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Abstract

Discovering frequent structures within large natural language corpora is one of the core
problems of corpus linguistics, but it is difficult to do for richly structured data. This paper
describes a practical algorithm to extract frequent structures from treebanks or annotated
corpora that can be represented as a tree structures. It extracts the most frequent structures
first, so that not all structures have to be counted in order to find the most frequent ones.
This algorithm assumes random constant-time access to all parts of the treebank and has
space and time bounds broadly proportionate to the size of the output, which is not readily
predictable in most cases. It is efficient enough to be usable with reasonable sized corpora
using conventional desktop workstations.

1 Introduction

Statistical corpus linguistics and many natural language processing applications
rely on extracting the frequencies and distributions of phenomena from natural
language data sources. This is relatively simple when language data is treated
as bags of tokens or as n-grams. However, corpora are increasingly annotated
and annotation schemes grow more complex, encompassing diverse systems of
features. Furthermore, there is growing use of treebanks - corpora which have been
parsed either by automatic processes, manually or frequently by a combination of
the two. A great deal of useful information is encoded in these more complex
structured corpora, but access to it is very limited because n-gram and bag models
are only applicable to sequences of discrete symbols - tokens, lemmas, part-of-
speech tags, or other discrete categorical markers - but not to hierarchal structures.

It is trivially easy to count individual atomic elements in any body of symbolic
data, and it is relatively straightforward to store the distribution information for
individual elements or short fixed-length sequences. Many of the most powerful
techniques available to natural language processing have been built on the basis
of n-gram and bag of words models. However, as linguists, we already know that
these methods are inadequate to fully model the information in texts.

Consider the problem of identifying phrases in aligned bilingual corpora and
extracting their translations, like the English fixed phrase “to rain cats and dogs”,
1This research supported by the AMASS++ Project (http://www.cs.kuleuven.be/ liir/projects/amass/)
IWT (SBO IWT 060051).
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Figure 1: The two sentences “Ik zou naar huis kunnen gaan” and “We gaan naar huis”,
parsed, with the repeated section highlighted. To save space, this tree does not take mor-
phological variation into account and does not mark the difference between infinitive and
and conjugated forms.

meaning to rain very hard. Many languages also have idioms that translate this
phrase, none of which are even remotely related to a word for word translation.
Translation discovery techniques that operate on bag of words assumptions are
hopeless in this case. Suffix trees (or tries) and suffix arrays - not suffix in the
linguistic sense but any tail of a sequence - can identify phrases like “rain cats
and dogs” because they appear as fixed phrases with no variation in word order,
little morphological variation, and no words inserted or removed. (Yamamoto and
Church 2001)

However, most multiword structures are not fixed phrases. The English phrase
“take ... into consideration” can appear with or without a freely varying element in
the middle of it. A suffix array approach will not discover this phrase, even though
it appears frequently, because it contains discontinuities. In a parsed treebank,
all parts of this phrase are connected by dependency links and we should be able
to identify this phrase as significant because it constitutes a repeated connected
subtree in the treebank, much as a suffix array can identify “rain cats and dogs”
because it is a repeated fixed phrase in a corpus.

A solution for finding repeated subtrees in treebanks also finds phrases with
free word order, such as the Dutch usage “naar huis gaan”, (to go home). The
components of this phrase can appear in a variety of orders and with words inserted
between the constituents:

1. Ik zou naar huis kunnen gaan. (I could go home.)
2. We gaan naar huis. (We’re going home.)

In a treebank, these two sentences would share a common connected subtree
that encompasses the phrase “naar huis gaan”, as in Figure 1.

Processes that treat texts as bags of words, or that use only very local sequential
information like n-grams, will miss many important phenomena that are present
as connected subtrees. This paper outlines an efficient and usable approach to
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identifying frequently reoccurring connected subtrees in treebanks, but it is equally
effective, given small modifications, to finding strings with gaps and to identifying
other kinds of frequent correlations in richly structured data.

