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Abstract

We describe the development of a Dutch memory-based shallow parser. The availability
of large treebanks for Dutch, such as the one provided by the Spoken Dutch Corpus, al-
lows memory-based learners to be trained on examples of shallow parsing taken from the
treebank, and act as a shallow parser after training. An overview is given of a modular
memory-based learning approach to shallow parsing, composed of a part-of-speech tagger–
chunker and two grammatical relation finders, which has originally been developed for
English. This approach is applied to the syntactically annotated part of the Spoken Dutch
Corpus to construct a Dutch shallow parser. From the generalisation scores of the parser we
conclude that existing memory-based parsing approaches can be applied to spoken Dutch
successfully, but that there is room for improvement in the tagger–chunker.

1 Introduction

Applying memory-based learning to shallow parsing of natural language provides
a useful alternative to manual grammar-based parser development. Being depen-
dent on the availability of suitable training data, however, much research in this
area has only targeted the English language. The increasing availability of corpora
for other languages in recent years now opens up the possibility for testing the
generality of memory-based shallow parsing techniques.

The Spoken Dutch Corpus (Dutch: “Corpus Gesproken Nederlands”, or CGN)
includes a large treebank of contemporary spoken Dutch. It thereby provides the
necessary resources to train a memory-based learning approach to perform shallow
parsing of Dutch. In this paper, an existing memory-based shallow parsing method,
which has been shown to be effective for English, is applied to the CGN data to
construct a shallow parser for spoken Dutch.

The remainder of this paper is structured as follows. Section 2 describes the
architecture of the parser and the learning task representation. Next, in Section 3, a
general overview of memory-based learning, the machine learning approach used
to construct the shallow parser, is given. Section 4 presents the CGN and reviews
the relevant parts of its syntactic annotation. Finally, in Section 5, the performance
of the system is evaluated, after which conclusions are drawn in Section 6.

2 Architecture and task representation

In the memory-based shallow parsing framework, the parsing task is split up into
consecutive subtasks, each of which is learnt by separate classifiers. Applying
these classifiers sequentially to the input data, more and more information be-
comes available, which can then be used to enrich the input for following classifier
modules. Following Daelemans, Buchholz and Veenstra (1999), the parser de-
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Figure 1: Architecture of the memory-based shallow parsing framework. The rounded
rectangles represent the three parser modules; the normal rectangles and the arrows depict
the information flow between the modules.

scribed in this paper distinguishes four subtasks: part of speech tagging, chunking,
PNP finding, and grammatical relation finding. As can be seen in Figure 1, the
four subtasks are performed by three modules; one module that performs both part
of speech tagging and chunking at the same time, and two modules performing the
remaining two relation-finding subtasks.

As a result of dividing the parsing process into smaller subtasks, the tasks to
be performed are reduced to a level that allows memory-based classifiers to be
trained for them straightforwardly. Joining the modules performing these subtasks
in sequence leads to a system that performs the overall parsing task. The remainder
of this section describes the learning tasks corresponding to each of the three parser
modules.

2.1 Tagging–chunking

The first module in the parsing cascade combines the part of speech tagging and
chunking steps into a single learning task, that is, words are assigned a fully disam-
biguated word class and at the same time joined in non-recursive, non-overlapping
constituents referred to as chunks (Abney 1991). In contrast, the memory-based
chunker described by Veenstra (1999) uses feature vectors that include features for
the parts of speech of words, and therefore depends on a separate part of speech
tagger to predict those parts of speech. The single-module approach adopted in
this paper was introduced by Buchholz (2002), who shows that the two subtasks
can be combined without loss of performance.

The memory-based learning task for the tagger–chunker module uses the
chunking-as-tagging method described by Ramshaw and Marcus (1995): for each
word in the sentence, an instance is generated, which is then assigned a chunk tag
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denoting whether the word is inside a chunk (I), inside a chunk, but not in the
same chunk as the word directly preceding it (B), or outside any chunk (O). An
additional chunk type is appended to this tag expressing the type of chunk, if any,
the word is in. For example, I-NP means the word is inside a noun phrase (NP).

