The Alpino Dependency Treebank

L. van der Beek, G. Bouma, R. Malouf, G. van Noord
Rijksuniversiteit Groningen

Abstract

In this paper we present the Alpino Dependency Treebank and the tools that we have devel-
oped to facilitate the annotation process. Annotation typically starts with parsing a sentence
with the Alpino parser, a wide coverage parser of Dutch text. The number of parses that
is generated is reduced through interactive lexical analysis and constituent marking. A tool
for on line addition of lexical information facilitates the parsing of sentences with unknown
words. The selection of the best parse is done efficiently with the parse selection tool. At
this moment, the Alpino Dependency Treebank consists of about 6,000 sentences of news-
paper text that are annotated with dependency trees. The corpus can be used for linguistic
exploration as well as for training and evaluation purposes.

1 Introduction

Alpino is a wide-coverage computational analyzer of Dutch that aims at accurate,
full parsing of unrestricted text. In section 2 we present the setup of the grammar
and the constraint-based formalism that we have adopted. A syntactically anno-
tated corpus is needed to train the grammar and to evaluate its performance. For
this purpose we have started to develop the Alpino Dependency Treebank.

The treebank consists of sentences from the newspaper (cdbl) part of the
Eindhoven corpus (Uit den Boogaard 1975). The sentences are each assigned a
dependency structure, which is a relatively theory independent annotation format.
The format is taken from the corpus of spoken Dutch (cGN)? (Oostdijk 2000),
which in turn based its format on the Tiger Treebank (Skut 1997). In section 3 we
go into the characteristics of dependency structures and motivate our choice for
this annotation format.

Section 4 is the central part of this paper. Here we explain the annotation
method as we use it, the tools that we have developed, the advantages and the
shortcomings of the system. It starts with a description of the parsing process that
is at the beginning of the annotation process. Although it is a good idea to start
annotation with parsing (building dependency trees manually is very time consum-
ing and error prone), it has one main disadvantage: ambiguity. For a sentence of
average length typically a set of hundreds or even thousands of parses is generated.
Selection of the best parse from this large set of possible parses is time intensive.

The tools that we present in this paper aim at facilitating the annotation process
and making it less time consuming. We present two tools that reduce the number
of parses generated by the parser and a third tool that facilitates the addition of
lexical information during the annotation process. Finally a parse selection tool
is developed to facilitate the selection of the best parse from the reduced set of
parses.

lhttp://1ands. let_kun.nl/cgn

2 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

The Alpino Dependency Treebank is a searchable treebank in an xmL format.
In section 5 we present examples illustrating how the standard XML query language
XPath can be used to search the treebank for linguistically relevant information.
In section 6 we explain how the corpus can be used to evaluate the Alpino parser
and to train the probabilistic disambiguation component of the grammar. We end
with conclusions and some pointers to future work in 7.

2 The grammar

Alpino is a wide-coverage grammar: it is designed to analyze sentences of unre-
stricted Dutch text. The grammar is based on the OVIS grammar (van Noord et
al. 1999), that was used in the Dutch public transportation information system, but
both lexicon and grammar have been extensively modified and extended.

The lexicon contains about 100,000 entries at this moment. More than 130
different verbal subcategorization frames are distinguished. Lexical information
from the lexical databases Celex (Baayen, Piepenbrock and van Rijn 1993), Pa-
role? and cGN (Groot 2000) was used to construct the lexicon. Various unknown
word heuristics further extend the lexical coverage of the system.

The grammar should not only cover the question and answer patterns of the
public transportation information system, but, in principle, all Dutch syntactic
constructions. Therefore the grammar has been greatly extended. At this moment
it consists of about 335 rules. These rules are linguistically motivated and
describe both the common and the more specific, complex constructions such
as verb-raising constructions and cleft sentences. The rules are written in a
framework that is based on Head-Driven Phrase Structure Grammar (Pollard
and Sag 1994; Sag 1997). Following Sag (1997), we have defined construction
specific rules in terms of more general structures and principles.

