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Abstract

In this paper we explore Simple Recurrent Net-
works with feature-based letter and phoneme
encoding to transform orthographic represen-
tations to phonological ones of Dutch words,
which is a part of the bigger, text-to-speech
synthesis problem. Besides addressing cognitive
plausibility, this model performs better than
earlier implementations with orthogonal data
encoding, which allows useful implementations.
We also studied the performance of the net-
work functionally, which led to insights about
its behaviour and its implicit linguistics, which
in turn were used to present the data to the
network during training in a way that would
improve learning.

1 Introduction

Converting orthographic word representations
to phonological ones is interesting from both
cognitive and linguistic points of view. From
the former perspective, we are looking for a
biologically plausible explanation of a part of
our cognitive capacity to speak, in particularly
the process of reading aloud. On another hand,
computational linguistics is still looking for ef-
ficient methods for text-to-speech synthesis.
Computational linguistics still uses mostly
the classical symbolic approaches to this task
(Bouma, 2000), which however do not lead cog-
nitive explanations. Connectionism, with its bi-
ologically more plausible structures and meth-
ods provides cognitively more acceptable alter-
natives that attract ever increasing attention.
Yet, different connectionist models and imple-
mentations differ in their plausibility. For ex-
ample, the first connectionist implementation of
such a system — N FETtalk — by Sejnowski and
Rosenberg (1987) uses the static Multilayered
Perceptron (M LP) (Rumelhart et al., 1986),

which is not inherently designed to process dy-
namic data. However, most of the processes in
natural language are dynamic — they span time
— which calls for dynamic neural networks.

One neural network model that is widely ac-
cepted as useful for linguistic problems is the
Simple Recurrent Network (SRN), by Elman
(1990). This model is capable of sequential pro-
cessing because it has a global distributed mem-
ory, and the network reaction at each time step
depends both on the current input data and the
internal memory (see Fig. 1 and Section 2).

Connectionist modelling is not that trivial,
because each task can be implemented in a num-
ber of ways. The correct choice of the network
structure, data encoding and different training
parameters determine the outcome of the im-
plementations. For example, the same problem
of Grapheme-to-Phoneme Conversion (GPC) is
some times modelled with static neural net-
works and sometimes with dynamic ones. Fur-
ther, accepting that dynamic networks are the
better choice, we again see different data en-
codings and presentations to the network. For
example, Stoianov et al. (1999) used the SRN
model with an input consisting of words pre-
sented one letter at a time, while Plaut (1999)
fed the same network with 10 letters simultane-
ously. The letters and phonemes in both works
were orthogonally encoded.

While those earlier experiments resulted in
acceptable performance, there is still a room for
improvement. Therefore, we continued our re-
search in the direction of presenting some bi-
asing information to the network, in the form
of distributed feature-based input and output
representations. This is more plausible than
the orthogonal encoding because the distributed
data representations are more reliable and cog-
nitively more plausible. As we will see later



in the paper, this also led us to better perfor-
mance with a smaller network, which in turn
is interesting from a practical point of view: it
increases the efficiency of the method.

The fine structure of the brain is still difficult
to look at and therefore alternative connection-
ist models of different cognitive processes com-
pete in claims for similarity to the correspond-
ing brain structures. The claims are tested by
looking for functional similarities to human per-
formance obtained in psycholinguistic experi-
ments. This also brings insights into the neural
networks being used, which are notoriously diffi-
cult to explain. Section 4 focuses on this prob-
lem. We will go even further there, by draw-
ing some linguistic conclusions related to the
structure of the phonemes and syllables on one
hand and by studying how different linguistic
factors influence the network performance, on
the other.

Finally, using those findings, we present in
section 5 a new strategy at network training
that improves the performance even more.

1.1 State of the Art

In this section, we will briefly present the state
of the art in the connectionist modelling of the
reading aloud process.

Undoubtedly, one of the most influential
works on this subject is the Plaut et al. (1996)
paper, where the authors present a study on the
quasi-regularity of the grapheme-to-phoneme
mapping of approximately 3000 monosyllabic
English words. They explored the M LP and
the so-called Attractor model, which features
an extra recurrent layer that searches for the
best output pattern matching the initial hidden
layer suggestion. However, this model is still a
static network, since the transformation ortho-
graphic input — phonologic output is performed
at once. The input and output layers encode the
words with a positional scheme, in which all on-
sets, nuclei and codas from the training corpus
are represented in the orthographic input and
phonological output layers. This approach has
some obvious limitations such as fixed limits on
consonant cluster length and a limitation to sin-
gle syllables. Nevertheless, this study demon-
strates the capacity of a single network to learn
a task which incorporates both regular and ir-
regular transformations.