The English memory-based chunkers use a definition of chunks that guarantees
that the head word of a chunk is always its last word. Therefore, predicting a
chunk automatically predicts the corresponding head word, as well. In contrast, the
definition of chunks used in this paper is derived from the CGN annotation, which
explicitly marks head words. These head words are often, but not by definition, the
last word of a chunk. For this reason, the IOB-style chunk tags have been extended
to predict not only the chunk for a word, but also whether the word is the head of
its chunk. To deal with the situation when no word in a chunk is assigned the head
role, or when multiple heads are predicted for a single chunk, the rightmost word
that has been assigned a head tag, or if there is no such word, the rightmost word
overall, is taken to be the head word.

Given the tagging scheme for chunks as described above, and part of speech
tags taken from the training corpus as such, the target classes for the combined
tagging–chunking task are a concatenation of a part of speech tag and a chunk tag.
As an example, consider the following sentence.

(1) ik
I

stond
stood

net
just

op
at

de
the

kruising
cross-roads

van
of

de
the

Postweg
Postweg

en
and

de
the

Groenewoudseweg.
Groenewoudseweg.

‘I just stood at the cross-roads of Postweg and Groenewoudseweg.’

The correct assignment of tags for this sentence is the following.

ik/VNW1-I-NP-HD stond/WW1-I-SMAIN-HD net/BW-I-ADVP-HD
op/VZ1-I-PP-HD de/LID-I-NP kruising/N1-I-NP-HD
van/VZ1-I-PP-HD de/LID-I-NP Postweg/N5-I-NP-HD en/VG1-O
de/LID-I-NP Groenewoudseweg/N5-I-NP-HD ./O-LET

This corresponds to the following chunk structure.

[NP ik/VNW1/HD ] [SMAIN stond/WW1/HD ] [ADVP net/BW/HD ]
[PP op/VZ1/HD ] [NP de/LID kruising/N1/HD ]
[PP van/VZ1/HD ] [NP de/LID Postweg/N5/HD ] en/VG1
[NP de/LID Groenewoudseweg/N5/HD ] ./LET

Instances for each word in a sentence are generated using the Memory-based
tagger (MBT) (Daelemans, Zavrel, Berck and Gillis 1996). MBT generates its
feature vectors by applying a windowing technique on the words in a sentence.
Two types of features are used to describe the words in a window. One of them
is the word form itself. The other is either the tag of the word or an ambiguous
tag, describing all possible tags for the word. If a word precedes the focus word
in the sentence, then MBT has already predicted a tag for this word (correctly or
not); hence, this tag can be used in the instance description. In contrast, if a word
follows the focus word in the sentence, then the correct tag for this word has yet to
be predicted. As an alternative to the fully disambiguated tag for the word, then,
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a symbol encoding all possible tags for this word according to the training data, is
used.

MBT uses separate sub-taggers for known words and unknown words (i.e.,
words not seen in the training material). The known-word sub-tagger uses the
features mentioned above. The unknown-word sub-tagger cannot make use of
the word form of the focus word, because it does not match any known word in
the training material. Instead, it uses word form features: prefix letters, suffix
letters, and markers indicating whether the word is capitalised, contains a dash,
or ends in numeric characters. A more detailed overview of the issues involved in
constructing memory-based classifiers by MBT is given in Daelemans et al. (1996).

2.2 PNP finding

During the chunking step, prepositional phrases are not recognised as such. As
sentences are only parsed into non-recursive, non-overlapping constituents, prepo-
sitional phrases are split up into a PP chunk and one or more chunks corresponding
to its complements. However, finding prepositional phrases in sentences may be
very useful, since they can contain information valuable to higher-level applica-
tions, for example information about times and locations.

An important subclass of prepositional phrases is formed by those having noun
phrases as complements. The PNP finding task consists of reconstructing this type
of prepositional phrases out of separate PP and NP chunks. These reconstructed
prepositional phrases will be denoted as PNP chunks. As an example, applying
the PNP finder to the same sentence as used in the previous section would lead to
the following output.

[NP ik ] [SMAIN stond ] [ADVP net ] {PNP [PP op ] [NP de
kruising ] } {PNP [PP van ] [NP de Postweg ] en [NP de
Groenewoudseweg ] } .

Although the structure of PNP chunks is not identified when a sentence is di-
vided into base chunks, the information to reconstruct them can be derived from
the grammatical relations between the head preposition and the noun phrases mak-
ing up its complement. The technique used by the PNP finder is therefore very
similar to the one used by the grammatical relation finder, which is described in
the next subsection. However, while the grammatical relation finder identifies re-
lations between verbal chunks and other chunks, the PNP finder aims at those
between PP chunks and NP chunks instead. Having found these relations, PNP
chunks are constructed from a PP chunk and the NP chunks grammatically related
to it.