2 Closed structures

The problem of finding frequent structures like subtrees in tree structured data
is hampered by the sheer number of possible structures contained even in very
small datasets. The smaller tree in Figure 1 has 13 nodes, meaning it has at least
132 = 169 and at most 12! = 479001600 subtrees. A brute force approach to
extracting the counts and distributions of all subtrees is not feasible even over very
small treebanks.

Furthermore, many of the subtrees that a brute force approach could extract are
redundant. If a corpus has a sequence of tokens ABCDE that appears f times,
then that corpus also contains at least f instances of the sequences A, B, C, D, E,
AB, BC, CD, DE, ABC, BCD, CDE, ABCD, and BCDE. If any of these
sequences appears only in the context of ABCDE, then it is redundant, because
it has the same count and distribution as the longer sequence ABCDE.

If a set of sequences is identically distributed - appearing in all the same places
- then the longest of those sequences is called a closed sequence. In more formal
terms, a sequence S that appears f times in a corpus is called closed if and only if
there is no prefix or suffix a such that aS or Sa also appears f times in the corpus.
This definition extends easily to trees: A subtree T in a treebank is closed if and
only if there is no node that can be added to it to produce a new subtree T ′ such
that the frequency of T ′ is equal to the frequency of T . All subtrees in a corpus are
either closed subtrees or are subtrees of closed subtrees that appear in exactly the
same places in the treebank. The set of closed subtrees in a treebank is the smallest
set of subtrees that encompasses all the distributions of subtrees in the treebank.
Any subtree that is not in the list of closed subtrees is either a subtree of one of the
closed subtrees that appears exactly as often and in all the same places, or does not
appear in the treebank at all.

For example, if we take the two sentences in Figure 1 as very small a treebank,
there is only one closed subtree with a frequency of 2. However, that one closed
subtree has a number of subtrees of its own that have the same frequency but are
redundant, as shown in Figure 2.

Closure is important for the discovery of translatable subsentential units. The
phrase “rain cats and dogs” is translatable as a single unit, but “rain cats and” is not
separately translatable, and will surely be incorrectly translated if treated in isola-
tion. An algorithm which extracts only closed structures will never identify “rain
cats and” as a potential unit, it will only identify “rain cats and dogs.” Similarly,
for a structure like “naar huis gaan”, extracting only closed subtrees will ignore all
the redundant subtrees that are part of it.
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(a) The common subtree of the
trees in Figure 1: “naar huis gaan”

(b) Redundant subtrees of tree (a). There are many
more such structures.

Figure 2: Closed and redundant subtrees.

(a) Tree 1 (b) Tree 2 (c) Tree 3 (d) Tree 4 (e) Tree 5

Figure 3: Trees 2, 3, 4 and 5 are a subtrees of Tree 1. Tree 3 is an unordered tree and Tree
4 is its ordered form. To construct a canonical representation, it is important to order the
nodes, turning Tree 3 into Tree 4. Tree 5 is a tree that is automatically in ordered form.

3 Canonical string representations of trees

Much of the research in frequent subtree discovery has been based on canonical
string representations of trees. The algorithm in this paper draws heavily on the
TreeMiner and FREQT algorithms, both of which use canonical string representa-
tions. (Asai et al. 2002, Zaki 2002) The type of representation used here is called
a depth-first canonical form (DFCF). In general, all depth-first canonical forms for
trees are similar enough that the algorithms that use them can be readily translated
to use a different one. The form used here is the one developed by Luccio et al.
(2001).

The purpose of DFCF representations is to encode trees as strings in such a way
that if one tree is a subtree of another tree, then there is an alignment of the DFCF
of the smaller tree with that of the the larger. Using this type of representation,
a number of tree matching problems are converted into string matching problems
for which efficient solutions already exist. (See Luccio et al. (2001).)

To construct a DFCF for a tree, first sort the children of each node into a fixed
lexicographic order. (See Figure 3.) This reordering is important because other-
wise the DFCF of a tree will not necessarily be alignable with the DFCF of any
subtree. The simplest way to explain the DFCF representation used here is to see
it as equivalent to a LISP-style bracketed representation of a tree, but where only
the end brackets of each constituent have to be indicated. In this paper, the end of
each constituent is labeled with a 0. Trees 1 and 2 in Figure 3 are converted into
DFCF as:
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Tree 1: ABC0D00EF0G000
Tree 2: ABD00E00

Note that the number of zeros in each DFCF is equal to the number of node
labels, and that a well formed tree must start with a node label and end with a zero.