In the lexicon, each word is assigned a type from a small set of basic lexical
types. This type, e.g. noun for the word tafel (table), specifies the set of lexical
features the word has. Nouns for instance have an agreement feature and a fea-
ture NFORM, that distinguishes regular nouns from temporal or reflexive nouns. A
complementizer in contrast doesn’t have those features, but is specified for cTY PE
(i.e. complementizer type). These lexical features are represented in feature struc-
tures. Fig. 1 shows the feature structures for the word tafel, which is a lexical item
(ylex), not derived from a verb (ndev) and not of any special class of houns such as
temporal or reflexive nouns (norm).

The feature DT is shared between all types. It contains information about the re-
lations between a word and other words with which it can form a constituent. With
the DT values of all words of a sentence a dependency tree is built.® This is a struc-
ture in which the various dependency relations between words and constituents in

2http://www.inl.nl/corp/parole.htm

3Strictly speaking, dependency trees are graphs, as control relations as well as certain long distance
dependency relations are encoded using multiple dominance. The grammar as well as the treebank
encode such multiple dominance relations by means of co-indexing of nodes.

The Alpino Dependency Treebank 3

nounr,

sc "

DEVERBAL ndev

AGR sg&thi&de&count
LEX ylex

NFORM norm

DT POSTAG noun

DET 0

HWRD tafel]

Figure 1: feature structure for lexical entry tafel

a sentence are expressed. More information about dependency structures is found
in section 3.

Handwritten grammar rules define how lexical or phrasal items may combine
to form larger units. The rules specify for each syntactic structure the type of the
mother node, a head daughter and the non-head daughter(s). In addition, the type
of structure that they constitute is specified. Almost all structures are headed struc-
tures (structures in which one of the daughters can be identified as the head daugh-
ter). The class of headed structures is further subdivided in head-complement,
head-adjunct, head-filler and head-extra structures according to the function of the
non-head daughter.

Furthermore, the grammar rules should specify how the lexical information on
the daughter nodes is passed on to the mother node. For different types of fea-
tures, different inheritance rules apply. It would be extremely time intensive, error
prone and opaque if in each rule and for each feature the inheritance had to be
specified separately. Therefore, five general principles are formulated that define
how feature values are propagated up the tree. Each principle applies to a group of
features. For instance, the Head-feature Principle states that for all features that
are marked as head features, the values on the mother node are unified with the
values on the head daughter. The Valence, Filler, Extraposition and Adjunct and
Dependency principle define similar principles for the subcategorization, extrac-
tion, extraposition and modification and dependency tree features respectively. For
each syntactic structure that is listed as a headed structure in the grammar, these
general principles apply.

Lexical information, construction specific rules and general principles are the
three basic components of the grammar. This setup allows the grammarian to for-
mulate simple rules without specifying all the regular feature values on each of the
components. The complete rules can be deduced from the simple ones through
addition of the information that is conveyed in the general principles. For exam-
ple, the rule in (1-a) expands to the rule in (1-b), in which the inheritance of the
values for vFORM (finite, infinite, participle), subcategorization frame (sc), long
distance dependencies (SLASH and EXTRA) and the dependency relations (DT) is
specified. In this rule, {H|T) is used to denote a list with head H and tail T, and
L@ M represents the concatenation of the two lists L and M.

4 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

(1) a head-complementstructure: v— np v

b. VFORM VFORM
sc sC < | >
SLASH - nO[EXTRA] SLASH
EXTRA [4@[E] EXTRA
DT (6]
DT (6]
verb verb- -

3 Dependency Trees

The meaning of a word or a sentence is represented in standard HPSG by seman-
tic representations that are added to lexical entries and phrases. Semantic prin-
ciples define the construction of a semantic structure from these representations.
In Alpino we have added the DT features with which we build a dependency tree
instead.

Dependency structures represent the grammatical relations that hold in and
between constituents. On the one hand they are more abstract than syntactic trees
(word order for example is not expressed) and on the other hand they are more
explicit about the dependency relations. Indices denote that constituents may have
multiple (possibly different) dependency relations with different words. Fig. 2
shows the dependency tree for the sentence Kim wil weten of Anne komt. The
dependency relations are the top labels in the boxes. In addition, the syntactic
category, lexical entry and string position are added to each leaf. The index 1
indicates that Kim is the subject of both wil (wants) and weten (to know).