Zorzi et al. (1998) performed similar experi-

ments on the same problem, but they could not
handle the irregularity of the mapping with a
standard M LP, and therefore they invented an
extra set of connections from the input layer to
the output layer, which they claim is effectively
a dual-route neural network. Dual-route mod-
els in the symbolic GPC modelling were intro-
duced in (Coltheart et al., 1980), attempting to
solve various psycholinguistic phenomena. Such
models include a rule-route that transforms reg-
ular and unseen words, and a lexicon route that
handles all learned words, including words with
exceptional pronunciation. However, we argue
in (Stoianov et al., 1999) that the Zorzi’s archi-
tecture is better regarded as a functional view
of the network rather than as an effectively
new model, since the claimed set of connections
could be modelled with a standard M LP.

Stoianov et al. (1999) and Plaut (1999)
shifted the focus from static to dynamic net-
works, by using the SRNs on this problem. In
the former, the words were presented to the net-
work one letter at a time (see the next section
for details). The latter model used a more spe-
cific encoding: the words there were presented
to the network in a shifting window containing;:
the letter to be pronounced; two letters to the
left of it; seven letters to the right, and the last
phoneme to be pronounced, all of them orthog-
onally encoded. The output layer contains the
orthogonal encoding of all phonemes and the
position of the next grapheme to be pronounced.
This type of data presentation improved the
performance: the Plaut (1999) model, with such
a rich input learned the mapping almost per-
fectly, while the network in (Stoianov et al.,
1999) mislearn 10% of the words, although with
the acceptable 1.4% phonemic error. The net-
works in both models exhibited good frequency,
consistency and word length effects (see Sect. 4
for details).

1.2 SRNs

Simple Recurrent Networks have the following
structure (see Fig.1): Input data (sequences)
are presented to the input layer, one token at a
time. The purpose of the input layer is just to
feed the hidden layer through a weight matrix,
which in turn copies its activations after every
step to a contezt layer. The context layer is used
to provide another input to the hidden layer —
information about the past. And since the acti-



vation of the hidden layer depends on both its
previous state (the context) and the current in-
put, the SRNs theoretically are sensitive to the
entire history of the input sequence. However,
practical computational limitations restrict the
time span of the influence of the context infor-
mation at time £ to some 5-10 time steps ahead.
In turn, the neurons from the hidden layer out-
put signal through another weight matrix to the
neurons from the output layer, which in turn is
interpreted as a network product.

The network is trained with a supervised
training algorithm, which implies two working
regimens — a regimen of training and regimen of
network use. In the latter, the network is given
sequential input data; it reacts according to its
knowledge encoded as strengths of weights and
its reaction is used for the task at hand. The
training regimen comprises a second, training
step, during which the network reactions are
compared to the desired ones, and the difference
is used to adjust the network behaviour in a way
that improves the network performance the next
time it experiences the same input data.

The particular algorithm used to train the
SRNs was the Backpropagation Through Time
learning algorithm (Haykin, 1994; Stoianov,
2000). It works both in time and space: the net-
work reaction to a given input sequence is com-
pared to the desired target sequence at every
time step and when the whole sequence is pro-
cessed, the resulting error is propagated back
through space (the layers) and time. This re-
sults in much faster training than the original
simple backpropagation learning algorithm used
by Elman (1990) when he introduced the SRNs.

2 Grapheme to Phoneme
Conversion with the Simple
Recurrent Networks

The method presented in this work uses the
SRNs as a neural sequential predictor (Stoianov,
2000 draft). However, in contrast to the stan-
dard predicting scheme (e.g., in phonotactics
modelling), the output domain (phonology)
here differs from the input domain (orthogra-
phy) and the specifically set sequential map-
ping guarantees that at every time step only
one phoneme will match the current input and
context entered so far. In turn, since at any
time only one token is permitted to be ac-

tive, truly distributed representations can be
used to encode the output tokens. This facil-
itates the learning process by providing back-
ground knowledge about the nature of the task,
thus allowing the same problem to be learned
with networks with smaller weight space than
earlier, when localistic encoding was employed
(Stoianov et al., 1999).