Since Tree 2 is a subtree of Tree 1, there is an alignment of all the nodes and
zeros of Tree 2 with nodes and zeros of Tree 1 such that the number of node labels
and zeros in each unaligned part of Tree 1 are equal:

Tree 1: ABC0D00EF0G000
Tree 2: AB--D00E----00

This alignment can be performed in time proportionate to the size of the larger
tree, the same as for string alignment with gaps.

DFCF representations are generally very compact and have the enormous ad-
vantage that they can be manipulated as strings. This form also makes it very easy
to write fast functions for finding descendant, sibling and ancestor nodes of any
node, and to extract whole sections of the tree.

The guarantee that a DFCF of a subtree will always be alignable with a larger
tree that contains it only applies when the non-terminal children of each node have
unique labels. This is not guaranteed to be true in natural language processing,
but empirically appears to be usually true. To test this, we used the 7137 hand-
corrected parse trees from the Alpino Treebank of Dutch.1 Of the 230673 nodes
in this sample, 3833 have more than one non-leaf child with the same label. See
Figure 4 for an instance found in the Alpino treebank.

Nodes with non-uniquely labelled children were spread over 2666 of 7137 sen-
tences. While this phenomenon affects a large minority of Alpino trees, in order
to cause problems a frequently occurring subtree has to span at least two non-leaf
children of a single node with the same label and at least one child of those nodes.
Although difficult to empirically verify, this seems likely to be fairly a marginal
phenomenon. Furthermore, for some applications this problem can be eliminated
by using binary parse trees (cf. Chomsky Normal Form in Jurafsky and Martin
(2009)). However, see Chi et al. (2005) for an algorithm that does not have this
problem, but entails substantial extra processing costs. The simple, fast, memory-
efficient tree generation scheme described below cannot be used when subtrees
cannot be guaranteed to always appear with the same node order.

The principal value of depth-first canonical forms for this paper is that it is
possible use them to quickly construct trees by generating and extending them to
the right in DFCF representations. (Zaki 2002) Keeping count of the number of
labels and 0s as we move across the DFCF representation, we can quickly identify
which nodes can be attached to any subtree and where they are attached to.

Consider Tree 1 from Figure 3: ABC0D00EF0G000 and its subtree Tree 5:
ABC000. (See Figure 3.) The rightmost node of Tree 5 is C, which aligns with

1http://www.let.rug.nl/vannoord/trees/

http://www.let.rug.nl/vannoord/trees/
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Figure 4: “...between the European Commission and the government of the [German] Fed-
eral Republic...” This structure is a simplified subtree of one of the sentences in the Alpino
corpus where a node has two children with the same labels - two NPs. This can prevent the
algorithm from discovering a small number of frequent subtrees.

address 2 in Tree 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Tree 1: A B C 0 D 0 0 E F 0 G 0 0 0
Tree 5: A B C 0 - - - - - - - - 0 0
alignment: #

To find all the nodes that can be added to the right of Tree 5, take the depth
of the rightmost node in Tree 5 - which has a depth of 3 - and assign it to the
address following the address of the node that aligns with the rightmost node of
Tree 5. Then, if that address points to another node label, add 1 to the value at that
address and assign the result to the next address. If that address points to a zero,
then subtract 1 and assign it to the next address. Continue this way to the right
until the end of Tree 1 is reached, as shown below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Tree 1: A B C 0 D 0 0 E F 0 G 0 0 0
Tree 5: A B C 0 - - - - - - - - 0 0
depth: 3 2 3 2 1 2 3 2 3 2 1
maximum depth: 3 2 2 2 1 1 1 1 1 1 1
addable nodes: # #

The addresses of the nodes that can be added to the right of Tree 5 to create
a new connected subtree are those with values equal to the lowest value seen so
far, when moving to the right, and that have labels rather than zeros in them. Fur-
thermore, the value assigned to each address containing an addable node is the
depth of its parent, so we know exactly where to attach it to Tree 5. Extending
Tree 5 this way yields two new subtrees as possible extensions: ABC0D000 and
ABC00E00, as shown in Figure 5.

