Preference-Driven Bimachine Compilation
An Application to TTS Text Normalisation

Woijciech Skut
Rhetorical Systems

Abstract

This paper describes a grammar formalism and a deterministic parsgopled for text nor-
malisation in the rVoicktext-to-speech (TTS) system. The rules are formulated using regular
expressions and converted into a non-deterministic finite-state tramgi&E). At runtime,
search is guided by parsing preferences which the user may asseitfategular operators;

the best solution is determined in a way similar to the directional evaluationnstraints in
Optimality Theory. During compilation, the FST is converted into a bimachirakimg deter-
ministic parsing possible.

1 Motivation

Over the past decade, speech synthesis has become one afshsurcesful com-
mercial applications of natural language and speech psoagtechnologies. During
this time, it has established itself as a standard solutiocall centre applications,
telephone banking and several other areas. The reasors feudtess is rightly at-
tributed to the emergence of high-quality unit selectiontbgsis methods (Hunt and
Black 1996). However, as a result of this focusspeectprocessing, theextprocess-
ing part of TTS typically receives less attention althoudtigh quality text front end
is indispensable for a good TTS system.

The task of the text front end in a TTS system is to convert mrgpui text into
a sequence of unambiguous phonetic symbols. For examplegetitencéOn 22/5,

Mr Brown had to pay ai$80 fine” may be transformed to the phonetic representation
[on do twentr sekond ov mer misto bravn haed to per on ettt dols fam]. While mapping
some of the words (e.gay) to phonetic symbols is straightforward, other parts of the
input require a complex multi-stage transformation, e#0 — eighty dollar— [ertr
dols]. Non-trivial processing is required for numbers, dag&%), currency amounts
($80), abbreviationsNir) and many other types of expressions. It is often context
dependent (e.gf80 — eighty dollar/eighty dollaras inan $30 finevs. he was fined
$30).

Typically, text processing is split into two main stagestha first one, abbrevia-
tions, digits and symbols are rewritten as literal text (©g 22/5, Mr Brown had to
pay an$80 fine— On the twenty-second of May, Mister Brown had to pay an eighty
dollar fine). Then, the actual phonetic rewrite takes place.

The termtext normalisatiorcommonly refers to the first processing stage, which
is also the more difficult one. Due to the required broad cayertext normalisation
grammars tend to be very large and complex. As in other afédisk) disambiguation
of alternative analyses is the main source of complexitysthingl may be expanded

1seeht t p: // www. r het ori cal . con cgi - bi n/ den. cgi .

203

Preference-Driven Bimachine Compilation 204

asone first, premier, etc. depending on the context it appears in. Although it may
be possible to learn such context-based disambiguaties ftdm data, existing text
normalisation systems are typically rule-based, which ésthprobably due to two
reasons.

Firstly, existing rule-based formalisms often come witliwkarge and detailed
grammars developed over years, an extremely valuablenessthat might be wasted
if one decided to abandon the rule-based paradigm. Secdegtynormalisation re-
quires very high precision as we cannot afford, say, an atdmlance to be expanded
incorrectly in an automated telephone banking applicafidre precision threshold is
thus much higher than in those areas of NLP where data-dapprmoaches have be-
come successful, e.g. in Machine Translation. This doepremiude a data-drived
solution to the problem, but the quality restrictions imga®n the potential solutions
make it very hard.

In effect, this paper focuses on disambiguation stratefgiegurely rule-based
grammars. It shows how to implement a simple but intuitive powerful disambigua-
tion strategy within a system that is both efficient at rumtiamd expressive enough to
handle typical text normalisation constructs. The use effithite-state transducer
(FST) framework provides for a good compromise betweenesgive power and
computational tractability: a grammar is first compiledoiat non-determinstic FST
containingmarkersthat express user-defined local parsing preferences. Iixtaa e
step, the preferences are used to turn the FST into a detstimitevice calledbima-
chine The system scales well to large grammars and supportsetfi@hd ergonom-
ical grammar development, including interactive rule cdatipn and debugging.

2 Definitions and Notation

The following definitions are intended to clarify the notatfor some basic finite-state
constructs. The less well known notiontmfnachineds introduced and explained in
section 5.

Definition 1. (Nondeterministic FSA) A non-deterministic finite-state automaton
(NFSA) over input alphabet is a quintupleA = (X, Q, g0, E, F'), whereQ is the
set of states ofl, ¢y € @ is the initial state, and®” C @ the set of final states, and
E C Q x (2U{e}) x Q the set ofd’s transitions.