Instances for the PNP finding task are centred around pairs of chunks. In PNP
finding instances, such a pair corresponds to a PP chunk and an NP chunk, which
is henceforth referred to as the focus chunk. For a given sentence, instances are
generated for each pair of a PP chunk and an NP chunk following it within a certain
distance. To encode the variable-length chunks by fixed-size feature vectors, the
chunks are represented by their head words only. The heads are the most promi-
nent words of chunks and therefore, grammatical relations could equally well be
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Table 1: The first two PNP finder instances generated for the sentence “ik stond net op de
kruising van de Postweg de Groenewoudseweg.”

dist. betw. prep. context-1 focus context+1

1 0 op op VZ1 PP kruising N1 van VZ1 PP +
3 1 op van VZ1 PP Postweg N5 en VG1 - -

considered to hold between head words of chunks, rather than between chunks as
a whole. Apart from the word form, the features to describe the chunks are the part
of speech of the head word and the chunk type.

In addition to the PP and focus chunks, instances include features to encode
the local context of the focus chunk. This local context consists of a number of
chunks directly preceding and a number of chunks directly following the focus
chunk. Again, these chunks are represented by their head words, part of speech
tags and chunk types. In short, the complete feature vector of PNP finding in-
stances consists of the following features:

• The distance between the preposition and the focus chunk, counted in num-
ber of chunks or words outside chunks.

• The number of PP chunks between the preposition and the focus chunk.

• The preposition, that is, the head word of the PP chunk.

• The focus chunk, which is described by two features.

– The head word of the focus chunk.
– The part of speech of the head word.

• The context chunks, each described by three features.

– The head word of the context chunk.
– The part of speech of the head word.
– The type of the context chunk.

The classification categories for the PNP finding task are kept simple. Instances
are classified to decide whether a given preposition and focus chunk are to be
joined in a PNP chunk. This is the case if the two are grammatically related. In
contrast with the grammatical relation finding task, for PNP finding, the type of
the grammatical relation is unimportant and consequently need not be predicted.
PNP finding instances can be classified as one of either “+” or “-”, thereby only
indicating whether, not how, the preposition and focus chunk are related.

For the example sentence, three instances would be generated for the combi-
nation of “op” with each one of “kruising”, “Postweg”, and “Groenewoudseweg”,
and two more instances for “van” combined with “Postweg”, and with “Groe-
newoudseweg”. Examples of the first two instances that are generated, are given
in Table 1.



36 Sander Canisius and Antal van den Bosch

2.3 Grammatical relation finding

The final step in the memory-based parsing cascade is grammatical relation find-
ing. Having found the chunks of a sentence in the two preceding parsing steps,
in this step, the parser determines their syntactic functions, for example subject
or object of a verb, by identifying grammatical relations between pairs of chunks.
Following Buchholz (2002), grammatical relation finding in this paper is restricted
to relations to verbal chunks. Although this restriction excludes potentially useful
relations, the central meaning of a sentence can often be retrieved quite well by
only considering relations to verbs. Moreover, Buchholz (2002) speculates that
finding relations to nouns or adjectives might require information different from
that useful for finding relations to verbs and would therefore be better performed
in separate tasks.

As was already mentioned in the section on PNP finding, PNP finding and
grammatical relation finding are very similar and therefore their learning tasks are
very similar too. With grammatical relation finding, however, the relations to be
identified are not those between PP chunks and NP chunks, but consist of relations
between verbal chunks and any other chunks. Furthermore, while the PNP finder
only needs to determine whether two chunks are related, the grammatical relation
finder should predict the type of the relation as well.

Machine learning instances for the grammatical relation finding task are cen-
tred around the head words of a verbal chunk and a focus chunk, which may be
of any type. Additionally, instances contain features to encode the local context
of the focus chunk. To find the grammatical relations in a sentence, instances are
generated for each verbal chunk and focus chunk within a certain distance to the
left or to the right. The classifications of these instances indicate whether and, if
so, how the focus chunk is related to the verbal chunk.

More features than those mentioned above can be added to the instance descrip-
tion to improve classification performance. Buchholz (2002) specifically intends
to identify features that are useful for memory-based grammatical relation finding.
A notable result is the highly informative value that features coding sequences of
part of speech tags or chunks, appear to have. In this paper, however, the sim-
pler instance format used by Daelemans et al. (1999) is used. The features of this
format are presented below.