The main advantage of this format is that it is relatively theory independent,
which is important in a grammar engineering context. A second advantage is that
the format is similar to the format cGN uses (and that they in turn based on the
Tiger Treebank), which allowed us to base our annotation guidelines on theirs
(Moortgat, Schuurman and van der Wouden 2001). The third and last argument
for using dependency structures is that it is relatively straightforward to perform
evaluation of the parser on dependency structures: one can compare the automat-
ically generated dependency structure with the one in the treebank and calculate
statistical measures such as F-score based on the number of dependency relations
that are identical in both trees (Carroll, Briscoe and Sanfilippo 1998).

4 The annotation process

The annotation process is roughly divided into two parts: we first parse a sentence
with the Alpino parser and then select the best parse from the set of generated
parses. Several tools that we have developed and implemented in Hdrug, a graph-
ical environment for natural language processing (van Noord and Bouma 1997),
facilitate the two parts of the annotation process. In section 4.1 we present an in-
teractive lexical analyzer, a constituent marker and a tool for temporary addition
of lexical information. The parse selection tool is described in in section 4.2.

The Alpino Dependency Treebank 5

top
smain
37\
1 hd vC
verb .
noun wil inf
Ki my 2
hd
su vC
1 verb cp
wetens
m
fomp body
P ssub
Of4
— T~
su hd
noun verb
Annes komtg

Figure 2: Dependency tree voor de zin Kimwil weten of Anne kot

41 Parsing

The annotation process typically starts with parsing a sentence from the corpus
with the Alpino parser. This is a good method, since building up dependency
trees manually is extremely time consuming and error prone. Usually the parser
produces a correct or almost correct parse. If the parser cannot build a structure
for a complete sentence, it tries to generate as large a structure as possible (e.g.
a noun phrase or a complementizer phrase). The main disadvantage of parsing
is that the parser produces a large set of possible parses (see fig.3). This is a
well known problem in grammar development: the more linguistic phenomena a
grammar covers, the greater the ambiguity per sentence. Because selection of the
best parse from such a large set of possible parses is time consuming, we have
tried to reduce the set of generated parses. The interactive lexical analyzer and
the constituent marker restrict the parsing process which results in reduced sets
of parses. A tool for on line addition of lexical information makes parsing of
sentences with unknown words more accurate and efficient.

4.1.1 Interactivelexical analysis

The interactive lexical analyzer is a tool that facilitates the selection of lexical
entries for the words in a sentence. It presents all possible lexical entries for all
words in the sentence to the annotator. He or she may mark them as correct, good

6 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

15000
I

10000
I

Avg. readings
~

5000
I
~__

Length

Figure 3: Number of parses generated per sentence by the Alpino parser

or bad.
e Correct Parse must include it
e Good Parse may include it
e Bad Parse may not include it

One correct mark for a particular lexical entry automatically produces bad marks
for all other entries for the same word. The parser uses the reduced set of entries
to generate a significantly smaller set of parses in less processing time.

4.1.2 Congtituent Marking

The annotator can mark a piece of the input string as a constituent by putting
square brackets around the words. The type of constituent can be specified after
the opening bracket. The parser will only produce parses that have a constituent
of the specified type at the string position defined in the input string. Even if the
parse cannot generate the correct parse, it will produce parses that are likely to be
close to the best possible parse, because they do oblige to the restrictions posed on
the parses by the constituent marker.

Constituent marking has some limitations. First, the specified constituent bor-
ders are defined on the syntactic tree, not the dependency tree (dependency struc-
tures are an extra layer of annotation that is added to the syntactic structure). Us-
ing the tool therefore requires knowledge of the Alpino grammar and the syntactic
trees that it generates.