2.1 Distributed Representations

Input and output tokens are encoded with vec-
tors of activations, where each element (neuron)
stands for one feature. Different data-encoding
schemes determine the concrete functionality of
the network.

In the most often used orthogonal encod-
ing, each neuron n; stands for one input token
¢;, thus, the level of activation of each neuron
n; represents the likelihood p(¢;) that the corre-
spondent token c; is active. The interpretation
(decoding) of this encoding usually follows the
winner-takes-all rule, which says that the token
whose corresponding neuron is most active is
the outcome of the system. Since the activations
of every neuron are independent each other, this
scheme is very useful to represent a set of like-
lihoods that the correspondent tokens are ac-
tive in response to the input, which was used in
the sequential neural predictor (Stoianov, 2000
draft). However, this encoding is memory ex-
pensive, since it needs K neurons to represent
K tokens. Also, this encoding is not resistant to
noise in data, system damage, etc. Therefore, if
the task allows, a feature-based representation
is better to be used.

Situations allowing feature-based representa-
tions are those in which only one token may
be a product of the network, for example, in
the associative tasks. The networks there have
to respond to the input with a specific out-
put pattern (static or sequential). The GPC
task, in fact, is exactly a sequential associa-
tion, thus, permitting distributed representa-
tions. As noted above, the GPC was imple-
mented in the framework of the SRNs as a spe-
cial case of a sequential predictor that requires
only one token to be predicted.

As for the feature sets used to represent the
tokens, a GPC task prompts for phonemic fea-
tures. The output phonemes can be encoded
according to the specifications of the Interna-
tional Phonetic Alphabet (IPA). It represents
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Figure 1: Sequential transformation from orthographic to phonological representations with SRNs
and feature-based grapheme and phoneme representations. Words are presented to the input se-
quentially, one letter at a time. Phonological representations are also produced sequentially, one

phoneme at a time, but with 3 steps’ delay.

the phonemes with an articulatory set of fea-
tures, thus making such an encoding biologi-
cally plausible since it encodes the phonemes
with properties related to their pronunciation.
The original feature set in the IPA contains
some 40 features, of which about a third are
redundant for the most of the European lan-
guages and particularly for the Dutch language.
Therefore, the feature set we used to encode the
phonemes consists only of 25 features, as given
in (1).

stop, fricative, nasal, approximant,
lateral, trill,voicless, syllabbic, vowel,
bilabial, labio-dental, dental, alveolar,
palatal-alveolar, palatal, velar, glottal, (1)
high, upper-midd, lower-midd, low,

front, back, round, long

We might choose different strategies for
choosing the input feature set, for example,
based on visual or linguistic properties. A fea-
ture set providing helpful background linguis-
tic information can use an even smaller subset
from the I P A feature set and encode the letters
with pro-phonemic features. Encoding ortho-

graphic input with linguistic features is a step-
back from cognitive plausibility, but it increases
the efficiency of the system, which is important
from implementational point of view. The fea-
ture set that we used is given in (2). It contains
11 features and provides sufficient feature over-
lap when the 26 letters are encoded. Feature
overlap in distributed representations, in turn,
is the source of that bias information.

vowel, consonant,  (2)
stop, nasal, approximant, voicless,

low, high, back, labial, coronal

In addition, there is one more feature —
delimiter used in both the input and output
encodings that signals signals for the end of the
processed sequences (sequence delimiter).

The symbol encoding process is straightfor-
ward if a given token ¢; is to be encoded, its
feature-vector is obtained from a look-up table
and set to the input /output layer. The decoding
process is similar. Since only one phoneme at a
time is allowed to be produced by the SRN, the
one whose feature vector most closely matches
the current output is selected as a product of the
network. For those who prefer to stick entirely



to connectionism, one more layer can transform
the output representations into localistic encod-

ing.
2.2 Right Context

As discussed, it is important in the Grapheme-
to-Phoneme Conversion problem (GPC) to en-
sure that the learning task requires the network
to activate one phoneme only, or at least that for
every word and for every time step, the train-
ing material does not contain conflicting target
spellings (phonemes). We need this in order
to make the network spell the words correctly
when they contain irregularities, such as (3) in
the Dutch language. In this example, the let-
ter sequence “oe” is pronounced in two different
ways, depending also on the partial right con-
text.

foei[fuj] and foet|fo:t] (3)

Providing partial right context is the solution,
which could be implemented in different ways.
Plaut (1999) provided this by using the simul-
taneous presentation of 10 letters in a shifting
window.

