) in terms of the
proportion of sentence types which can be generated and parsed from the finite sub-
set for the associated full language.

2.2  The parser

The parser is a deterministic, bounded-context stack-based shift-reduce algorithm
(see Briscoe, 1987 for further details and justification). The parser operates with
two data structures, an input buffer or queue, and a stack or push down store. The
algorithm for the parser working with a GCG which includes application, com-
position and permutation is given in Figure 5. This algorithm finds the most left-
branching derivation for a sentence type because Reduce is ordered before Shift. It
also finds the derivation involving the least number of parsing operations because
only one round of permutation occurs each time application and composition fail.®
The category sequences representing the sentence types in the data for the entire
language set are designed to be unambiguous relative to this ‘greedy, least effort’
algorithm, so it will always assign the appropriate LF to each sentence type. How-
ever, there are frequently alternative less left-branching or more ‘expensive’ deriva-
tions of the same LEF, and in some cases a distinct LF could be recovered by gener-
ating all permutations of functors before attempting application/composition.

The parser is augmented with an algorithm which computes working memory
load during an analysis. Limitations of working memory (e.g. Baddeley, 1992) are
modelled in the parser by associating a cost with each stack cell occupied during
each step of a derivation, and recency and depth of processing effects are modelled
by resetting this cost each time a reduction occurs (see Briscoe, 1987, 1998 for fur-
ther discussion). The working memory load (WML) algorithm is given in Figure 6.
Figure 7 gives the right-branching derivation for Kim loves Sandy, found by the
parser utilizing a grammar without permutation. The WML at each step is shown

8The preference for left-branching derivations and those involving the least number of parsing opera-
tions can be seen as a precise instantiation of the economy principle in Minimalist Grammar (Chomsky,
1995) within this framnework.
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1. THE REDUCE STEP: if the top 2 cells of the stack are occupied,
then try
a) Application, if match, then apply and goto 1), else b),
b) Composition, if match then apply and goto 1), else c),
¢) Permutation, if match then apply and goto 1), else goto 2)

2. THE SHIFT STEP: if the first cell of the Input Buffer is occupied,
then pop it and move it onto the Stack together with its associated lexical
syntactic category and goto 1),
else goto 3)

3. THE HALT STEP: if only the top cell of the Stack is occupied by a con-
stituent of category S,
then return Success,
else return Fail

THE MATCH AND APPLY OPERATION: if a binary rule schema matches the
categories of the top 2 cells of the Stack, then they are popped from the Stack
and the new category formed by applying the rule schema is pushed onto the
Stack.

THE PERMUTATION OPERATION: each time step 1c) is visited during the Re-
duce step, permutation is applied to one of the categories in the top 2 cells of
the Stack (until all possible permutations of the 2 categories have been tried in
conjunction with the binary rules). The number of possible permutation op-
erations is finite and bounded by the maximum number of arguments of any
functor category in the grammar.

Figure 5: The Parsing Algorithm

After each parse step (Shift, Reduce, Halt (see Figure 5):
1. Assign any new Stack entry in the top cell (introduced by Shift or Re-
duce) a WML value of 0
2. Increment every Stack cell’'s WML value by 1
3. Push the sum of the WML values of each Stack cell onto the WML-

record

When the parser halts, return the sum of the WML-record which gives the total
WML for a derivation.

Figure 6: The WML Algorithm
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Stack Input Buffer Op. Step WML
K. loves S. 0 0

K.:NP:kim’ loves Sandy  Shift 1 1

L:(S\NP)/NP:A y,x(love’ X, y)  Sandy Shift 2 3

K.:NP:kim'

S.:NP:sandy’ Shift 3 6

L:(S\NP)/NP:) y,x(love’ x, y)

K.:NP:kim’

1. S.:S/NP: ) x(love’ x, sandy’) Red.(A) 4 5

K.:NP:kim'

K. 1. S.:S:(love' kim’, sandy’) Red.(A) 5 1

Figure 7: WML for Kim loves Sandy

for this derivation. The overall WML (16) is higher than for the left-branching
derivation (9).

The WML algorithm is used to rank the parsability of sentence types, and thus
indirectly languages, by parsing each sentence type from the exemplifying data
with the associated grammar and then taking the mean of the WML obtained for
these sentence types. “English” with Permutation has a lower mean WML than
“English” without Permutation, though they are stringset-identical, whilst a hypo-
thetical mixture of “Japanese’” SOV clausal order with “English” phrasal syntax has
a mean WML which is 25% worse than that for “English”. The predictions of the
WML algorithm are in broad accord with existing psycholinguistically and typo-
logically motivated theories of parsing complexity (see Briscoe, 1987, 1998; Gib-
son, 1991; Hawkins, 1994; Rambow and Joshi, 1994).