Definition 2. (Deterministic FSA) A deterministic finite-state automat¢DFSA) is
a quintupled = (3, Q, qo, 0, F'), wheregy € @ is the initial statey : @ x ¥ — Q the
transition function, andF’ the set of final states. The symbolis used to denote the
extension of the transition function to the dom@&@mx X*: 6*(q, €) := ¢, 6*(q, ua) :=
5(6*(q,u),a) fora € ¥, u € &*.

Definition 3. (Finite-State Transducer) A finite state transduce(FST) T' =

(3,A*,Q,q0, E, F) over an input alphabel® and output alphabet\ is defined
identically to an NFSA except that each transition contaamsoutput label, i.e.,
E cC @ x(ZU{e}) x Q x A*. We will use the notatioa.source, e.input, e.output

ande.target to refer to the respective components of a transitian E.

Preference-Driven Bimachine Compilation 205

Definition 4. (Sequential Transduce) A sequential transducesthe two-level coun-
terpart of a DFSA. ltis a 7-tupl& = (X, A, Q, qo, 9, 0, F), such thatX, Q, o, 6, F)
isa DFSA, andr : Q x ¥ — A* is theoutput functiondefining the output of each
transition.

Definition 5. (Path, Reachability) A path in an NFSA/FST is a sequence of transi-
tionsm = ey, ..., e such thak;.target = ej1.sourceforj =1,...,t — 1. Apath
m consumes a string if ej.input - ... - e;.input = w. In the following, the term
path always denotes ancycle-free pathln analogy to transitions, we will also write
m.source, w.target, etc.

The notation; £ ¢/ indicates that state’ is reachable from state by exactly one
transition consuming symbale X and emittingo, i.e., (¢, a,q’,0) € E. For a string
u € X q we* q' denotes the reflexive-transitive closure=sf i.e., there is a path in
T from g to ¢’ consuming input: and emittingp € A*.

3 Grammars

Text normalisation consists of two sub-tasksrsing(the identification of construc-
tions that require normalisation) anelwriting (the actual string transformations, e.g.
$11— eleven dollark Therefore, the formalism is split infzarsing rulesandrewrite
rules

The syntax of parsing rules is roughly based on common pgeserators such as
yacc orbi son.? Each rule consists of a left-hand side non-terminal symthelr(lle
namg, a right-hand side specifying iexpansioras a regular expression over terminal
and non-terminal symbols, and an optiorakrite statementhat callsrewrite rules
in order to perform string rewriting, as shown below:

date
->
day: $D [nane="/"] nonth: $M
([name="/"] year:$Y)?
{"the" exp_ordinal ($D) "of" $M exp_year($Y)};

day -> [nane="(0?)[1-9]|[212][0-9]|3[01]"];
month -> [name="(0?)[1-9]|1[012]"];

year -> [name="[12][0-9][0-9][0-9]"];

Here, the left-hand side symbdht e is expanded talay followed by the ter-
minal/ , the nonterminahont h, and an optional instance of the nontermipakr
preceded by the separator The symbolglay, nont h andyear expand to termi-
nals according to the respective rules. Each terminal imalsifeature structure that
denotes a token (in the above grammar fragment, only tharfaane is used).

2Note, however, that the semantics of the rules, as discusded n section 4.2, is different: while LR
grammars such as the ones accepteydoyc andbi son are expected to be unambiguous, our formalism
allows a substantial amount of ambiguity in the grammar.

Preference-Driven Bimachine Compilation 206

Thedat e rule is also associated with a rewrite statement enclosedrly brack-
ets. It specifies that a date, e.y3/ 05/ 2001, should be expanded into the string
the thirteenth of May two thousand and ofiéne symbol$D, $Mand$Y are corefer-
ences between constituents of the right-hand side of a ndldére associated rewrite
statement. The functiorexp_or di nal () andexp_year () arerewrite rulesthat
specify how a constituent should be rewritten in the norsaion process. The gram-
mar may also insert new tokens (as it ddeése" and" of ") as well as reorder or
duplicate existing ones.

Parsing rules can optionally be associated with left anllt igntext restrictions.
For example, therul& — B / C D / Ewill expand the sequendg Dto Aonly
if it is preceded by a match of regular expresdoand followed by a match of regular
expressiork.

Therewrite rules formulated in a two-level regular calculus, do not introdany
novel constructs, so they are not discussed in detail.

The expressive power of the formalism is restricted to alegganguage by a)
excluding recursion of the forrX — ... — X2 and b) an implicit treatment of
constituent reordering and duplication, which are nons#fagoperations. The gram-
mar is converted to an FST translating input strings to fdssionstituent bracket-
ings including special markers for the non-regular opesatat runtime, the selected
bracketing is converted to a tree, on which the extra opmratare performed. The
constituents of the reordered tree are then sent to thetesggammar according to the
rewrite rules specified in the rewrite statements of theaethyge parsing rules.