• The distance between the verb and the focus chunk, counted in number of
chunks or words outside chunks. A negative distance indicates that the focus
chunk is to the left of the verb, a positive distance means the focus chunk is
to the right of the verb.

• The number of verbal chunks between the verb and the focus chunk.

• The verb, that is, the head word of the verbal chunk.

• The part of speech of the verb.

• The focus chunk, which is described by four features.
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Table 2: The first two grammatical relation finder instances generated for the sentence “ik
stond net op de kruising van de Postweg de Groenewoudseweg.”

d. b. verb context-1 focus context+1

-1 0 stond WW1 - - - ik VNW1 NP - stond WW1 SMAIN SU
2 0 stond WW1 net BW ADVP kruising N1 PNP op G’seweg N5 PNP -

– The prepositional head word, if the focus chunk is a PNP chunk, or “-”
otherwise. This is the head word of the PP chunk within the PNP.

– The head word of the focus chunk. If the focus chunk is a PNP chunk,
this means the head word of the NP chunk within it.

– The part of speech of the head word.

– The type of the focus chunk.

• The context chunks, each described by three features.

– The head word of the context chunk.

– The part of speech of the head word.

– The type of the context chunk.

The classification categories to be assigned to these instances correspond to the
types of relations to be predicted and “-”, to indicate that the given focus chunk
is not related to the given verb. In the context of the research described in this
paper, only subject and direct or indirect object are predicted. However, the task
representation presented above does not restrict the number and types of relations
that can be predicted. Table 2 shows two example instances in the format described
in this section.

3 Memory-based learning

Memory-based learning denotes a class of machine learning algorithms that clas-
sify unseen instances by matching them to training instances stored in memory.
IB1 (Aha, Kibler and Albert 1991) is a memory-based learner that uses a variant
of the classic k-Nearest Neighbour algorithm (Cover and Hart 1967). It differs
from normal k-NN in that it allows non-numeric features. For this paper, the IB1
implementation as provided by the TiMBL (Daelemans, Zavrel, Van der Sloot
and Van den Bosch 2003) software package, has been used. This implementa-
tion extends standard IB1 with feature relevance weights (Daelemans and Van den
Bosch 1992), distance-weighted nearest neighbour voting (Dudani 1976), and the
MVDM distance metric (Cost and Salzberg 1993).

Instances are described by fixed-length vectors of feature-value pairs and a
label denoting the target class the instance belongs to. At training time, IB1 simply
stores all instances in its instance base. When a test instance is to be classified, this
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instance base is searched for the instances that are most similar to the test instance.
Similarity, in this respect, is defined as a distance between two instances. TiMBL
uses the function in Equation (1) to calculate the distance between instances X

and Y , both described by a feature vector of length n.

(1) ∆(X, Y ) =
∑

i=1
nwiδi(xi , yi)

In this equation, distance is defined as the weighted sum of the distances per
feature. wi is a weight factor for feature i, and δi denotes a function for feature i

that computes the distance per feature. Based on this distance function, the class
for a test instance is determined by applying a (possibly distance-weighted) voting
over the classes of the k nearest neighbours.

4 The Spoken Dutch Corpus

The CGN corpus (Oostdijk, Goedertier, Van Eynde, Boves, Martens, Moortgat
and Baayen 2002) is the first corpus to provide a large-scale treebank for spoken
Dutch1. CGN has been developed in the context of a project aiming to compose
a corpus consisting of 1,000 hours of spoken standard Dutch. The data for the
corpus are collected both in The Netherlands and in Belgium and contain a wide
variety of different types of speech, such as spontaneous conversations, television
broadcasts, read speech, and several others.

As the corpus is intended to be a useful resource for various different research
interests, among which is speech and language technology, it includes a rich set of
transcriptions and annotations. Of special interest to the research presented in this
paper is the syntactically annotated part of the CGN. The CGN treebank provides a
full dependency annotation structured very similarly to the NEGRA corpus (Skut,
Krenn, Brants and Uszkoreit 1997). Syntactic annotations are encoded in the form
of dependency trees. In these dependency trees, three kinds of information are
stored: part of speech tags, phrasal categories and dependency relations.