2.3 The parameter setting algorithm

The parameter setting algorithm is an extension of Gibson and Wexler’s (1994)
Trigger Learning Algorithm (TLA) to take account of the inheritance-based partial
ordering and the role of memory in learning. The TLA is error-driven — parameter
settings are altered in constrained ways when a learner cannot parse trigger input.
Trigger input is defined as primary linguistic data which, because of its structure
or context of use, is determinately unparsable with the correct interpretation (e.g.
Lightfoot, 1991 and see section 2.2).°. The TLA is memoryless in the sense that a
history of parameter (re)settings is not maintained, in principle, allowing the learner
to revisit previous hypotheses. This is what allows Niyogi and Berwick (1995) to
formalize parameter setting as a Markov process. However, as Brent (1996) argues,
the psychological plausibility of this algorithm is doubtful — there is no evidence
that children move between neighbouring grammars along paths that (blindly) re-

9Tn the simulation, sentence types used as triggers are represented by p-setting schemata (see e.g. Clark,
1992) with associated memory loads to avoid the need for continuous on-line parsing of triggers.
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visit previous hypotheses. Therefore, in the modified algorithm each parameter can
only be reset once during the learning process, resulting in a learning procedure
with (limited) memory. The TLA is local in the sense that only one (random) para-
meter can be reset on parse failure. In the modified algorithm, we relax this require-
ment to # parameters per parse failure. Bertolo (1995) shows that this relaxation of
the TLA does not alter fundamental results concerning local maxima and learnabil-
ity.1% The TLA is unordered in the sense that on parse failure a parameter is chosen
atrandom to be reset. In the modified algorithm, parameters are (re)set starting with
the most general in terms of the partial order defined by the inheritance hierarchy.
Once (re)set they are not revisited because the procedure utilizes limited memory.
Both the TLA and the modified algorithm are greedy in the sense that a parameter
updated on parse failure is retained if that setting allows the current trigger to be
reparsed successfully.

Data: {Sl, So, ... Sn}

unless

PARSER; (GRAMMAR; (P-SETTING; ))(S;) = Success
then

p-setting; = UPDATE(p-setting;)

unless

PARSER; (GRAMMAR; (P-SETTING; ))(S;) = Success

then

RETURN p-setting;
else

RETURN p-setting;

UPDATE:
Reset the first n default parameter(s) or set the first n unset parameter(s)
in a ‘left-to-right’ search of the p-settings (consistent with the partial
order encoding their generality) according to the following table:
Input: D1 DO ?7?
Output: RO R1 ?1/0(random)

(where 1 =T/L and 0 = F/R — see figs. 3/4 above)

Figure 8: The Learning Algorithm

Each step for a learner can be defined in terms of three functions: P-SETTING,
GRAMMAR and PARSER, as:

10The motivation for relaxing the single-value constraint and adopting a n-local variant of the TLA is
twofold: firstly, the selection of a fair sample of triggers / sentence types with respect to WML creates
unbalanced trigger paths with respect to the number of parameter resettings required to successfully
learn a givenlanguage (see e.g. Frank and Kapur, 1996) for discussion of optimal sequences of triggers);
secondly, the parameters canbe varied in the evolutionary simulation, creating a wider range of learning
procedures to select from.
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PARSER; (GRAMMAR; (P-SETTING;))(Sentence; )

A p-setting defines a grammar which in turn defines a parser (where the subscripts
indicate the output of each function given the previous trigger). The modified al-
gorithm is summarized in Figure 8. The core of the algorithm is the update rule,
which is applied to the sequential p-setting encoding described in section 2.1; for
instance, a default parameter can be reset to its opposite value and the ‘D’ encod-
ing changed to a ‘R’ to record that this default parameter has been reset, and so
forth. The learning procedure can be made maturational and incorporate the “start-
ing small’ hypothesis (see section 1). The WML of a sentence type can be used to
determine whether it can function as a trigger at a particular stage in learning, thus
filtering random presentation of triggers and ensuring that triggers are presented in
(partial) order of decreasing parsability.

In summary, this account of the parameter setting procedure is error-driven,
greedy, n-local, partially-ordered, utilizes limited memory, and can incorporate
maturationally developing working memory limitations, effectively filtering trig-
ger input. Finally, the initial configuration of the parameters in the TLA is usually
taken to be any arbitrary grammar, though as Gibson and Wexler (1994) point out,
assuming (some) specific default initial settings can remove local maxima. In this
model, parameters can be initially unset (?) or have a default (D) value (see section
2.1). The precise choice of initial settings and of the r (re)settable parameters per
trigger define a space of variant learning procedures for (biological) evolution to
select from.

The learnability of languages in the model is ranked in terms of the number
of parameters that must be updated to converge on the target grammar and also in
terms of the maximum number of parameters which must be updated for a single
trigger given an optimal presentation sequence of triggers. This ranking is calcu-
lated by assuming a learner with all parameters unset initially (see section 4.1 be-
low). However, the ranking can also be made more dynamic by recalculating it for
different potential initial p-settings.

3 The evolutionary simulation

The computational simulation supports the evolution of a population of Language
Agents (LAgts), similar to Holland’s (1993) Echo agents, but equipped with aLAD,
as decribed in section 2, and a simple sentence generator based on random gener-
ation of a trigger / sentence type from the LAgt’s current language (if any). LAgts
generate and parse sentence types compatible with their current p-settings. They
participate in linguistic interactions which are communicatively successful if their
p-settings are compatible. Compatibility is defined in terms of the ability to map
from a given SF to the same LF, rather than in terms of sharing of an identical gram-
mar.!! LAgts are either learning a grammar or have completed leaming and fixed

1P_setting compatibility implements a weak notion of communicative success. Thus, there is no Gricean
entailment of successful transmission of speaker intentions, or of a shared interpretation. Consequently,
the model builds in no assumptions about the function(s) of linguage, whether this be to influence others,
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on the grammar and associated language acquired at that point.