If we have a subtree and we know the addresses of the rightmost node of each
instance of it in a treebank, DFCF representations enable us to quickly identify ex-
tensions to that subtree without having to perform alignment or visit any ancestor
node of the rightmost node in the subtree.
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(a) (b)

Figure 5: The two possible extensions of Tree 5 as a subtree of Tree 1. (Figure 3)

4 Algorithm and Data Structures

The algorithm described here is an Apriori-style approach (Agrawal et al. 1993)
that builds heavily on the TreeMiner algorithm (Zaki 2002) for finding frequent
subtrees. Unlike TreeMiner, this algorithm extracts only closed subtrees. It is not
the first or only algorithm to do so - see Chi et al. (2004) for a more extensive
summary of efforts to tackle this problem. The novelty of this approach is first,
the manner in which it checks for closure, and second, its application to natural
language treebanks.

4.1 Definitions

A treebank T consists of |T | nodes belonging to a number of individual trees in
DFCF representation. Each node has a label drawn from a lexicon L of size |L|.
Each label in the treebank has a unique address a so that if the first label A of some
subtree AB0C00 has an address a0 , then the label at address a0 +1 is B, the label
at address a0 +2 is 0, etc. All addresses are sortable so that a0 < a0 +1 < a0 +2.
It is also assumed that the contents of the treebank are randomly accessible in
constant, negligible time.

Each appearance of each subtree is characterized by the address of its root in
the treebank and the address of its rightmost node. This data structure will be
called a Hit. The list of all Hits corresponding to all the appearances of some
subtree in the treebank will be called a HitList. So, for each subtree there is a
corresponding HitList and vice-versa. HitLists are always constructed in sequential
order, from first instance in the treebank to last, and can never contain duplicates.

We will define the function queueKey on HitLists to output an array of four
numbers in a specific order, given a HitList as input:

1. The number of Hits in the HitList.
2. The distance from the address of the root of the first Hit to the end of the

treebank.
3. The distance from the address of the rightmost node of the first Hit to the

end of the treebank.
4. The number of nodes in the subtree associated with that HitList.

These keys are sortable and designed to ensure that HitLists from a single tree-
bank can always be sorted into a fixed order such that, for two HitLists A and B,
if A > B then:
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1. A has more Hits than B.
2. If A has the same number of Hits as B, then the root of the first Hit in A

precedes the root of the first Hit in B.
3. If A’s first root is identical to B’s, then the address of the rightmost node of

the first Hit in A precedes the address of the rightmost node of the first Hit
in B. or if those are the same that:

4. If the first Hit in A is exactly the same the first Hit in B, then the subtree
associated with A has more nodes than the subtree associated with B.

A self-sorting queue is any data structure that stores key-data pairs and stores
the keys in order from greatest to least. The data structure used to implement a
self-sorting queue in this research is an AVL tree, however, other structures could
equally well have been used. B-trees in particular might well lead to improved per-
formance. (See Knuth (1997) for broader discussion of this type of data structure.)
The self-sorting queue will be used to maintain a sorted list of HitLists, sorted in
the order of their queueKeys as described above.

4.2 Initialization

Fix a minimum frequency t for the subtrees you wish to extract from the treebank.
Start processing by initializing one HitList for each unique label in the treebank
with the set of Hits that corresponds to each occurrence of that label. We will treat
each as a HitList with an associated subtree containing only one node, and where
for each Hit in each HitList, the address of the root is the same as the address of
the rightmost node. This set is constructed in linear time by iterating over all the
nodes in the treebank.

It is important to note that the initial HitLists are constructed so that the Hits
in them are in order from the first occurrence of the associated label to the last.
This is important because the method of construction of larger subtrees ensures
that each HitList built by extending an existing HitList will also have an ordered
address list. It also means that the first appearance of any subtree in the treebank is
always the first Hit in the associated HitList. Of the initial HitLists, throw away all
those with fewer than threshold frequency t Hits in them. The remaining HitLists
are inserted into the self-sorting queue.