The terminal nodes of a dependency tree correspond to the individual words
in a sentence and are assigned a part of speech label. The complete tag set com-
prises 316 different part of speech categories (Van Eynde 2001). For the syntactic
annotation, it is reduced to a set consisting of 72 different labels relevant for the
annotation.

The non-terminal nodes in the annotation structure represent higher-level syn-
tactic constituents, dependency domains in CGN terminology. They are as-
signed one of 25 phrasal category labels (Moortgat, Schuurman and Van der
Wouden 2001). Generally, a domain has exactly one daughter that is referred to as
the head of that domain. The other daughters complement or modify the head.

The final element of the CGN annotation is the dependency relation, which
is stored on the edges of the annotation graph. A dependency relation between
a daughter and a mother domain either identifies that daughter as the head of its

1Using the same annotation scheme, Alpino, a treebank for written Dutch has been produced in parallel
with CGN (Van der Beek, Bouma, Malouf and Van Noord 2001).
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Table 3: Instance statistics from the CGN treebank for each of the parser modules. Syntactic
elements correspond to either chunks or relations depending on the parsing task.

Module Instances Syntactic elements

Tagger–Chunker 514,101 298,806 chunks
PNP Finder 41,139 23,186 chunks
Grammatical relation finder 194,790 64,266 relations

mother domain or expresses its syntactic function to that head. The CGN annota-
tion uses 34 dependency labels.

The experiments reported upon in this paper have been based on release 6
of the CGN, which provides a treebank containing approximately half a million
words. Chunks and grammatical relations have been extracted from this treebank
by an algorithm based on that described by Buchholz (2002), and adapted for the
CGN by Canisius (2004). Table 3 lists some statistics on the number of instances
generated for each of the parser modules, and the number of chunks, or relations
encoded by these instances.

5 Results

This section describes the results obtained with the Dutch memory-based shallow
parser. First, some baseline scores for the three parsing subtasks are presented.
These scores are an indication of the difficulty of the tasks, and can therefore serve
as reference scores with which to compare the results reported on in this section.
For tagging–chunking the baseline score (averaged over ten 10% heldout test set
partitionings of the full data set) has been obtained by predicting the class which is
most frequently encountered with a given word in the training data. The baseline
experiment for both PNP finding and grammatical relation finding predicts the
most frequent class given the distance between the focus chunk and the target verb
or preposition. The resulting scores are listed in Table 4 in terms of accuracy (the
percentage of correct classifications in test data), and for all tasks besides tagging,
the precision (the ratio of correctly identified and labelled chunks or relations over
all identified chunks or relations in test data), recall (the ratio of correctly identified
and labelled chunks or relations over all chunks or relations actually occurring in
test data), and F β=1 (the harmonic mean of precision and recall) (Van Rijsbergen
1979). Note that, although in Table 4 and all following tables separate scores are
listed for part of speech tagging and for chunking, a single module is responsible
for both tagging and chunking.

In the remainder of this section, the experiments conducted with the shal-
low parser are discussed in two parts. First, the experimental optimisation of
the memory-based learners is described. Then, the performance of the optimised
memory-based shallow parser is presented.
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Table 4: Baseline scores for the parsing subtasks.

Accuracy Precision Recall F β=1

Tagging 89.26 - - -
Chunking 76.07 64.62 62.14 63.36
PNP finding 94.72 96.94 92.49 94.66
Grammatical relation finding 74.20 63.88 57.84 60.71

Optimisation of the modules To realise the full potential of the memory-based
shallow parsing techniques, the parser modules have been optimised experimen-
tally, before evaluating their performance. In a modular system, such as the one
described in this paper, optimisation can take place on two levels. The first one
is the level of the individual modules, that is, the modules can be optimised so
that they perform optimally when tested in isolation. The second level is that of
the global framework; on this level, the modules are optimised to perform well on
input data that are generated by other modules, and that may therefore be noisy.

Although it is most likely that some extra performance can be gained by con-
sidering optimisation on the global level (Van den Bosch 1997), for this paper,
the optimisation has been restricted to the level of the individual modules only.
Module-level optimisation includes such strategies as algorithmic parameter set-
ting optimisation, and feature selection. Either of those would be infeasible, if
required to be performed optimally (e.g. by exhaustive search among all recombi-
nations of feature selections and parameter settings). Here, only a limited feature
selection has been performed, in which the size of the local context is varied, and
a heuristic search for optimal parameter settings is performed.