In experiments which utilize natural (biological) selection for LLAgts, the rel-
ative fitness of a LAgt is a function of the proportion of its linguistic interactions
which have been successful, and optionally of the learnability, expressivity and/or
interpretability of the grammar(s)/language(s) used by that LAgt during a cycle of
interactions. Thus, fitness is dependent on an agents’ linguistic compatibility with
other agents, creating frequency-dependent selection, and also potentially on the
complexity of the grammar(s)/language(s) they are using. The fitness functions and
their components are given in Figure 10 and Figure 11 below. Learnability is mod-
elled in terms of the number of parameters which need to be set to acquire a tar-
get grammatr, the highest number which may be reset for a single trigger, and the
agent’s success rate at correctly setting parameters. Learning time, and thus the
time taken to achieve maximal communicative performance, can also be increased
by additional maturational memory limits during learning. However, this cost may
also be offset by the tendency of such limits to create a more optimal presentation
of triggers to the learning procedure. Interpretability is modelled by parsing cost
(i.e. parsability) measured in terms of mean working memory load created during
an interaction cycle, according to the WML model of section 2.2. Expressivity is
modelled (crudely) in terms of an additional cost for using a proper subset language
of one of the 70 full languages defined by the grammar space. This cost is graded
on the basis of the number of sentence types/ triggers associated with the language,
and is necessary because otherwise agents will tend to converge on less expressive
languages with lower average working memory load costs and fewer parameters to
learn. In general, the pressures created for learnability, parsability and expressivity
are conflicting, creating the potential for complex interactions and trade-offs in the
search for (locally) optimal languages.

An interaction cycle consists of a prespecified proportion of individual random
interactions between LLAgts, with generating and parsing agents also selected ran-
domly. LAgts which have a history of mutually successful interaction and higher
than average fitness can ‘reproduce’. A LAgt can ‘live’ for up to ten interaction
cycles, but may ‘die’ earlier if its fitness is lower than average. It is possible for
a population to become extinct (for example, if all the initial LAgts go through
ten interaction cycles without any successful interaction occurring), and success-
ful populations tend to grow at 4 modest rate (to ensure a reasonable proportion of
adult speakers is always present). LAgts learn during a critical period from ages 1-4
and reproduce from 3-10, parsing and/or generating any language learnt throughout
their life.

During learning a LAgt can reset genuine parameters which either were unset or
had default settings ‘at birth’. However, p-settings with an absolute value (princi-
ples) cannot be altered during the lifetime of a LAgt. Successful LAgts reproduce at
the end of interaction cycles by one-point crossover of (and, optionally, single point
mutation of) their initial p-settings — ensuring neo-Darwinian rather than Lamarck-
ianinheritance. (The encoding of p-settings allows the deterministicrecovery of the

communicate (mis)information, or whatever (see e.g. Pinker and Bloom, 1990; Keller, 1994:84f for
insightful discussion).
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initial setting.) Fitness-based reproduction ensures that successful and somewhat
compatible p-settings are preserved in the population and randomly sampled in the
search for (locally) optimal versions of universal grammar, including initial settings
of parameters. Thus, although the learning algorithm per se is fixed, a range of al-
ternative learning procedures can be explored based on the definition of the initial
set of parameters, their initial settings, and on the number of (re)settable parameters
per trigger. Figure 9 summarizes crucial options in the simulation giving typical
values used in the experiments reported in section 4, Figure 10 shows the poten-
tial costs and benefits to a LAgt of each interaction, and Figure 11 the components
used to define the full or partial fitness functions. (For calculation of parsability
only successfully parsed sentence types are utilized, hence parse failures (PF) are
subtracted from the total number of parse interactions for a LAgt.)

Variables Typical Values
Initial Population Size 32
Interaction Cycle Av. Interactions/LAgt 65
Simulation Run Int. Cycles 50-10k
Crossover Probability 09
Mutation Probability 0/0.05
Learning memory limited yes
critical period yes
(re)settable n 3-5
Migrations lg distance 3
per cycle 2
not genetic T

Figure 9: Typical Simulation Options

4 Preliminary experiments

The computational model must have several properties to qualify as a useful simu-
lation of the potential coevolution of language and the language acquisition device.
Firstly, it must be clear that for the chosen grammar set, at least some learning pro-
cedures in the space of possibilities definable in terms of LAgts’ p-settings, are able
to learn these grammars given finite and feasible (positive) input. Secondly, learn-
ing LAgts should converge reliably on the language of a population of homoge-
neous adult LAgts to ensure the continuity of speech communities. This latter prop-
erty of stability of language acquisition through the generations is partly a property
of the learning procedure and partly of other factors, such as the ratio of learners
to adult LAgts in the population and the pattern of interactions between adults and
learners.
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1. Generate cost: 1 (GC)

. Generate subset language cost: 1-3 (GSC)
. Parse cost: 1 (PC)

. Parse failure cost: 1 (PF)

. Parse memory cost: WML(st)

. Parse/Generate success benefit: 1 (SI)

. Parameter (re)set cost: 1 (PS)

. Parameter (re)set success benefit: 1 (SPS)

O 00 A O W s W N

. Maximum (re)settable parameters: n (MSP)

Figure 10: Cost/Benefits per Interaction

Fitness Components

Communicative
. S5
Performance: GC1PC
ity fele]
Expressivity: GCraso
ity 1 5PS
Lea.rnablllty. MSP X -
ST PC-PF
Parsability: WML(s1.57%)

Full Fitness Function: w1(CP) x w2(Ezp.) x w3(Lrn.) x wd(Pars.)