A solution that we chose (Stoianov et al.,
1999) was to delay the spelling of the words
with d steps, which allowed the network to
look d steps right context ahead when produc-
ing the phonological representations. This was
achieved by training the network on the follow-
ing sequential mapping (4):

(CCS ... Clyy #- - #) = (4)
(#a#ts - #4CTCE Sy )

where ‘#’ represents a delimiter; C stand for
the input orthographic tokens and C;’ for the
output phonemic ones.

However, there is a small trap here, in cases
where two or more letters are pronounced as one
phoneme, such as in (3). This concerns espe-
cially polysyllabic words where not only the net-
work might run out of right context, but also it
might produce phonemes before the correspond-
ing letters are entered. Since a pronunciation is
required after each letter and since some pro-
nunciations can not be predicted until two let-
ters have been seen, the look-ahead buffer might
eventually be exhausted. For such cases, an ex-
tra mechanism should take care of artificial gaps

at the output. In our experiments, we provided
3 letters delay, which turned out to be enough
for our training data.

3 Experiment

The proposed model was tested on Dutch mono-
syllables. Even though monosyllabic words do
not represent the entire word space, they do
contain most of the complexity of the GPC
transformation rules because syllables are the
main carrier of the transformation complexity.
We used all 5, 800 Dutch monosyllabic words as
found in the CELEX lexical database (CELEX,
1993). Among those words there is a number of
foreign words, mostly from English and French
origin, whose pronunciation differs from that of
the regular Dutch words. Yet, in order to simu-
late a near-real language situation, those foreign
words were not filtered out from the database,
which makes the task even more difficult. This
set was further split into two parts: a training
subset L}\/[ containing 4.800 words and a test-
ing one L3, with 1.000 monosyllables to test
the generalisation capacity of the network. The
CELEX database contains information about
the frequency of the words, which was also used.

The Simple Recurrent Network used had 100
hidden neurons. The input and output layers
had 12 and 26 neurons, correspondingly — ac-
cording to the size of the feature sets used to
represent the graphemes and phonemes. The
network was trained on the training set and
then tested on the testing set, to study its gen-
eralisation.

3.1 Training

The training process was organised in epochs, in
the course of which all words from the training
data set were presented to the SRN according to
the logarithm of their frequency (f = 2.2,0 =
1.1;min = 1;max = 8). This decreases the to-
tal number of word presentations while preserv-
ing the important differences in frequency, thus
stressing the most important words and lead-
ing to fewer errors on them. The total number
of word presentations in one epoch was about
12,500. For every training sequence, the BPTT
learning algorithm was applied. After the train-
ing on each epoch, the network performance was
evaluated on the same training set, by measur-
ing the number of words and phonemes mispro-
nounced.



Error (%) / Data Ly, | L3,
Phonemic, Freq. 09 | 14
Phonemic, No Freq. | 1.37 | 2.08
Word, Freq. 4.8 | 6.7
Word, No Freq. 8.5 | 11.2

Table 1: General SRN performance on the

training (L},) and the testing (L3,) data sets,
measured at phonemic and word level, each of
them weighted or unweighted with the word fre-
quency.

The network converged in performance at
about the 10* epoch, which is about half as
much training time was needed when orthogo-
nal encoding was used (Stoianov et al., 1999).
As usual, the network started with a sharp er-
ror drop to about 4-5% phonemic error, which
slowly decreased to about 1%.

3.2 General Performance

The network was evaluated with two types of
error measurement: at a phonemic level and at
word level. The first measures the total num-
ber of mispronounced phonemes and the latter
one counts the words with at least one mis-
pronunciation. Further, both types of errors
were weighted with the correspondent frequen-
cies, which gives an idea how the network would
perform in a real-world environment.