The grammar FST is typically ambiguous, i.e. it encodes afooantional rational
relation, and may return more than one analysis for an inpngs Thus, the actual
challenge is to devise a disambiguation strategy with a lgirapd user-friendly se-
mantics that would make it easier for the grammar develaperdintain control over
the behaviour of the grammar.

4 Finite-State Parsing Preferences

As a first step, we shall see how to incorporate parsing preéas into a finite-state
grammar. It turns out that preferences can be a) associdtbdegular operators,
and b) translated into an FST in a meaningful way. The resuat prioritisation of
alternative paths for a word in the FST that also corresponds to the order of results
in a ndve depth-first search with backtracking. This result wéllsed in section 5 to
establish a deterministic and fail-safe best-first searchrique.

4.1 Regular Operators

In a finite-state grammar, complex structures are created &§impler regular expres-
sions usingegular operations Their basic inventory comprise®ncatenatio(AB,
A - B), union (A|B) andclosure(A4*). Further commonly used operators, sucl as

3This restriction might appear harsh, but text normalisatiks typically do not require more expressive
power (Sproat 1996).

Preference-Driven Bimachine Compilation 207

and+, can be derived from the primitive ones listed above and neétle considered
at first.

/\

* {c: D}
b
— 1

—— 1 —
{a:e} {b:A} {a:B} {b:C}

Figure 1: Regular expressigfab : A}|{a : B}|{b: C})*{c: D} shown as a tree.

The resulting structure forms a tree as shown in figure 1. &ucbe can be com-
piled into a (non-deterministic) FST. The simplest comlaalgorithm Thompson’s
algorithm) is to create a network of transitions that directly cormexpto a traversal
of the regexp tree (Hopcroft, Motwani and Uliman 2001). Eaobe/leaf in the tree
translates into two FST states: anstate (“we enter the subexpression rooted in the
current node”) and aout state (“we leave the subexpression rooted in the current
node”). Thein state and theut state of the root node are, respectively, the initial and
the (only) final state of the FST. The states are connecterhhgitions in accordance
with the semantics of the regular operators at the resgetrtde nodes, as shown in
table 1.

Node type Transitions added

X =Y|Z {Xin & Yin, Xin & Zi,
Yout = Xouts Zout = Xout}
X=Y.-Z {Xin & Yin, Your = Ziy,
Zouwt = Xour}
X=Y" {Xin = Xout, Yout = Xout,
Xout = Yin}

X ={a:o0} {Xin & Xout}

Table 1: The FST compilation of union, concatenation, closure and arnicategexp.

4.2 Local Parsing Preferences

Now suppose we want to find a translation for a strindicensed by a compiled
regular expression. A possible, althougfivea strategy is to explore all paths starting
from the initial state until we reach the final state. Whenewverfind that we have
run into a dead end, we backtrack to the previous choice pmidtexplore another

Preference-Driven Bimachine Compilation 208

path from there. As long as we omitycles, the algorithm will eventually terminate.
Also, if there is more than one translation, the local seafetisions taken at the
choice points will influence the result.

A simple but powerful disambiguation strategy can be putere:

e longest or shortest match (distinguished by notation)attosure operator;
e exploring disjunction branches in order of their disjuncts

These two simple rules give the grammar developer full @brver all ambiguity
in the system. They are also very intuitive: if longest-rhatcchosen as the default
interpretation for the closure operator, the strategyméses the evaluation of Perl
regular expressions, which most users can be assumed tmbrfavith.

The reader may object that this disambiguation stratetppisimplistic, especially
compared to frameworks such as Optimality Theory (OT, $BHi 1994, Karttunen
1996, Eisner 2000)), which splits linguistic knowledgeoirast device generating all
possible analysegien) and a number of constraints that rank these analyses accord
ing to the number and severity of constraint violations. @halysis with the fewest
violations wins.

However, this elegant framework is intended as a tool fagdistically adequate
theoretical modelling of clear-cut phenomena. It is daulbtfiat a “dirty” task like
text normalisation could be decomposed into a neat hieyasthonstraints filtering
the possible analyses. In addition, TTS grammar develogersnore likely to be
familiar with Perl regular expressions than Optimality ®he As a matter of fact, the
author is not aware of a single large-scale NLP system bas€&iilo

Nevertheless, we will see that some formal concepts degdlopthe framework
of OT turn out to be very useful for the purpose of preferebased compilation, cf.
section 4.4.