(predefined weights balance relative strength of conflicting pressures)

Figure 11: LAgt Fitness
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Table 1: Effectiveness of Two Learning Procedures

Learner Language

SVO SVOvl VOS VSO SOV SOvv2 OVS OSV
Unset 60 80 70 80 70 70 70 70
Default | 60 60 60 60 60 60 80 70

4.1  The effectiveness of some learning procedures

Two learning procedures were predefined — a default learner and an unset learner.
These LAgts were initialized with p-settings consistent with a minimal inher-
ited CGUG consisting of application and the NP and S atomic categories already
present. All the remaining p-settings were genuine parameters for both learners.
The unset learner was initialized with all these unset (?), whilst the default learner
had default settings for the parameters gendir and subjdir and argorder which
specify a minimal SVO right-branching grammar. Both were able to update up
to 5 parameters per trigger. The unset learner represents a ‘pure’ principles-and-
parameters Jearner with innate knowledge of the noun-verb distinction and their
(predicate-argument) mode of combination. This corresponds to what Deacon
(1997) identifies as the minimal syntactic knowledge required to support his neo-
Piercian concept of symbolic reference and, therefore, what he argues has been ge-
netically assimilated. The default learner is modelled on Bickerton’s (1984) Bio-
program Hypothesis, representing, additionally, a language learner with a prefer-
ence for SVO predominantly right-branching syntax.

The two types of predefined learner LAgt were tested against an adult LAgt
initialized to randomly generate triggers from one of seven full languages in the
set which are close to an attested language; namely, “English” (SVO, predomi-
nantly right-branching), “Welsh” (SVOv1, mixed order), “Malagasy” (VOS, right-
branching), “Tagalog” (VSO, tight-branching), “Japanese” (SOV, left-branching),
“German” (SOVv2, predominantly right-branching), “Hixkaryana” (OVS, mixed
order), and one very rare, if not unattested, full OSV language with left-branching
syntax. In these tests, a single learner interacted with a single adult. After every
ten interactions, in which the adult randomly generated a trigger and the learner
attempted to parse and/or learn from it, the state of the learner’s p-settings was ex-
amined to determine whether the learner had converged on the same grammar as
the adult. Table 1 shows the number of such interaction cycles (i.e. the number
of input sentences to within ten) required by each type of leamner to converge on
grammars for each of the eight languages with probability (p > 0.99). These fig-
ures are each calculated from 1000 trials to a 1% error rate; they suggest that, in
general, the default learner is more effective than the unset learner. However, for
the OVS language (OVS languages represent 1.24% of the world’s languages; Tom-
lin, 1986), and for the extremely rare OSV language, the default (SVO) learner is
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less effective. So, there are at least two learning procedures in the space defined by
the model which can converge with high reliability on some of the full grammars
in this set. Stronger conclusions require either exhaustive experimentation or the-
oretical analysis of the model of the type undertaken by Gibson and Wexler (1994)
and Niyogi and Berwick (1995).

4.2  Acquisition stability

The simulation employs random interactions within a population, some of whom
will be learners. Thus, a proportion will involve learning LAgts interacting with
each other or generating input for adult LAgts, before they have converged on the
target language. Even in a homogeneous adult LAgt environment with a critical
period for learning, if the proportion of learners to adults in the population is too
high, the learners will not converge to the target language as the distribution of sen-
tence types becomes more skewed towards those of subset languages. Two series
of 50 interaction cycle simulations were run each initialized with either 32 adult
unset learners or 32 adult default learners all speaking one of the eight languages
described above. LAgts reproduced (without mutation) and died as described in
section 3. However, given the p-settings of the initial population, LAgts were only
able to reproduce further unset or default learners or hybrid learners generated via
crossover of these two learning strategies. Each condition was run ten times.

In all the runs, the population continued to speak the original language and
learners reliably converged to that language by adulthood. Thus, any subset lan-
guage speakers in the population at the end of an interaction cycle were without
exception learners. In these runs, the proportion of adults never fell below 60%, the
mean number of interactions per cycle for each agent was 65, and the levels of re-
production and death relative to population size were tuned (o ensure stability. Sim-
ilar tests were done using variant fitness functions not taking account of memory
limitations in learning and/or parsing with identical results. Briscoe (1998) gives
further details of experiments to test and tune the (potential) stability of the simu-
lation model.

5 Linguistic selection

To demonstrate linguistic selection for more (locally) optimal gram-
mars/languages, a number of experiments were undertaken with genetically-
invariant populations of LAgts operating in a continuously heterogeneous
linguistic environment, providing the variation on which linguistic selection
could work. In reality, variation is generated by language contact and borrowing,
linguistic innovation, reanalysis during learning, and so forth (see e.g. Harris and
Campbell, 1995). In the simulation, this was modelled by introducing additional
adult LAgts with a different full language at regular intervals or by initializing
the simulation with two genetically-identical adult groups speaking different full
languages. That is, all variation is a consequence of ‘population movement’.
Language change occurs when learners converge preferentially on one or other
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language, or a mixture, or a subset, whilst exposed to data from more than one
source grammar, There is also an increased possibility of misconvergence to
a grammar not exemplified in the data when the (uniform) distribution of trig-
gers from a single source is skewed by the presence of several sources. This is
particularly true for parameters with default initial settings.