Second, specification of the constituent type is necessary in most cases, espe-
cially for disambiguating prepositional phrase attachments. As shown in fig. 4, a

The Alpino Dependency Treebank 7

top

top
T e e
hij v VpIoj hlij v VpIoj
Ziet np/\vproj zllet np VpIoj

det n v pp vprod
| /\ | | PN |

het meisje p np v
het meisje PP
/\ iL de(\n
b np | |
/\ het park
in det n
h|et pa|rk

Figure 4: PP attachment ambiguity in Alpino

noun phrase and a prepositional phrase can form a constituent on different levels.
The two phrases can form either a noun phrase or a verbal projection with an empty
verb (which is used in the grammar to account for verb second). The first structure
corresponds to a dependency structure with a noun phrase internal prepositional
modifier, the second corresponds to a dependency tree in which the prepositional
phrase is a modifier on the sentence level. Marking the string het nei sje in
het park as a constituent without further specification does not disambiguate
between the two readings: in both readings the string is a constituent. One has to
specify that the string should be a noun phrase, not a verbal projection. This spec-
ification of the constituent type requires even more knowledge of the grammar. If
one specifies a constituent type that cannot be formed at the denoted string posi-
tion, the parser treats the specification as an illegal character, skips it and generates
partial parses only.

4.1.3 Addition of lexical information

Alpino is set up as a broad coverage parser. The goal is to build an analyzer of
unrestricted text. Therefore a large lexicon has been created and extensive un-
known word heuristics have been added to the grammar. Still, it is inevitable that
the parser will come across unknown words that it cannot handle yet. Verbs are
used with extra or missing arguments, Dutch sentences are mingled with foreign
words, spelling mistakes make common words unrecognizable. In most cases, the
parser will either skip such a word or assign an inappropriate category to it. The
only way to make the system correctly use the word, is to add a lexical entry for it
in the lexicon.

Adding new words to the lexicon costs time: one has to write the entry, save the

8 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

top:hd = vwil
top:su = nKim
top:vc:hd = Vv weet
top:vc:su = nKim
top:vc:ve:cmp = comp of
top:vc:ve:body:hd = vkom

top:vc:ve:body:su n Anne

Figure 5: Set of dependency paths for the sentence Kim wil weten of Anne komt

new lexicon and reload it. It would be far more efficient to add all new words one
comes across during an annotation session at once, avoiding spurious reloadings.
Furthermore, not all unknown words the parser finds should be added to the lexi-
con. One would want to use misspelled words and verbs with an incorrect number
of arguments only once to build a parse with.

Alpino has temporary, on line addition of lexical information built in for this
purpose. Unknown words can temporarily be added to the lexicon with the com-
mand add_t ag or add_|l ex. Like the words in the lexicon, this new entry should
be assigned a feature structure. add_t ag allows the user to specify the lexical type
as the second argument. However types may change and especially for verbs it is
sometimes hard to decide which of the subcategorization frames should be used.
For that reason the command add_l ex allows us to assign to unknown words the
feature structure of a similar word, that could have been used on that position. The
command add_| ex stoel tafel forinstance assigns the feature structure of
fig. 1 to the word stoel. The command add_| ex zoen sl aap assigns zoen all
feature structures of slaap, including imperative and 1st person singular present for
all sub-categorization frames of slapen. The lexical information is automatically
deleted when the annotation session is finished.

4.2 Seection

Although the number of parses that is generated is strongly reduced through the
use of different tools, the parser usually still produces a set of parses. Selection of
the best parse (i.e. the parse that needs the least editing) from this set of parses is
facilitated by the parse selection tool. This design of this tool is based on the SRI
Treebanker (Carter 1997).

The parse selection takes as input a set of dependency paths for each parse.
A dependency path specifies the grammatical relation of a word in a constituent
(e.g. head (hd) or determiner (det)) and the way the constituent is embedded in the
sentence. The representation of a parse as a set of dependency paths is a notational
variant of the dependency tree. The set of dependency triples that corresponds to
the dependency tree in fig. 2 is in fig. 5.