To see this in action, take Trees 6 and 7 from Figure 6 to be a very small

(a) Tree 6 (b) Tree 7

Figure 6: A trivial two-tree treebank.
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Table 1: (a) All HitLists in the example and (b) the state of the self-sorting queue after
initialization. Hits are in [root address, rightmost node address] form.

(a) All initial HitLists

DFCF Tree Hits
A0 [0,0], [8,8]
B0 [1,1], [9,9]
C0 [3,3]
D0 [11,11]
E0 [7,7], [15, 15]

(b) Initial queue state

DFCF Tree queueKey
A0 [2, 15, 15, 1]
B0 [2, 14, 14, 1]
E0 [2, 10, 10, 1]

treebank. In DFCF form, with the addresses of each symbol noted, they are:

0 1 2 3 4 5 6 7
Tree 6: A B 0 C 0 E 0 0

8 9 10 11 12 13 14 15
Tree 7: A B 0 D 0 E 0 0

HitLists for each label, constructed as they would be when initialized, are
shown in Table 1a. If we extract subtrees with a minimum frequency of 2, then we
reject the HitLists for C and D since they only appear once. The remaining three
HitLists are inserted into the queue, which sorts them in order of their queueKeys,
as in Table 1b.

4.3 Extracting subtrees without checking for closure

Extracting all the subtrees above a fixed frequency, in order from the most frequent
to the least, proceeds as follows:

Initialize as described above. Pop the top HitList from the queue and visit each
Hit, getting all the valid right extensions and their addresses, and then constructing
the set of HitLists for each new subtree. For each of the resulting new subtrees and
their HitLists, check each to see if it has at least the specified minimum number
of Hits in it. If so, insert it into the queue. If not, throw it away. This is essen-
tially identical to the TreeMiner and FREQT algorithms already published by Zaki
(2002) and Asai et al. (2002), except that it outputs frequent subtrees in order from
the most frequent to the least.

To see Algorithm 1 extractAllFrequentSubtrees work, start with the state of the
queue in Table 1. Remove the top entry in the queue, A0, and visit each instance
of it, generating new subtrees as extensions to it by the means described in section
3. The result is four new subtrees, as shown in Table 2. Of these, only two have
frequencies greater than or equal to the minimum frequency of 2, and are thus
added to the queue. We also output A0 and its HitList.

Repeating this procedure until the queue is empty will output all subtrees that
appear at least twice in this small treebank: A0, AB00, AB0E00, AE00, B0,
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Algorithm 1
define extractAllFrequentSubtrees(minimum frequency t, Treebank T )

initialize empty self-sorting queue Q
fill Q with all single node subtrees with frequencies >= t
while length(Q) > 0 do

currentHitList = pop top HitList from queue
successors = rightExtendSubtree(hl)
for all newHitList in successors do

if countHits(newHitList) >= t then
insert newHitList into Q

end if
end for
output currentHitList

end while

Table 2: (a) Extensions to A0 and (b) the state of the queue after extending A0 and adding
A0’s extensions to it.

(a) Extensions to A0

DFCF Tree Hits
AB00 [0,1], [8,9]
AC00 [0,3]
AD00 [8,11]
AE00 [0,5], [8,13]

(b) Queue state

DFCF Tree queueKey
AB00 [2, 15, 14, 2]
AE00 [2, 15, 10, 2]
B0 [2, 14, 14, 1]
E0 [2, 10, 10, 1]

BE00 and then E0.

4.4 Extracting only closed subtrees

By controlling the order in which HitLists reach the top of the queue, it is possible
to efficiently prevent any subtree which is not a closed subtree or a prefix of a
closed subtree from being extended, and to prevent any subtree that is not closed
from being outputted.