5.1 Linguistic selection with migrations

In this series of experiments, approximately one third additional adults were added
to the population at regular intervals, all speaking the same new full language to
ensure that the new language had a reasonable chance of surviving a number of cy-
cles and thus influencing learners. LAgts added in this fashion had identical initial
p-setting configurations as the existing population, so no genetic variation resulted.
The maximal ‘distance’ between an existing dominant language and the new lan-
guage was three parameters. ‘Migrations’ of this type occurred every other cycle
provided that a clearly dominant language had emerged at the end of the previ-
ous cycle. Thus, migrations ensure a constant source of linguistic heterogeneity
throughout a simulation run. The amount of variation introduced was tuned to the
maximum consistent with the population maintaining a mean communicative per-
formance level of 90% or better. After the first interaction cycle in all runs with
migrations there are always two or more language variants present in the linguistic
environment at any one time. Figure 12 plots the number of languages in the run
with full LAgt selection discussed below.

7 T T T T T T

No. of Languages
E
T

1 I 1 I Il Il i L i 1

0 50 100 150 200 250 300 350 400 450 500
tntaraction Cycles

Figure 12: Number of languages in a typical run with migrations
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In the first set of experiments, no fitness function was utilized, 500 cycle runs
were used (approximately 125 generations of LAgts), and all LAgts were unset
learners, as defined in section 4.1, LAgts reproduced randomly with no regard for
communicative performance or the nature of the language they utilized. However,
because all LAgts were using an effective learning procedure, because the simu-
lation was initialized with a single full language, and because the amount of lin-
guistic variation was controlled, in all runs communicative performance averaged
over 90%. This is plotted in Figure 13 for a typical run — dips correspond to points
where migrations occurred.

1 L e F Gt o Lo T ]Wr i
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08 N
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Interactlon Cycles

Figure 13: Communicative performances with random selection and migrations

The overall mean costs of the languages adopted by the population were re-
duced during the course of this and other runs via linguistic selection for learnabil-
ity, as illustrated in Figure 14. The figure plots an integrated measure for the mean
learnability, parsability and expressivity of the languages present in each interac-
tion cycle, and also breaks this down into the three components of memory load,
generate subset cost and learning cost, so it can be seen clearly that the population
is optimizing learnability at the expense of expressivity.

In this and other runs with random L Agt selection, the population selected sub-
set languages, which are less expressive but more easily learnable as they require
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Figure 14: Language costs with random selection and migrations
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fewer parameters set. As memory load plays arole in learnability via the filtering
of triggers, often, but not in every case, parsability was also selected for. Similar
results were obtained from all ten runs.

These results show that linguistic selection can occur withoutany natural selec-
tion for LAgts whatsoever. The bias of the learning procedure which the LAgts use
is enough to create a process of selection for the most learnable languages. Kirby
(1996) explores in detail this form of linguistic selection as languages, or more ac-
curately triggers, pass repeatedly through the ‘bottleneck’ of language acquisition.
Essentially, triggers compete for learners and those which are more able to pass
through the filter of the learning procedure will set more parameters in more learn-
ers. In this way languages will over time adapt to the language learning procedure.
Kirby argues that, on the assumption that parsability is identical to learnability, lan-
guages will, therefore, evolve to be optimally parsable, and demonstrates that this
form of linguistic selection can predict statistical constituent order universals with-
out the need for any natural selection for LAgts.!? One weakness of this position s
that Kirby only models differential learning between competing variants, Once a
more complete learning procedure is defined, the possibility of simply ot learning
arises, and thus the possibility of converging on a subset language. This is exactly
what is seen in runs of the simulation model without natural selection for LAgts
— there is no pressure for LAgts to prefer a more expressive, and thus costly, lan-
guage, so, even if the population is initialized to use such a language it soon selects
for subset languages. A counteracting pressure for expressivity is needed to prevent
this tendency.

Other runs were performed using communicative performance, memory load,
generate subset costs and/or learning costs as a component of the fitness function on
LAgt reproduction. In the runs where expressivity was a component of selection,
the population did not converge on subset languages despite the linguistic variation
in the learning environment created by frequent migrations. When the full fitness
function was utilized, LAgts’ mean fitness typically did not vary greatly, except
where migrations removed them temporarily from a (local) optimum. The mean
language costs for parsability, learnability and expressivity displayed in Figure 15
demonstrate consistent linguistic selection for more easily learnable and parsable
full languages. This is typical of such runs where full natural selection for LAgts
is utilized.!* Comparing this with Figure 14 above demonstrates the contrast with
linguistic selection and no natural selection.

12Briscoe (1998) discusses Kirby’s position and argues that learnability and parsability are not identical.

13Tn some cases, migrations still cause the population to settle on a less optimal language, though this
is far less frequent when full selection for LAgts is utilized. The use of random interaction between
LAgts idealizes a vast range of sociolinguistic factors which influence selection between linguistic vari-
ants, such as the prestige, charisma, economic power or ideology of the speakers of the variants, and so
forth. In reality, these factors probably significantly outweigh considerations of selection for parsability
or learnability in many situations; for example, where the migrants are conquering invaders. In addition,
the simulation does not address differences in death rates between linguistic groups due to disease, geno-
cide, and so forth. Dixon (1997) and Pullum (1981) provide an extended discussion of such factors.
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Figure 15: Language costs with natural selection and migrations

5.2  Linguistic selection between language pairs

In more circumscribed experiments, linguistic selection for more parsable and/or
more learnable languages, and the interplay between these two pressures, can be
demonstrated directly. For example, a series of 50 cycle simulations were run in
which the population was initialized with equal numbers of default learner adult
LAgts speakirfg two different full languages which contrasted in learnability and/or
parsability. There were no differences in the initial p-settings in the population and
10 genetic variation.