We are interested in the network performance
on both the training and the testing set. The
first one is used to evaluate the network after ev-
ery training epoch and gives a general idea how
the network performs. The performance on the
testing set unseen during the training evaluates
the generalisation capacity of the model.

Table 1 shows the general network perfor-
mance. The performance of the network with
the feature-based encoding — 0.9% phonemic er-
ror and 4.8% word error is better than the
network performance in our previous experi-
ments with orthogonal data encoding, where
a SRN with 200 hidden neurons, that is, four
times more weights, resulted in 1.2% frequency
weighted phonemic error for the training set,
and 1.4% phonemic error on the testing set.

We conclude that the distributed encoding
is better both for faster training and for the
smaller size of the network, but also for its bet-
ter performance.

4 Evaluation

Although improved, the performance of the net-
work is far from perfect. Preliminary work on
polysyllabic words is even worse, with about
15 — 20% erroneous word performance. This
raises the question what prevents the network
from reaching near-human performance.

Increasing the hidden-layer size in theory in-
creases the network learning capacity, but here
it did not lead to improved performance. On the
contrary, setting the hidden layer size to some
300-500 neurons worsened the results while in-
creasing significantly the training time. This is
because the complexity of the weight space in-
creases significantly and the learning algorithm
finds it more difficult to find the solution.

Another approach at improvement is to study
the performance of the network by varying
properties of the data, analysing where the net-
work makes mistakes and focusing the training
on those difficult sequences. Parameters that
were expected to influence the performance are
the frequency of the words and the regularity
of their pronunciation (word consistency). This
approach is also interesting from another point
of view. In psycholinguistics, different tests
study human performance on linguistic tasks,
and it is interesting to compare the outcomes
of those experiments with the network perfor-
mance.

4.1 Frequency

Figure 2 shows the performance of the network
for three frequency categories — rare, average
frequency and frequent words. The network
erred more than twice as often on medium-
frequency words as compared to high-frequency
words, and about twice as often again on rare
words. This pattern follows the frequency with
which the words were given to the network dur-
ing training, and we can explain it with the
amount of evidence the network was given for
the correspondent input-output pattern.
Humans are found to behave similarly in the
word naming task, both in terms in performance
and reaction time (Fiez et al., 1999). This
means that the basic computational principles
used in this connectionist model have cognitive
justification, at least from a functional point
of view. Architecturally, exploiting distributed
data representation and processing, by now they
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Figure 2: SRN error versus word frequency.

are also the most cognitively plausible models.

4.2 Consistency

The amount of evidence for certain conversions
comes not only from the frequency of the par-
ticular word that represents it, but also from
the number of words that look similar and
are pronounced in a similar way, that is, the
consistency of the orthography-to-phonology
mapping for this pattern. Put in another way,
consistency measures how much the pronuncia-
tion of a given word is like to the pronunciation
of orthographically similar words.

Measuring consistency is not trivial. It in-
volves a measure of similarity between words,
which is a problem by itself. In our earlier work
on this task we measured consistency by match-
ing the sub-syllabic elements onset, nucleus
and coda (Stoianov et al., 1999). In that paper
we describe in detail how to measure the consis-
tency. As a result, words were assigned a con-
tinuous measure with mean value (23+o0 = 14),
ranging (—70...80), which we further split into
four categories: exceptions, ambiguous, semi-
reqular and regular.

The variation of the network performance
with regard to the word consistency is shown in
Fig. 3. As expected, the SRN fails much more
often on exceptional words than on regular ones,
since the latter “support” each other in the dif-
ferent pattern groups. Humans performed sim-
ilarly in the word-naming task, making almost
no errors on regular words and mispronounc-
ing some exceptional words (Fiez et al., 1999).
However, the network performed worse on ex-
ceptional words.

Two lessons can be derived from this analy-
sis. Firstly, since the model follows the trends

15 4

12 4

Error %

0 T T )
Fxceptions  Ambiguous Sei-
Regular

Regular

Consistency

Figure 3: SRN error versus word consistency.

found in the word naming task, we can interpret
this as another source of confirmation that the
model follows the structural organisation of the
human brain.