The parameter setting optimisation procedure is best described as a heuristic
hill-climbing search through the space of parameter settings. In brief, each of
the parameters is, in turn, tested with all possible values, while keeping the other
parameters fixed. The parameter value leading to the best performance is selected
and left unchanged for the rest of the procedure. The parameters to be varied and
their possible values are the following.

• Feature weighting

– No weighting

– Gain Ratio (Quinlan 1993)

– Information Gain (Quinlan 1986)

– Chi-squared (White and Liu 1994)

– Shared Variance (White and Liu 1994)

• Distance metric

– Overlap (Aha et al. 1991)
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Table 5: Performance of the optimised parser modules when tested in isolation.

Accuracy Precision Recall F β=1

Tagger 95.96 - - -
Chunker 87.99 83.91 85.91 84.89
PNP finder 97.68 97.17 97.82 97.50
Grammatical relation finder 92.92 90.56 85.94 88.19

– Modified value difference (Stanfill and Waltz 1986, Cost and Salzberg
1993)

– Numeric difference

• The number of nearest neighbours

– Could be any integer value, however, only a limited number of them is
actually tested.

• Nearest neighbour voting rule

– Majority voting

– Inverse distance (Dudani 1976)

– Inverse linear (Dudani 1976)

– Exponential decay (Shepard 1987)

This parameter optimisation has been performed for all three learning tasks.
Training and test data covered the entire treebank provided by release 6 of the
CGN. All experiments used 10-fold cross-validation, so that the choices in the
optimisation procedure were statistically sound. The parameter settings for the
three modules that were found lead to the scores listed in Table 5. It can be seen
that all three memory-based parser modules outperform the baseline scores for the
corresponding learning tasks by wide margins.

Performance of the parsing cascade The scores in Table 5 correspond to mod-
ules for which the input instances were constructed from gold-standard corpus
data, that is, the PNP finder and the grammatical relation finder have been run on
perfect part of speech and chunk information; likewise, the information about PNP
chunks fed to the grammatical relation finder was directly extracted from corpus
data. While such a setup is acceptable for the heuristic optimisation procedure, the
actual performance of the entire shallow parser can only be measured when the
three modules are applied in sequence to the input data.

Table 6 shows the scores obtained when constructing the input for the modules
from the predicted outputs of the preceding modules. In addition to the perfor-
mance scores on the entire corpus, the table also lists scores split out per compo-
nent of the corpus. Each such component corresponds to a specific category of
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Table 6: Performance of the parser modules as part of the memory-based shallow pars-
ing cascade. The first row shows the scores on the entire corpus, the other rows show the
scores on the various subcomponents of the corpus: a) spontaneous conversations , b) inter-
views, f) interviews/discussions/debates (broadcast), g) discussions/debates/meetings (non-
broadcast), h) lessons recorded in a classroom, i) live commentaries (broadcast), j) news re-
ports/reportages (broadcast), k) news (broadcast), l) commentaries/columns/reviews (broad-
cast), m) ceremonious speeches/sermons, n) lectures/seminars, o) read speech

Tagger Chunker PNP finder GR finder
Acc Prec Rec F β=1 Prec Rec F β=1 Prec Rec F β=1

all 95.96 83.91 85.91 84.94 85.98 89.79 87.84 83.76 79.11 81.37
a 96.07 83.42 85.79 84.59 85.11 88.90 86.97 85.38 82.27 83.79
b 95.79 83.66 85.64 84.64 85.84 90.20 87.97 84.08 79.04 81.48
f 95.07 84.30 86.03 85.15 85.97 90.68 88.26 81.92 77.51 79.66
g 94.71 82.32 84.01 83.16 85.40 88.19 86.77 76.92 68.39 72.40
h 95.20 83.72 84.53 84.13 89.66 91.07 90.36 83.14 76.38 79.62
i 94.74 79.93 84.15 81.98 86.68 90.24 88.43 80.31 74.30 77.19
j 94.58 82.83 84.32 83.57 84.77 90.14 87.37 77.85 62.03 69.05
k 94.96 84.81 85.80 85.30 86.46 91.70 89.00 76.92 62.32 68.85
l 93.12 82.26 83.17 82.71 84.10 83.31 83.71 75.50 67.62 71.34

m 92.36 78.24 80.53 79.37 73.44 84.21 78.46 72.46 64.94 68.49
n 93.28 81.88 83.97 82.91 82.78 86.62 84.65 80.73 74.08 77.26
o 93.74 83.95 84.48 84.21 86.41 90.17 88.25 77.46 67.27 72.00

speech data, for example, spontaneous conversations, television broadcasts, etc.
The overall scores were obtained using ten-fold cross-validation; those for the in-
dividual components with leave-one-out cross-validation, so that even for small
components the training set always contains a relatively large amount of similar
data.