From these sets of dependency paths the selection tool computes a (usually

The Alpino Dependency Treebank 9

s:hd = vzag s:hd = vzag
*s:5U = npjan *s:5U = np het meisje
*s:0bj1 = np het meisje sisu:det = dethet
s:objl:det = det het sisuthd = nmeisje
s:objl:hd = nmeisje *s:0bjl = npjan

Figure 6: Two readings of the sentence Jan zag het meigerepresented as sets of dependency
paths. An ’*” indicates a maximal discriminant

much smaller) set of maximal discriminants. This set of maximal discriminants
consists of the triples with the shortest dependency paths that encode a certain dif-
ference between parses. In example 6 the triples s:su:det = det het and s:su =
np het meisje always co-occur, but the latter has a shorter dependency path and
is therefore a maximal discriminant. Other types of discriminants are lexical and
constituent discriminants. Lexical discriminants represent ambiguities that result
form lexical analysis, e.g. a word with an uppercase first letter can be interpreted
as either a proper name or the same word without the upper case first letter. Con-
stituent discriminants define groups of words as constituents without specifying
the type of the constituent.

The maximal discriminants are presented to the annotator, who can mark them
as either good (parse must include it) or bad (parse may not include it). The parse
selection tool then automatically further narrows down the possibilities using four
simple rules of inference. This allows users to focus on discriminants about which
they have clear intuitions. Their decisions about these discriminants combined
with the rules of inference can then be used to make decisions about the less obvi-
ous discriminants.

1. If adiscriminant is bad, any parse which includes it is bad

2. If adiscriminant is good, any parse which doesn’t include it is bad
3. If adiscriminant is only included in bad parses, it must be bad
4

. If a discriminant is included in all the undecided parses, it must be good

The discriminants are presented to the annotator in a specific order to make the
selection process more efficient. The highest ranked discriminants are always the
lexical discriminants. Decisions on lexical discriminants are very easy to make
and greatly reduce the set of possibilities.

After this the discriminants are ranked according to their power: the sum of the
number of parses that will be excluded after the discriminant has been marked bad
and the number of parses that will be excluded after it has been marked good. This
way the ambiguities with the greatest impact on the number of parses are resolved
first.

10 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

The parse that is selected is stored in the treebank. If the best parse is not fully
correct yet, it can be edited in the Thistle (Calder 2000) tree editor and then stored
again. A second annotator checks the structure, edits it again if necessary and
stores it afterwards.

5 Querying the treebank

The results of the annotation process are stored in XML. XML is widely in use
for storing and distributing language resources, and a range of standards and soft-
ware tools are available which support creation, modification, and search of xmL
documents. Both the Alpino parser and the Thiste editor output dependency trees
encoded in XML.

As the treebank grows in size, it becomes increasingly interesting to explore it
interactively. Queries to the treebank may be motivated by linguistic interest (i.e.
which verbs take inherently reflexive objects?) but can also be a tool for quality
control (i.e. find all PPs where the head is not a preposition).

The XPath standard* implements a powerful query language for xML docu-
ments, which can be used to formulate queries over the treebank. XPath supports
conjunction, disjunction, negation, and comparison of numeric values, and seems
to have sufficient expressive power to support a range of linguistically relevant
queries. Various tools support XPath and can be used to implement a query-tool.
Currently, we are using a C-based tool implemented on top of the LibXML li-
brary.®

The xML encoding of dependency trees used by Thistle (and, for compatibil-
ity, also by the parser) is not very compact, and contains various layers of structure
that are not linguistically relevant. Searching such documents for linguistically
interesting patterns is difficult, as queries tend to get verbose and require inti-
mate knowledge of the XML structure, which is mostly linguistically irrelevant.
We therefore transform the original XML documents into a different xmL format,
which is much more compact (the average filesize reduces with 90%) and which
provides maximal support for linguistic queries.

As xML documents are basically trees, consisting of elements which contain
other elements, dependency trees can simply be represented as XML documents,
where every node in the tree is represented by an element node. Properties are
represented by attributes. Terminal nodes (leaves) are nodes which contain no
daughter elements. The XML representation of (the top of) the dependency tree
given in figure 2 is given in figure 7.