For example, the population was initialized with equal numbers of default
learner LAgts speaking either SOV or SOVv2. SOVv2 has a slightly lower mean
memory load, and thus parsability, than SOV (largely because the freer constituent
ordering options of Japanese relative to German are not modelled effectively in
“Japanese” (see e.g. Hawkins, 1994)). Figure 16 shows the languages which
emerge during one run with the full fitness function. SOVv2 comes to dominate the
population after 5 interaction cycles. The other language which persists, SOVv2-
N, is a subset language spoken by learners of SOVv2. SOVv2-GWP-COMP is also
a subset language of SOVv?2 so the ‘recurrence’ of this language at cycle 45 just re-
flects presence of one or two less successful learners at the end of an interaction
cycle. The other non-v2 languages are eliminated within the first 5 interaction cy-
cles. Allruns exhibited the same clear effect. However, with parsability not a factor
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in LAgt fitness, the opposite result was obtained — in all runs SOV came to dom-
inate with SOV-N(-GWP-COMP) subset languages, again spoken exclusively by
learners. These clear opposing outcomes illustrate that parsability can be a factor
in linguistic selection. It is highly likely that even in the absence of some ranking
of languages in terms of the learning or parsing procedures, populations will select
a single language, as this increases individual LAgt’s communicative performance.
However, as SOV is consistently selected in all such runs when parsability is nota
factor, this is most likely to be because the learning procedure for SOVv2 requires
the setting of one further parameter over SOV.
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Figure 16: Selection for SOVv2 over SOV

Thus, in the case of these two languages, ease of parsability for both learners
and users creates greater overall linguistic selection pressure than that created by
the need to set one less parameter. This result is consistent with the claim made by
Hawkins (1994) that ease of processing is a factor in the distribution of constituent
order types in the world’s languages (see Briscoe 1997b, 1998 for further examples
of linguistic selection and demonstrations that memory limitations during learning
are a significant factor.)
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6 Coevolution

The experiments of section 5 demonstrated evolution of language on a historical
timescale within a genetically-invariant population of LAgts. To demonstrate co-
evolution, it is also necessary to allow the LAgt population to evolve. LAgts’ initial
p-settings were varied by allowing mutation of a single element of a LAgt p-setting
(with probability 0.05) during LAgt reproduction. Successful variant initial set-
tings could then propagate through the population via single-point crossover (with
probability 0.9). The full fitness function was used.

6.1 Coevolution without migrations

In the first series of such experiments, the initial population were all unset learner
adults speaking one of the clearly-attested full languages. Mutations could intro-
duce a language variant by altering the default value of a parameter. However,
the degree of linguistic variation in such runs was typically minimal with popula-
tions sampling around 5 closely-related full languages over 500 interaction cycles.
In these runs, the populations always evolved towards initial p-settings which en-
hanced the learnability of the dominant language in the environment. Figure 17
shows mean LAgt fitness for one such population —- a measure of 0-1 integrating
mean communicative performance, and mean LAgt learning costs, memory load
and subset language costs (sec section 3 above) — and the relative proportions of
default parameters, unset parameters and principles in the same population.

In all such runs, the proportion of default parameters grew at the expense of
unset ones, with default values reflecting the language of the environment. In ad-
dition, the mean number of (re)settable parameters per trigger fell until typically
by cycle 500 the whole population converged on a value of 2 or 3, depending on
the language in the environment. Consequently, LAgt fitness improved over the
course of the run as a result of reduction in learning costs, whilst mean parsabil-
ity, expressivity and communicative performance remained roughly constant. This
is a clear example of genetic assimilation in which LAgts are evolving to be able
to acquire the dominant language more effectively. By replacing unset with de-
fault parameters with initial settings compatible with the dominant language, the
LAD is evolving an accurate language-specific learning bias which simplifies the
acquisition of this language. At the same time, this bias itself will alter the relative
complexity of languages by altering their relative learnability. However, linguis-
tic variation in these simulations is very limited, caused only by occasional failures
of convergence, mutations of default parameter values or mutations of parameters
to principles. Consequently, the rate of linguistic change is very slow, creating a
constant selection pressure for genetic assimilation to work on.

6.2  Coevolution with migrations

To see whether genetic assimilation would occur with maximal linguistic varia-
tion consonant with communicative success, a second series of experiments was
run identical to those described above, except that migrations occurred as often as
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Figure 17: Mean fitness and p-setting types during coevolution without migrations
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was compatible with a mean 90% communicative performance over the entire 1000
cycle run. Figure 18 shows the relative proportions of default parameters, unset pa-
rameters and principles for one such run.
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“Unset Parameters® -——

"Principles® -

N S,

40

% of Parameter Types in Population

i
400 BOD 1000
Interaction Cycles

Figure 18: Proportions of p-setting types with migrations

In these runs, LAgts still evolved LADs which improved learnability despite
the fact that typically the dominant language changes about 20 times and approxi-
mately 50 languages are sampled by the population. However, as in the run shown,
there was a greater tendency to replace unset parameters with principles rather than
just with default parameters. Over 10 such runs, the proportion of unset parame-
ters declined by a mean 35% leading to around 50% of p-settings being principles
or default parameters with roughly an equal number of new principles and default
parameters. In other respects, results were identical to the first series of runs with
LAgt fitness improving as a consequence of reduced learning cost. However, the
greater degree of linguistic variation also allowed more linguisticselection for more
optimal languages.