The scores reveal that the performance of the PNP finder and grammatical re-
lation finder deteriorates considerably when their input is constructed from pre-
dicted rather than perfect tagging–chunking information. Clearly, errors commit-
ted by the tagger–chunker (especially the chunk part of the joint prediction) have a
large effect on the performance of these two modules. Surprisingly, the scores on
spontaneous conversations are among the highest for tagging, chunking and gram-
matical relation finding, whereas on components that would be expected to be less
noisy, the scores are sometimes quite low. For example, the chunking score on cer-
emonious speeches is the lowest of all, and the grammatical relation finding score
on read speech is also considerably lower than on spontaneous conversations.

In an attempt to improve the performance of the tagger–chunker, another ex-
periment has been conducted to evaluate whether extending the parsing cascade
with an additional module that removes disfluencies from the input data before the
tagging–chunking step, could have a positive effect on the performance of the en-
tire cascade. Lendvai, Van den Bosch and Krahmer (2003) show that disfluencies,
which they define as chunks that do not fit under the syntactic tree of a sentence,
can be predicted fairly reliably using only information that can be extracted from
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Table 7: Performance of the parser modules as part of the memory-based shallow parsing
cascade with input data from which disfluencies have been removed.

Accuracy Precision Recall F β=1

Tagger 96.26 - - -
Chunker 89.00 85.50 86.61 86.05
PNP finder 90.18 88.04 92.39 90.17
Grammatical relation finder 90.78 85.66 80.48 82.99

raw text data. As a first step, the potential of disfluency filtering as part of the pars-
ing cascade has been evaluated using perfect filtering of disfluencies, rather than
applying a disfluency predictor for this purpose. This way, the scores obtained can
serve as an estimate of the upper-bound of the performance to be expected when a
real disfluency filtering module is inserted.

The results of this experiment are presented in Table 7. The increase of the
performance scores with respect to the unfiltered system are significant for all
modules (estimated by one-tailed paired t-tests with p < 0.05). However, it should
also be noted that the performance gains are not too high either. This finding
suggests that memory-based shallow parsing is already robust to a large extent with
respect to the presence of disfluencies, and possibly noise in general, in the input
data. Experiments with a real disfluency predictor should be conducted to decide
whether the observed increase remains significant when the filtering of disfluencies
is not perfect, and therefore whether there is any added value in disfluency filtering
before memory-based chunking.

6 Conclusions

The availability of Dutch treebanks, such as the one produced within the CGN
corpus project, enables memory-based learning techniques to be adopted to train
a Dutch shallow parser. In this paper a memory-based shallow parsing method
originally developed for written English is applied to the CGN data. In the first part
of the paper, a summary of the various learning tasks forming the memory-based
shallow parsing framework, has been given. These learning tasks did not require
important changes in order to apply them to the CGN data, even though the CGN
corpus adopts a stronger dependency-parsing orientation than the Penn Treebank
(Marcus, Santorini and Marcinkiewicz 1993). This is due to the fact that the coding
methods developed by Buchholz (Buchholz 2002) to produce instances for the
tagger–chunker and the two relation finding modules, are designed to operate on
any treebank that can be converted to a predefined intermediate format.

The results obtained by the Dutch shallow parser, on the one hand, suggest
that the memory-based shallow parsing framework is both language-independent
and robust to the kinds of noise typical of spoken language. On the other hand,
however, an F β=1 of 84.89 for the chunking component of the tagger–chunker
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also leaves room for improvement. Given the fact that, in the parsing cascade,
the performance of the tagger–chunker has a considerable effect on that of the
other two modules, effort is probably best spent on trying to improve the tagging–
chunking learning task representation.

A promising technique in this respect has been put forth by the results of the
disfluency filtering experiment. It has been shown that there is some improvement
to be made by the special handling of disfluencies in the input data. Moreover,
in addition to simply removing them from the input data, other ways to deal with
disfluencies might prove even more useful. Future research in the area of memory-
based shallow parsing of spoken data should therefore pay special attention to the
role of disfluencies.
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