Every subtree with a frequency of f is either a closed subtree, a prefix of a
closed subtree that also has a frequency of f and can be constructed by adding
more nodes to the right, or a redundant subtree of some closed subtree with a
frequency of f . If subtree x is a redundant subtree of tree y, both having the same
frequency f , then there is some prefix of y, yprefix , also with frequency f , for
which the addresses of the rightmost nodes of every instance of yprefix are identical
to the addresses of the rightmost nodes of every instance of x. Furthermore, subtree
x will be a subtree of yprefix . This means that if we already know that yprefix is a
prefix of a closed subtree, we can check if x is a redundant subtree, and therefore
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never store or extend it, by verifying that:

• x and yprefix appear the same number of times in the treebank, and either:
• x is a subtree of yprefix , or that:
• The set of addresses of the rightmost nodes of instances of x is identical to

the set of addresses of rightmost nodes of instances of yprefix .

The sort order of the self-sorting queue ensures that if a prefix of a closed
subtree yprefix is in the queue and some subtree of it x is also in the queue, then
yprefix is closer to the top of the queue than x is. For all redundant subtrees x
and their corresponding prefix of a closed subtree yprefix , queueKey(yprefix ) is
greater than queueKey(x). To ensure that yprefix reaches the top of the queue
before x, it suffices to guarantee that yprefix is always added to the queue before x
reaches the top.

The subtree yprefix is generated by extending yprefix ’s immediate prefix y′prefix

- the subtree that is the same as yprefix without its rightmost node. Subtree y′prefix

either appears exactly as often as yprefix or it appears more often and the address
of the root of the first instance of y′prefix either precedes the address of the root
of the first instance of y′prefix or is identical to it, and the address of the rightmost
node of the first instance of y′prefix must precede that of yprefix because y′prefix

is identical to yprefix except that it has one less node on the right. In either case,
y′prefix precedes x in the queue if both are in the queue. This means that y′prefix

reaches the top of the queue before x, and yprefix is inserted into the queue before
x reaches the top. This logic extends back to all prefixes of yprefix until we get to
the single node subtree that corresponds to its root. All prefixes of yprefix precede
x in the queue, are extended before x reaches the top of the queue, and all their
extensions that are at least as frequent as x reach the top of the queue before x
does.

Ergo, every subtree that is not a closed subtree or a prefix of a closed subtree
reaches the top of the queue after the closed subtree or prefix of a closed subtree
that contains it and appears exactly the same number of times in exactly the same
places. In order to prevent a redundant subtree from being stored or extended, it
suffices to check each subtree as it reaches the top of the queue against the subtrees
that have already reached the top of the queue. Algorithm 2 extractAllFrequent-
ClosedSubtrees does just that.

Continuing the example from section 4.3 and applying Algorithm 2 extractAll-
FrequentClosedSubtrees, start with the initialized queue as in Table 1. A0 is the
first subtree removed from the queue, and is a prefix of a closed subtree by virtue
of being at the top of the queue when initialized. We get its extensions and insert
them into the queue. (See Table 2.) However, we note that A0 appears twice, and
its extensions AB00 and AE00 also appear twice. It is not, therefore, a closed
subtree, so it is not outputted. However, its frequency and the list of addresses of
its rightmost nodes - [2, 0, 8] - is saved.

The next subtree removed from the top of the queue is AB00. It appears twice,
with rightmost nodes at 1 and 9, so we check for [2, 1, 9] in the table of subtrees
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Algorithm 2
define extractAllFrequentClosedSubtrees(minimum frequency t, Treebank T )

initialize empty HitList repository R
initialize empty self-sorting queue Q
fill Q with all single node subtrees with frequencies >= t
while length(Q) > 0 do

currentHitList = pop top HitList from queue
if currentHitList does not match any HitList in R then

store currentHitList in R
successors = rightExtendSubtree(hl)
for all newHitList in successors do

if countHits(newHitList) >= t then
insert newHitList into Q

end if
end for
if no newHitList in successors is as frequent as currentHitList then

output currentHitList
end if

else
reject currentHitList and do nothing

end if
end while

Table 3: Continuing from Table 2 after processing AB0E00 with extractAllFrequent-
ClosedSubtrees: (a) the state of the queue, (b) the repository of information about previous
subtrees, and (c) the subtrees already outputted.