The replacement of unset parameters by principles is an example of the type of
genetic assimilation which Pinker and Bloom (1990) envisage, in which the class of
learnable languages is (further) constrained by the LAD in the interests of enhanced
learnability. Thus, in these runs we see examples of genetic assimilation of both
learning biases (defaults) and constraints (principles), albeit at a slower rate than
when the linguistic environment was more constant. To see how long genetic as-
similation would continue in a heterogeneous linguistic environment, several sim-
ulations were run for 10,000 cycles. In these, the mean decline in the proportion
of unset parameters was 55% with 65% of p-settings being principles or parame-
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ters at the end of the runs. Once again approximately half of the replaced unset
parameters were default parameters. Plots of the proportions of each type of pa-
rameter show a rate of genetic assimilation for default parameters and principles
which slows through these runs. Finally, in similar runs with populations initial-
ized to reproduce learners with all default parameters with values appropriate to the
initial language, the population invariably evolved away from such ‘total’ genetic
assimilation towards p-settings containing some unset parameters. Therefore, we
can conclude that there is a limit to genetic assimilation in the face of such linguistic
variability.

6.3 Discussion

Why then do we see (partial) genetic assimilation even in the face of great linguis-
tic heterogeneity and rapid linguistic change? And why, when change is rapid, is
there a greater tendency for the assimilation of principles as well as default initial
parameter values? Firstly, consider the possible mutations which can occur within
a p-setting and their expected fitness effects; Table 2 catalogues the possible transi-
tions of individual initial p-settings (which can be created by a single mutation) and
their expected fitness cost/benefit in terms of the ‘truth/falsity’ (T/F) of the resulting
p-setting value in the current linguistic environment.

The fitness cost/benefit is based on the expected effect on learnability. Itis clear
that any transition from a faise principle (i.e. one which is inconsistent with the cur-
rent dominant linguistic environment) will incur a fitness benefit, because it will
allow a LAgt a chance to learn the dominant language. By contrast, a transition
from a true principle to anything other than a true default will have a learning cost
because it will either render learning impossible or increase the number of para-
meters to be (re)set. Likewise, no transition from a true default creates any benefit
and three incur a cost. Three transitions from a false default incur learning bene-
fit, only a transition to a false principle incurs a cost, by making learning impossi-
ble. Transitions from unset parameters to true default parameters or true principles
are beneficial, whilst a false principle, as always, incurs a (fatal) cost. The tran-
sition to a false defaunlt incurs no cost (or benefit) because during learning it still
takes one parameter (re)setting to obtain the correct value. It should be clear from
this discussion, that what we would expect to evolve is a population with correct
principles, predominantly correct default initial parameter values, and possibly a
minority of unset and/or default incorrect parameters. In an unchanging linguistic
environment, we would expect the population to eventually fix on all true principles
or default parameters. However, in all the experiments reported above the linguistic
environment is never entirely homogeneous or static. Therefore, the ‘truth/falsity’
of a p-setting is an approximation: a value may be predominantly correct in the
current environment given the dominant language, but become predominantly or
completely incorrect over succeeding cycles (and vice versa). Whether an initially
beneficial mutation achieves fixation, or even predominance, within the population
will depend not only on the initial benefit it offers the mutated LAgt, but also on
the continuing benefit to its descendents. It is here that coevolutionary effects will
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Table 2: P-setting Transitions and Fitness Effects

O1d New
PS-Type P-value PS-Type P-value Expected Fitness
Absol F Def F f>
Absol F Def T f>
Absol F Absol T f>
Absol F Unset ? F>
Absol T Def F fi <
Absol T Def T f=
Absol T Absol F f<
Absol T Unset ? f<
Def F Absol F f<
Def F Absol T f>
Def F Def T f>
Def F Unset ? f=
Def T Absol F f<
Def T Absol T f=
Def T Def F f<
Def T Unset ? f<
Unset ? Absol T f>
Unset ? Absol F f<
Unset ? Def T f>
Unset ? Def F f=

occur; for example, as a predominantly correct principle spreads through the popu-
lation, it will create greatly increased linguistic selection for languages which obey
this principle. This, in turn, will increase the chance that the principle will go to
fixation in the population, rendering languages which do not obey the principle un-
learnable. In a changing environment, we would expect there to be a preference
for default parameters over absolute principles, because an initially predominantly
correct principle which spread through a proportion of the population would incur a
high, possibly fatal, cost to them if it subsequently became (predominantly) incor-
rect. By contrast, a default parameter which becomes incorrect, incurs no more cost
than an unset parameter, given the learning procedure assumed in the current sim-
ulation. There does appear to be a bias towards genetic assimilation of default pa-
rameters in the experiments reported above with lowish rates of linguistic change.
The migration mechanism, used in the simulation for introducing linguistic varia-
tion, tends toreinforce the status of principles which have spread through more than
50% of the population and accelerate their fixation (because it introduces adults
with identical initial p-settings to those of the existing majority). So, further ex-
periments are needed to explore the degree of genetic assimilation of principles as
opposed to default parameters with variant migration mechanisms.
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In the experiments reported above with mean 90% communicative perfor-
mance, the fastest observed rate of change from one dominant language variant
to another was 4 interaction cycles. The fastest observed rate at which a mutation
in a p-setting reached fixation was 43 cycles. This suggests that linguistic evolu-
tion of grammatical parameters was only about one order of magnitude faster than
‘genetic’ evolution of p-settings. Increasing the speed of linguistic change would
have resulted in a decrease in communicative performance below what is assumed
reasonable in a language community. Nevertheless, the simulation tells us nothing
about the true relative rates of linguistic and biological evolution — increasing the
size of the population (in the simulation or real world) would, for example, slow
down biological evolution. But, there can be no certainty about the size of the an-
cestor population in which the LAD might have evolved. Deacon (1997:329) sug-
gests that linguistic evolution is ‘many’ orders of magnitude faster than biological
evolution, arguing that languages can change their major grammatical properties
over thousands of years (historically, 1-2 millenia for the types of constituent or-
der properties modelled here). However, the time taken for a major grammatical
change and the time taken for biological evolution will depend critically on pop-
ulation size, geographical dispersal, diffusion rates of genes and of variant gram-
matical forms, and so forth. In the simulation runs with rapid linguistic change,
typically 2-3 major grammatical changes propagate through the population every
50 interaction cycles. Therefore, default parameters and absolute principles are be-
ing genetically assimilated and going to fixation in the population typically in the
face of several such major linguistic changes.