The transformation of dependency trees into the format given in figure 7 is
not only used to eliminate linguistically irrelevant structure, but also to make ex-
plicit information which was only implicitly stored in the original XML encoding.
The indices on root forms that were used to indicate their string position are re-
moved and the corresponding information is added in the attributes st art and
end. Apart from the root form, the inflected form of the word as it appears in

“www .w3 . org/TR/xpath
Swww . xmIsoft.org/

The Alpino Dependency Treebank 11

<node rel ="top" cat="smain" start="0" end="6" hd="2">
<node rel ="su" pos="noun" cat="np" index="1"
start="0" end="1" hd="1" root="Kinf word="Kini/>
<node rel ="hd" pos="verb"
start="1" end="2" hd="2" root="wil" word="wl"/>
<node rel ="vc" cat="inf" start="2" end="6" hd="3">
</ node>
</ node>

Figure 7: xmL encoding of dependency trees.

the annotated sentence is also added. Words are annotated with part of speech
(pos information, whereas phrases are annotated with category (cat) informa-
tion. A drawback of this distinction is that it becomes impossible to find all NPs
with a single (non-disjunctive) query, as phrasal NPs are cat =" np" and lexical
NPs are pos="noun" . To overcome this problem, category information is added
to non-projecting (i.e. non-head) leaves in the tree as well. Finally, the attribute hd
encodes the string position of the lexical head of every phrase. The latter informa-
tion is useful for queries involving discontinuous consituents. In those cases, the
start and end positions may not be very informative, and it can be more interesting
to be able to locate the position of the lexical head.

We now present a number of examples which illustrate how XPath can be used
to formulate various types of linguistic queries. Examples involving the use of the
hd attribute can be found in Bouma and Kloosterman (2002).

Obijects of prepositions are usually of category NP. However, other categories
are not completely excluded. The query in (2) finds the objects within Pps.

(2) /Il node[@at="pp"]/ node[@el =" obj 1"]

The double slash means we are looking for a matching element anywhere in the
document (i.e. it is an ancestor of the top element of the document), whereas the
single slash means that the element following it must be an immediate daughter
of the element preceding it. The @sign selects attributes. Thus, we are looking
for nodes with dependency relation obj 1, immediately dominated by a node with
category pp. Inthe current state of the dependency treebank, 98% (5,892 of 6,062)
of the matching nodes are regular NPs. The remainder is formed by relative clauses
(voor wie het werk goed kende, for who knew the work well), pps (tot aan de
waterkant, till on the waterfront), adverbial pronouns (see below), and phrasal
complements (zonder dat het een cent kost, without that it a penny costs).

The cGN annotation guidelines distinguish between three possible dependency
relations for Pps: complement, modifier, or ’locative or directional complement’
(amore or less obligatory dependent containing a semantically meaningful prepo-
sition which is not fixed). Assigning the correct dependency relation is difficult,

12 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

both for the computational parser and for human annotators. The following query
finds the head of Pps introducing locative dependents:

3) /I node[@el ="hd" and ../ @at="pp" and ../ @el="1d"]

Here, the double dots allow us to refer to attributes of the dominating XML element.
Thus, we are looking for a node with dependency relation hd, which is dominated
by a PP with a Id dependency relation. Here, we exploit the fact that the mother
node in the dependency tree corresponds with the immediately dominating element
in the XML encoding as well.

Comparing the list of matching prepositions with a general frequency list re-
veals that about 6% of the Pps are locative dependents. The preposition naar (to,
towards) typically introduces locative dependents (50% (74 out of 151) of its us-
age), whereas the most frequent preposition (i.e. van, of) does introduce a locative
in only 1% (15 out of 1496) of the cases.

In PPs containing an impersonal pronoun like er (there), the pronoun always
precedes the preposition. The two are usually written as a single word (eraan,
there-on). A further peculiarity is that pronoun and preposition need not be adja-
cent (In Delft wordt er nog over vergaderd In Delft, one still talks about it). The
following query finds such discontinuous phrases:

4 /I node[@at =" pp" and
.I'node[@el ="obj 1"]/ @nd < ./node[@el ="hd"]/ @tart]

Here, the *<’-operator compares the value of the end position of the object of the
PP with the start position of the head of the pPp. If the first is strictly smaller than
the second, the PP is discontinuous. The corpus contains 133 discontinuous PPs
containing an impersonal pronoun vs. almost 322 continuous pronoun-preposition
combinations, realized as a single word, and 17 cases where these are realized
as two words. This shows that in almost 25% of the cases, the preposition +
impersonal pronoun construction is discontinuous.