(a) Queue state

DFCF Tree queueKey
AE00 [2, 15, 10, 2]
B0 [2, 14, 14, 1]
E0 [2, 10, 10, 1]

(b) Stored information

Freq & addrs Subtree
[2, 0, 8] A0
[2, 1, 9] AB00
[2, 5, 13] AB0E00

(c) Output

DFCF Tree Hits
AB0E00 [0, 5], [8, 13]

that have already reached the top of the queue. It does not match any - only [2, 0, 8]
is there - so it is extended.

AB00 has only one extension that appears at least twice: AB0E00, appearing
with the Hits [0, 5], [8, 13]. Since it appears twice, AB00 is also not closed but it
is a prefix of a closed tree, so [2, 1, 9] is stored and nothing is outputted. AB0E00
is added to the queue. Since AB0E00 has a queueKey of [2, 15, 10, 3], it goes to
the top of the queue, ahead of AE00.

AB0E00 has no extensions and it does not match any previously processed
subtree, so it is a closed subtree. We output it, and since it has no extensions,
nothing is added to the queue, but we store its count and rightmost node addresses:
[2, 5, 13]. Table 3 shows the state of the queue, the table containing information
about previously processed subtrees, and the output up to this point.

So far we have only needed to check for closure by testing if any subtree has an
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extension that occurs just as often, but with AE00 this will change. Its frequency
is 2 and the addresses of its rightmost nodes are 5 and 13, so AE00 matches
AB0E00. We therefore reject AE00 without extending it, without storing it any-
where, and without outputting it. A cursory look at the treebank (Figure 6) verifies
that AE00 is not a closed subtree nor a prefix of a closed subtree. Every time
AE00 appears, it is part of AB0E00.

In the same way, we reject the next subtree at the top of the queue, B0, because
it matches AB00, and then we reject E0 for matching AB0E00. This empties the
queue and the program stops, having outputted only the one closed subtree that
appears twice in the corpus.

With closure checking, the runtime for this algorithm is proportionate to the
total number of Hits in the all the HitLists inserted into the queue, which is some-
what more than all the HitLists outputted. Insertions to the queue include all closed
subtrees, all prefixes of closed subtrees and all single-node extensions of closed
subtrees and prefixes of closed subtrees. Memory usage includes all the HitLists
in the queue at any one time, but also the hash table used to check for closure. This
hash table can grow quite large, but can never be larger than the output.

It is not necessary to store all the rightmost node addresses of every HitList in
order to verify closure, as in the example above. Only a subset is necessary and in
practice we used only one address: the location of the rightmost node of the first
appearance of each subtree. Other distribution-sensitive hashing schemes are pos-
sible and may improve performance. However, if all addresses are not stored, then
more than one previously processed HitList may match a new HitList. To check for
closure, the algorithm must then verify that a possibly redundant subtree is con-
tained in a previously processed one. This is most effective at high frequencies,
when address lists are long but trees are small and can be tested for containment
quickly. At low frequencies - any frequency where the average number of nodes
in a subtree is greater than the number of times that subtree appears - performance
improves using complete address lists. Future work includes devising a more flex-
ible distribution-sensitive hashing scheme for these conditions.

5 Results

Algorithm 2 extractAllFrequentClosedSubtrees was implemented using a mixture
of Ruby1 - an interpreted scripting language - and some C code. It was applied
to the hand-corrected 7137 sentence subset of the Alpino Treebank of Dutch. The
average sentence length in this small treebank is roughly 20 words, and the corre-
sponding trees have an average of approximately 32 nodes.

Applying extractAllFrequentClosedSubtrees to this treebank, with the mini-
mum frequency set to 2, yields 342,401 closed subtrees in about 2000 seconds
of runtime on a conventional workstation running Linux. In total, 3,154,232 ad-
dresses were extracted - an average of just over 9 addresses per subtree. The fre-
quent trees extracted contain 2,510,439 nodes - ten times as many as the total

1http://www.ruby-lang.org/
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Table 4: Processing results using extractAllFrequentClosedSubtrees, extractAllFre-
quentSubtrees, and estimates for a naı̈ve brute force solution.