The key to understanding why genetic assimilation is still likely to occur is that
the sample space of possible grammars and associated languages is vastly larger
than the number of grammars which can be sampled by a population in the time
taken for a principle or default parameter to go to fixation. In the simulation, there
are under 300 languages and only 70 distinct full languages, based predominantly
on constituent order differences. Therefore, in the time taken for a p-setting to go
to fixation typically around 5% of the space of grammars might be sampled. This
means that 95% of the selection pressure for genetic assimilation of grammatical in-
formation remains constant at any one time. In his discussion, Deacon (1997:329f)
ignores the issue of the space of grammatical possibilities and the degree to which
this can be sampled in the time required for biological evolution. It is impossible
to estimate the real size of this space properly, but few linguists would probably
balk at the idea that 30 independent binary grammatical parameters will be required
to capture the differences between the world’s languages in an account of univer-
sal grammar. Given this, there are billions of distinct grammars to explore.'* This
guestimate is based on the existence of an evolved LAD. Most linguists would ar-
gue that prior to the existence of the LAD, the space of possible gramimars was infi-
nite, and some believe that it remains so now (e.g. Pullum, 1983). Given the likely
vast, even if finite space, to be explored, rapid changes in the tiny subset of po-
tential grammatical systems which the ancestral linguistic population was exposed

4This is another reason why ordered setting of parameters is probably the only feasible manner in which
a learner can converge to a target grammar given realistic data (see also Clark, 1992).
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to could not prevent genetic assimilation on the basis of the many potential sys-
tems which were not sampled; for example, all those potential grammatical sys-
tems which would have resulted in arbitrarily intersecting dependencies between
constituents (see section 1).

7 Conclusions

The model of a language (learning) agent, described in section 2, embedded in the
(co)evolutionary simulation described in section 3 demonstrates that, given the as-
sumptions behind the model of a LAgt and the (co)evolutionary scenario, linguistic
selection for more parsable, learnable and expressive languages will occur. Expres-
sivity, though modelled crudely, is a critical factor in the simulation, since withoutit
LAgts converge to subset languages which are easier to learn and to parse. Once ex-
pressivity is a component of fitness, LAgts converge to (locally) optimal languages
which represent a trade-off between memory-efficient constituent order configura-
tions and ones which require the setting of fewer parameters, both per trigger and
overall, with respect to the dominant learning procedure. Thus, the model demon-
strates that embedding a generative model of a LAgt in a population of LAgts leads
naturally to an account of language in which idiolects are well-defined stringsets,
but languages are complex adaptive systems.

When LAgts’ p-settings can vary, under all experimental conditions genetic as-
similation of more ‘informative’ default parameters or absolute constraints occurs.
These not only improve the learnability of the dominant language(s) by incorporat-
ing learning biases and constraints into the language learning procedure, they also
alter (he nature of the linguistic selection pressure exerted by the evolving popula-
tion of LAgts. As a more constrained and biased language acquisition device is ge-
netically assimilated, so the class of learnable languages becomes more constrained
and the ranking of learnability amongst them alters to reflect the evolving biases in
the LAD. This effect is observed even in the face of as rapid grammatical change
as is consistent with the maintenance of a successfully communicating population,
because only a tiny subset of the range of grammatical possibilities can be sampled
in the time it takes for a p-setting to go to fixation. Nevertheless, with linguistichet-
erogeneity, genetic assimilation is asymptotic and some parameters remain unset.
Thus, the model demonstrates a clear coevolutionary dynamic between the histor-
ical evolution of language and the biological evolution of the LAD.

The conclusions drawn from a simulation model of the type presented here must
remain highly conditional. Not only the assumptions behind the model but also the
many contingent, accidental or chance factors in the actual, but prehistoric, evo-
lution of language and its users may undermine the results. Nevertheless, models
of this type have heuristic value in guiding us towards hypotheses which can then
be tested by other means; for example, claims about the effect of working mem-
ory on parsing are testable, in principle, via psycholinguistic experimentation or
typological investigations, even though claims about the prehistoric development
of language are not. Furthermore, such models can be used to evaluate evolutionary
theorizing about language which does not utilize a simulation methodology and to
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expose implicit and inadequate assumptions in such theorizing; for example, Dea-
-con’s (1997:329) arguments from rapid relative linguistic change to the implausi-
bility of genetic assimilation of grammatical knowledge.
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