6 Evaluation and training

The treebank is primarily constructed to evaluate the performance of the parser.
We do this by comparing the dependency structures that the parser generates to
the dependency structures that are stored in the treebank. For this purpose we do
not use the representation of dependency structures as trees, but the alternative
notation as sets of dependency paths that we already saw in the previous section.
Comparing these sets we can count the number of relations that are identical in
both the best parse that the system generated and the stored structure. From these
counts precision, recall and F-score (2 * precision x recall /precision + recall)
can be calculated. We also use the measure accuracy, which is defined as follows:

Dby
accuracy=1 maz(De.D3)

The Alpino Dependency Treebank 13

D, is the set of dependency relations of the best parse that the system generated.
Dy is the set of dependency relations of the parse that is stored in the treebank. D s
is the number of incorrect or missing relations in D.

The annotated corpus is also used to train the stochastic module of the Alpino
grammar that is used to rank the various parses for an example sentence according
to their probability. This ranking is done in two steps: first, we construct a model
of what a "best parse” is. For this step, the annotated corpus is of crucial impor-
tance. Second, we evaluate parses of previously unseen sentences by this model
and select as most probable parse the parse that best suits the constraints for “best
parse”.

The model for the probability of parses is based on the probabilities of features.
These features should not be confused with the features in an HPSG feature struc-
ture. The features in this stochastic parsing model are chosen by the grammarian
and in principle they can be any characteristic of the parse that can be counted.
Features that we use at present are grammar rules, dependency relations and un-
known word heuristics. We calculate the frequencies of the features in our corpus
and assign weights to them proportional to their probability. This is done in the
first step, the training step. In the second step, evaluation of a previously unseen
parse, we count for each feature the number of times that it occurs in the parse and
multiply that by its weight. The sum of all these counts is a measure for the prob-
ability of this parse. We will now describe in more detail the Maximum Entropy
model that we use for stochastic parsing (Johnson et al. 1999), first focusing on
the training step and then turning to parse evaluation.

The training step of the maximum entropy model consists of the assignment of
weights to features. These weights are based on the probabilities of those features.
To calculate these probabilities, we need a stochastic training set. We generate
such a training set by first parsing each sentence in the corpus using the Alpino
parser. The dependency structures of the parses that are generated by the parser
(also the incorrect ones) are compared to the correct one in the corpus and eval-
uated following the above described evaluation method. The parses are then as-
signed a frequency proportional to the evaluation score.

Given the set of features (characteristics of parses) and the stochastic training
set, we can calculate which features are likely to be included in a parse and which
features are not. This tendency can be represented by assigning weights to the
features. A large positive weight denotes a preference for the model to use a certain
feature, whereas a negative weight denotes a dispreference. Various algorithms
exist that guarantee to find the global optimal settings for these weights so that the
probability distribution in the training set is best represented (Malouf 2002).

Once the weights for the features are set, we can use them in the second step:
parse evaluation. In this step we calculate the probability of a parse for a new,
previously unseen, sentence. In maximum entropy modeling, the probability of a
parse x given sentence y is defined as

p(ylz) = %@(p(zz' Aifi(w,y))

14 L. van der Beek, G. Bouma, R. Malouf, G. van Noord

The number of times feature i with weights \; occurs in a parse is denoted by f;.
For each parse the normalization factor Z(x) is the same. Since we only want to
calculate which parse is the most likely one and we do not need to know the precise
probability of each parse, we only have to maximize

i Aifi(y)

The accuracy of this model depends primarily on two factors: the set of fea-
tures that is used and the size of the training set (see for instance Mullen 2002).
Therefore it is important to expand the Alpino Dependency Treebank in order to
improve the accuracy.

7 Conclusions

A treebank is very important for both evaluation and training of a grammar. For
the Alpino parser, no suitable treebank existed. For that reason we have started to
develop the Alpino Dependency Treebank by annotating a part of the Eindhoven
corpus with dependency structures. As the treebank grows in size, it becomes
more and more attractive to use it for linguistic exploration as well, and we have
developed an xML format which supports a range of linguistic queries.