Algorithm # of Subtrees # of addresses Total nodes Runtime
in all subtrees

extractAllFrequentClosedSubtrees 342,401 3,154,232 2,510,439 2000 sec
extractAllFrequentSubtrees 4.2 million 14.1 million 124 million 11,000 sec
Naı̈ve brute force < 6.3 · 1034 > one per subtree > # of subtrees -

number of nodes in the treebank. At its peak, the queue contained roughly half as
much data as the final output.

Algorithm 1 extractAllFrequentSubtrees, which does not check for closure, was
also implemented and run on the same data with a minimum frequency threshold
of 2. Table 4 compares it with extractAllFrequentClosedSubtrees and an estimate
for a brute force approach. Eliminating checking for closure reduced the amount
of time it took to process each address in the output, but increased the size of the
output by much more. Tests of the same algorithms using subsets of the same
treebank show that the difference between extracting all subtrees and extracting
only closed subtrees grows very rapidly as treebank size grows. This follows logi-
cally because larger closed subtrees have more non-closed subtrees, and the larger
a treebank becomes, the more large, low frequency closed subtrees will be discov-
ered.

The hash table used to check for closure grew quite large towards the end of
processing, since there are always more subtrees with low frequencies than with
high frequencies, and low frequency subtrees will have more nodes than higher
frequency ones. At low frequency thresholds, this tended to dominate memory
usage as the program progressed.

Setting higher minimum thresholds reduces the size of the output and speeds
up processing dramatically. Running extractAllFrequentClosedSubtrees with a
threshold of 4 reduced the runtime to less than half what it was with a thresh-
old of 2, roughly halved the number of subtrees found, and reduced the number
of addresses outputted by a third. Peak memory usage was reduced by about two-
thirds. This suggests that choosing the minimum frequency has a very substantial
but non-linear effect on memory usage as well as run time. In all cases, the extra
processing and memory required per subtree to find only closed subtrees domi-
nates processing time at low frequencies.

6 Conclusions and future work

Porting this algorithm to a compiled language and optimizing the code is the first
priority for further work in this field. Some of the results described here cannot be
easily tested for their robustness until a faster implementation is in place. A previ-
ously implemented version of a very similar algorithm was used to extract frequent
combinations of words in sentences from a database of news articles, rather than
finding frequent subtrees, and rewriting a few frequently invoked functions in C



Frequent Structure Discovery in Treebanks 113

instead of Ruby improved performance roughly 20-fold. We expect comparable
results for trees.

Using conventional desktop computers, this makes treebanks of hundreds of
thousands of sentences accessible to comprehensive extraction of all reoccurring
closed subtrees, including those appearing infrequently, and makes it feasible to
process much larger treebanks with higher minimum frequency thresholds. This
algorithm is also highly parallelizable, and we are investigating the possibility of
running it over distributed hardware.

The non-linear effect of treebank size and minimum frequency thresholds on
memory usage and runtime is one area that demands deeper investigation. Also,
the empirical performance results described in the previous section may not trans-
port well to treebanks using different linguistc formalisms than Alpino, and may
vary depending on the language. Additionally, work is in progress to find an effi-
cient solution for trees with non-unique child nodes.

The goals of this line of reseach include applications to natural language pro-
cessing, notably to Data Oriented Parsing (Bod et al. 2003), which makes heavy
use of subtree statistics. Applications to machine translation include using bilin-
gual treebanks to extract subtree to subtree translations for the development of
transfer rules. Statistical parsing can also be enhanced with access to subtree statis-
tics by selecting parses that maximize the probabilities of their subtrees.

To date, there has been little corpus research using comprehensive censuses
of frequently occurring structures instead of merely words. This research makes it
possible to directly compare the frequencies of structures without having to specify
those structures in advance. If it is a structure that takes the form of a reoccurring
subtree in a treebank, it is accessible to this algorithm. Although a variety of statis-
tical tools exist in corpus and computational linguistics for handling pairs of words
and short sequences such as n-grams, many of these tools do not transport well to
arbitrary structures. The development of new tools better suited to treebanks, par-
ticularly from within Minimum Description Length theory (Grünwald 2007), is
also in progress as part of this research.
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