Secondly — a practical conclusion — since the
model under-performed on exceptional words,
this means that there is a room either for im-
provement of the learning strategy, or that the
the dual-route idea should be considered as
plausible.  Other connectionist models man-
aged, indeed to learn similar transformations
with single models (Plaut et al., 1996), but
those models used as few as half the number
of words used in the current experiment. Using
fewer words is possible, but one of the targets
here is to learn to pronounce all (monosyllabic)
Dutch words, not just an easier subset of them.
Therefore, the learning should be improved or
the architecture should be extended.

4.3 Word Length and Error Position

Dynamic processes are also affected by dynamic
properties of the data, e.g., word length and
distribution of predictions in time, which are
also reflected in psycholinguistic experiments
on word naming (Spieler and Balota, 2000 in
press). In those examinations a reliable inter-
action between word length and performance
was found: the longer the words, the longer it
takes to pronounce them. A similar well-known
dynamic property is the performance of human
memory on memorising list items. Earlier and
later items are remembered best, which results
in a U-shaped performance curve.

The network error distribution as a function
of word length (shown on Fig. 4) tells us that
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Figure 5: SRN error versus error position.

the network makes many more errors on longer
words, which is in parallel to the findings on
humans. We can explain this effect in the SRNs
with the specific context error that they gain as
time progresses.

Error does not linearly correlate with position
(Fig.5) the network makes mistakes in the first
half of the words rather than towards the end.
A closer analysis reveals that the network makes
more mistakes at the time step when the vowel
from the nucleus should be spelled out, what we
also call a syllable break. We found this also in
our earlier experiments on phonotactics learn-
ing (Stoianov and Nerbonne, 2000) and map-
ping from orthography to phonology (Stoianov
et al., 1999), which we interpreted as a hint for
the following structure in the syllable (5):

(onset — rhyme(nucleus — coda))  (5)

4.4 Phonemes

It is also interesting to know how well different
phonemes are produced; if there are phonemes

Phoneme | Error(%) | Frequency
h 0.0 219
b 0.0 402
v 0.0 207

Delim 0.1 20015
p 0.4 936
r 0.6 1575
X 0.8 755
m 1.0 076
t 1.0 3029
n 1.2 751
S 1.7 2210
f 1.7 475
| 2.0 1303
1 2.1 193
k 2.1 1388
d 3.0 296
U 5.0 484
] 14.4 201
I 43.1 137
3 100.0 20
g 100.0 15

Table 2: SRN error for phonemes-consonants.
The second data column represents the fre-
quency of the correspondent phonemes in the
dataset.

which are easier or more difficult for the net-
work. In order to study this, the network error
was calculated for each phoneme.

In general, vowels (Table 3) cause more trou-
bles to the network than consonants (Table
2). There is a tendency among the consonants
toward larger error for more sonorant conso-
nants (with the exception of ’[’), which leads
to the conclusion that the more sonorant the
phoneme, the larger the error.

The third column in both tables represents
the number of occurrences of the corresponding
phoneme. For the very infrequent phonemes,
both vowels and consonants, the network per-
forms poorly. Hence, the second conclusion is
that the lower the phonemic frequency, the
larger the error. This fact is related again to
the amount of evidence the network experiences
during learning.

Next, looking at Table 3, one can observe the
tendency of the long vowels to produce larger er-
rors than the short vowels (with the exception of



Phoneme | Error(%) | Frequency
] 0.0 190
y 0.0 190
a: 1.5 401
1 1.8 456
e: 2.8 386
2 3.9 565
a 4.2 755
G} 4.4 295
e 5.8 825
y: 6.3 63
i: 7.3 965
o: 7.7 326
w 8.4 443
@: 9.5 116
2 36.4 11
e: 88.9 18
9 100.0 1

Table 3: SRN Error for phonemes-vowels. The
second data column gives the phonemic fre-
quency.

‘a:’ and ’e:’, and ’9’, which is rare in monosylla-
bles). This is an interesting finding, from which
we might hypothesise that long vowels have
more inconsistent grapheme-to-phoneme map-
ping. Indeed, if we search for the orthographic
representations of some of those phonemes, we
will find that the long vowels stem from a larger
variety of orthographic patterns than the short
ones. For example, the phoneme ’g:” is the
vowel pronounced in the Dutch words “deuk”,
“fohn” and “foet”. The vowel 'u:’ has even
more source patterns: “boet”, “blues”, “tour”,
“crew” and “croon”. On another hand, the
short vowel '’ is pronounced in words such as
“blin” and “gym” and the vowel 5’ comes only
from words such as “bos”.