To facilitate the time consuming annotation process, we have developed sev-
eral tools: interactive lexical analysis and constituent marking reduce the set of
parses that is generated by the Alpino parser, the tool for addition of lexical in-
formation makes parsing of unknown words more efficient and the parse selection
tool facilitates the selection of the best parse from a set of parses. In the future,
constituent marking could be made more user friendly. We could also look into
ways of further reducing the set of maximal discriminants that is generated by the
parse selection tool.

The treebank currently contains over 6,000 sentences.® Much effort will be
put in extending the treebank to at least the complete cdbl newspaper part of the
Eindhoven corpus, which contains 7,150 sentences.

References

Baayen, R. H., Piepenbrock, R. and van Rijn, H.(1993), The CELEX Lexical
Database (CD-ROM), Linguistic Data Consortium, University of Pennsyl-
vania, Philadelphia, PA.

Bouma, G. and Kloosterman, G.(2002), Querying Dependency Treebanks in
XML, Proceedings of the Third international conference on Language Re-
sources and Evaluation (LREC), Gran Canaria, Spain, pp. 1686-1691.

Calder, J.(2000), Thistle and interarbora, Proceedings of the 18th Interna-
tional Conference on Computational Linguistics (COLING), Saarbriicken,
pp. 992-996.

6Available on http://www . let.rug.nl/~vannoord/trees

The Alpino Dependency Treebank 15

Carroll, J., Briscoe, T. and Sanfilippo, A.(1998), Parser evaluation: A survey and
a new proposal, Proceedings of the first International Conference on Lan-
guage Resources and Evaluation (LREC), Granada, Spain, pp. 447-454.

Carter, D.(1997), The treebanker: A tool for supervised training of parsed cor-
pora, Proceedings of the ACL Workshop on Computational Environments
For Grammar Development And Linguistic Engineering, Madrid.

Groot, M.(2000), Lexiconopbouw: microstructuur. Internal project report Corpus
Gesproken Nederlands, see lands.let.kun.nl/cgn.

Johnson, M., Geman, S., Canon, S., Chi, Z. and Riezler, S.(1999), Estimators for
stochastic "unification-based” grammars, Proceedings of the 37th Meeting
of the ACL, College Park, Maryland, pp. 535-541.

Malouf, R.(2002), A comparison of algorithms for maximum entropy parame-
ter estimation, Proceedings of the Sixth Conference on Natural Language
Learning (CoNLL-2002), Taipei.

Moortgat, M., Schuurman, I. and van der Wouden, T.(2001), CGN syntactis-
che annotatie. Internal project report Corpus Gesproken Nederlands, see
lands.let.kun.nl/cgn.

Mullen, T.(2002), An investigation into Compositional Features and Feature Merg-
ing for Maximum Entropy-Based Parse Selection, PhD thesis, Rijksuniver-
siteit Groningen.

Oostdijk, N.(2000), The Spoken Dutch Corpus: Overview and first evaluation,
Proceedings of the Second International Conference on Language Re-
sources and Evaluation (LREC), pp. 887-894.

Pollard, C. and Sag, 1.(1994), Head-driven Phrase Structure Grammar, University
of Chigago / CSLI.

Sag, 1.(1997), English relative clause constructions, Jourmal of Linguistics
33(2), 431-484.

Skut, W., Krenn, B. and Uszkoreit, H.(1997), An annotation scheme for free word
order languages, Proceedings of the Fifth Conference on Applied Natural
Language Processing, Washington,DC.

Uit den Boogaard, P.(1975), Woordfrequenties in geschreven en gesproken Neder-
lands, Oosterhoek, Scheltema & Holkema, Utrecht. Werkgroep Frequen-
tieonderzoek van het Nederlands.

van Noord, G. and Bouma, G.(1997), Hdrug, A flexible and extendible de-
velopment environment for natural language processing, Proceedings of
the EACL/ACL workshop on Environments for Grammar Development,
Madrid.

van Noord, G., Bouma, G., Koeling, R. and Nederhof, M.-J.(1999), Robust gram-
matical analysis for spoken dialogue systems, Journal of Natural Language
Engineering 5(1), 45-93.

https://www.researchgate.net/publication/2838797