We can continue in this vein and study the
the type of patterns the consonants come from.
For example, the consonant ’[’ is the pronun-
ciation of as many as six orthographic combi-
nations: “badge”, “batch”, “check”, “shop”,
“sjaal” and “tj0k” and in Table 2 we see that
it is associated with a large error. Therefore,
the variety of letters that match one phoneme
is another predictor of the network faulting in
this task.

Feature Examples | Error(%g)
syllabic 0,0
trill r 0,4
lateral 1 0,9
nasal mn g 0,9
approximant | w v j 1,9
vowel 1,9
Delimiter # 2,1
stop 2,4
fricative 3,6
voiceless 3,6

Table 4: SRN error / Consonantal Manner Fea-

tures
Feature Examples Error(%o)
dental 0,0
glottal h 0,0
bilabial pbm 0,6
labio-dental fvu 1,1
palatal jcy 1,3
velar k gx 2,1
alveolar tdnrlsz 3,5
palatal-alveolar | [ 3 3,8

Table 5: SRN error / Consonantal Place Fea-
tures

4.5 Phonetic Features

We will complete the study on erroneous SRN
performance by examining the error for vari-
ous phonetic features. In order to facilitate the
reading of the data, the features are split into
place and manner features, and vowel and con-
sonant features (tables 4,5,6). Further, the fea-
tures in each group are ordered by the error size.

Feature | Examples | Error(%)
lower a: a 2.5
low-mid | ¢ o: 2,8
high iyu 3,0
front 3,0
back 3,3
upper-mid | ... 3,4
round 1,8
long 2,7

Table 6: SRN error / Vowel Place and Manner
Features



The most immediate observation is that the
size of the phonemic group the corresponding
features represent is proportional to the network
error. If a given feature is active in a smaller
group of phonemes, then the correspondent neu-
ron learns its task more easily than the case of
more even phonemic space sampling. For ex-
ample, the feature stop has larger error than
the feature lateral.

The phenomena of larger error for more bal-
anced features shows that balanced patterns
are more difficult to learn than unbalanced
ones, which has good theoretical explanation in
the framework of informational theory, where
a measure for the balance of a certain feature
in a given distribution of patterns is called en-
tropy (Mitchell, 1997). In this particular case,
the entropy Entry, (P) of the set of experienced
phonemes P with respect to a feature f; is (6):

E?’LtTfi(P) = —pfz.l()gQ(pfi) *pﬁlom(Pﬁ.) (6)

where py, is the proportion of the phonemes in
the observed phonemic set P which feature f;,
and Py = 1 — py, is the proportion of the other
phonemes in P. Notice, that the entropy is close
to zero for more unbalanced distributions and
close to one otherwise. The effect of data fre-
quency is also implicitly included here, repre-
sented in the set of phonemes P observed by
the network during the training.

One interpretation of the entropy in infor-
mation theory is the number of bits needed to
encode an arbitrary pattern — the larger the
entropy, the more bits are necessary. On the
other hand, we found in the neural networks
framework that the larger the entropy of the
phonemes with respect to a given feature, the
larger the network error, which results in a
nice correspondence between the entropy and
the difficulty the network meets when trying to
learn how to activate this feature. Following
this finding, we can predict that the same er-
ror pattern will be found in psycholinguistics,
which also might help us to explain the way the
phonemes are represented in the brain.

We finish with the remark that the previously
noted difference in performance on vowels and
consonants was found here, too, viz. that in
generally the vowels generate larger error and
hence, the vowel-related features produce larger
error, too.

Error (%) / Data Ly, | L3,
Phonemic, Freq. 0.49 | 1.18
Phonemic, No Freq. | 0.73 | 1.78
Word, Freq. 2.62 | 5.60
Word, No Freq. 3.94 | 8.71

Table 7: General performance of SRN whose
training emphasised inconsistent words. Error
on the training (L},) and the testing (L3,) data
sets is given, measured at phonemic and word
level, each of them weighted or unweighted with
the word frequency.

5 An improved training method

Now, having the knowledge of how those differ-
ent factors influence the network performance,
it is time to take an advantage of it. For exam-
ple, the fact that consistency most strongly af-
fects model performance might be compensated
for by emphasising more inconsistent words dur-
ing the network training, that is, presenting
them more often to the network in one train-
ing session.

To implement this, a second training fre-
quency was computed for each word, inversely
proportional to the consistency of that word.
Those new frequencies ranged from 1 to 10, with
mean value of 2.23, +0 = 1.15, which is similar
to the original frequency values. Then, the net-
work was trained on the L}V[ data set, with all
other parameters unchanged, until error conver-
gence.

The network performance on the training and
testing set is given in Table 7. When compared
to the performance of the network trained in
the previous conditions (Table 1), the network
here errs twice as few as when tested on the
training set L}, and shows slight improvement
on the testing set L3,. Given the fact that the
testing words should be considered as realistic
non-words, it should be expected that the net-
work would perform better on regular words and
would not know how to map unseen inconsistent
words, converting them by following the GPC
“rules” it has learned in training. Since the
network has no knowledge of the exceptionally
pronounced words that this testing set contains,
it generalises, which is registered by the testing
procedure as erroneous pronunciation. There-
fore, this method would be most advantageous,



if the training is done with a training corpus
that is as complete as possible.

The same idea might be extended even fur-
ther, by emphasising other groups of words that
are more difficult to learn. This, we expect,
would improve the performance even more.

6 Discussion

Studying the nature of the orthography-to-
phonology mapping of the Dutch monosyllabic
words and improving the connectionist method-
ology for its learning were the main objectives
of this research. We continued our previous
work on this problem by using the more nat-
ural distributed representations of letters and
phonemes, which led us to a better model.

The same Simple Recurrent Network with
twice as small hidden layer (the main processing
units) and four times fewer connections (long-
term memory) learned the same task even bet-
ter, with 1.4% phonemic and 8.5% word er-
ror. If we weight this performance with the
frequency of occurrence of those words in the
language, the performance shows 0.9% phone-
mic and 4.8% word error.

Symbolic methods still perform better. A
recent work on a Dutch polysyllabic database
achieved 99% phonemic and 92.6% word accu-
racy, using a combination of hand-crafted rules
and transformation-based learning (Bouma,
2000). Our initial results on this data, which we
did not discuss in this paper, are much worse,
with some 15-20% word error. But symbolic
methods do not explain the way humans work
with languages, which is the other main goal in
connectionist modelling.

In order to find the reasons the network have
difficulties in learning this complex mapping,
we also studied the type of errors the network
makes. This showed some specific error pat-
terns also found in various psycholinguistic ex-
periments (Fiez et al., 1999).

The best known effect is error and naming
latency interaction with word frequency the
more frequent the words, the faster they are
pronounced and the fewer mistakes are made.
Another very important factor that influences
the human’s performance is the regularity (con-
sistency) of this mapping for each word. What
was found in the above and other studies is that
the more regular the words are in their pronun-

ciation, the faster and more accurate the re-
sponses are. The networks in our experiments
performed similarly, which is an evidence for the
cognitive plausibility of this architecture, from
a functional point of view.

Studying the variation of the error with re-
spect to the phonetic features used to encode
the phonemes, we also found the interesting
phenomena that the more evenly a given feature
partitions the phonetic space, the larger the net-
work error is, which can find a good explanation
in information theory with the measure called
entropy. Based on this finding, we predict that
the same error pattern will be found in various
psycholinguistic tasks related to phoneme artic-
ulation.

Unlike in our earlier work (Stoianov et al.,
1999), in this study we did not address the nam-
ing latencies, because they behave similarly to
the pronunciation accuracy. We studied only
accuracy and in Section 4 we showed that they
follow the tendencies noticed above.

People still perform better than the network
did. One reason for this might be selective at-
tention to those more difficult words. Suggested
by the specific pattern of worse network perfor-
mance for inconsistent words, we applied a sim-
ilar idea by arranging the training data in a way
that would stress the training to the more “diffi-
cult” words. This improved the training signif-
icantly, by decreasing the SRN error to 0.73%
phonemic and 3.94% word error.

Connectionist modelling provides space for
continuous improvement. As we just saw, two
design details — data encoding and presentation

brought significant improvement to the perfor-
mance, by more than 50%. And there is still a
lot to be done. Further work on this project and
more details can be found in (Stoianov, 2000
draft).
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