4.3 Preference-Driven Search

The simple disambiguation strategy outlined in the prewisaction can be easily
translated to an FST framework by adding some control inftion to the choice
points. Note that only two types of regexp tree nodes intcedoion-determinism:
union and closure. Thus, X is a disjunction node antl, Z are the disjuncts, then
the compilation algorithm will create thetransitions shown in figure 2.

Xin Xout

Yinooo oo Your Zineer o Zow

Figure 2: Compilation of the union operator.

The choice point occurs &t;,,: we can either go td7,, or to Z;,,. All we need
to implement the chosen strategy is to make sure that the figyeS Y;,, will be
performed first (i.e. beforé;,, = Z;,).

Preference-Driven Bimachine Compilation 209

Figure 3 shows the other case, namely the closure operadiemre, X is the node
corresponding to the closure operafdrthe root of the embedded expression &nd
the parent node oK. The choice point occurs at stak,,;, from where we can go
either toY;,, or to V. Note that the former option corresponds to the longesthaetd
the latter to the shortest-match strategy.

v

Xin Xout o,

—]

Ytin s s Yout

Figure 3: Compilation of the closure operator.

4.4 Encoding

In order to eliminate the non-determinism of the search ow8ketched above, it is
worthwhile to take a closer look at finite-state approache3timality Theory (OT),
where a non-deterministic FST7¢n) encodes all possible pairs of inputs (called un-
derlying representations, UR) and outputs (called surfepeesentations, SR). The
generated SRs are evaluated by applying a sequence ofaiohB8 TS C1, . .., C,),
which either filter out some of the possible SRs or insmatkersdenoting the fulfill-
ment/violation of a constraint. The markers can be used tdegiine search for the
optimal solution.

Out of all types of OT constraints, the strategy describethéprevious section
resembleseft-to-right directional constraint¢Eisner 2000). Following Eisner, when-
ever two possible transitions labelled with the same inpmtt®la € X U {e} leave a
stateg, the preferred one is assigned the markand the less preferred one the mark
my. In the case of the compilation method specified in sectidnstich choice points
are always binary and are possible only &£ . Thus, the simplest encoding is to
sete.output = mg or respectivelye.output = my for all suche-transitions leaving
choice point states.

In this way, each pathh = ¢4, ..., ¢, in a transducef’ can be associated with a
sequence of preference matks= ws . ..wy, which can be extracted fromoutput
simply by ignoring all output symbols other thar, andm;. Let such a sequence be
denotedr.score.

Note that the relative preference order of two paths and=(? is expressed by
the lexicographic order of the mark sequences:

2)

70 < 71? — 7 score <lex 73 score

Generalised to sefd of paths accepting a string, this criterion states that the pre-
ferred path is the first one in lexicographic order:

Tbest = min< (H)

Preference-Driven Bimachine Compilation 210

In particular, iflIr(w) denotes the set of all paths Ththat consumev € ¥*, then
the preferred translation faw is the output of the pathy..:(w) € I (w) defined as:

Trbest(w) = min.<({7r < HT(U}) :
m.source = qo A w.target € F'})

Note that we may want to make transdu@e¢-free for further processing stages.
This is not a problem because the preference order of patipseserved ine-
elimination.

5 Search Strategy

LetT = (2, A, Q, qo, E, F) be ane-free FST constructed from a regular expression
using the compilation method described in section 4.1 antkegeelimination algo-
rithm. Given an input stringy = a; . . . a;, we want to find the best-scoring successful
path forw in 7".

Note that if the unsuccessful paths are pruned away in adydhe search boils
down to a chain of purely local decisions. We start by chap#ire lowest-score arc
(g0, a1, q1,01) Starting ingg, and then choose the lowest-score transition starting in
and acceptings, etc.

The set of all successful paths far can be determined in timé&(t) using
the foIIowing factorisation method. Lebppgs = {{g,a,q") : 3o € A*
(q,a,q',0) € E} be the projection of the transitions @f onto the first three com-
ponents (i.e. source state, input symbol and output symbMg determinize the
NFSA A = (X, Q,q0, Eprsa, F) for the input language df using a variant of the
s_tgbset constructlon algorithm (Hopcroft et al. 2001). 'Eipergtjon yields a) a DFSA
A = (E,@, 7o 5) acceptingZ(T") and b) a functionh Q — 29 map-
p_i)ng_) each state of the DFSA to the corresponding set of sztxﬁt@s More precisely,
h (0 (qy,u)) is the set of states reachablelirfrom ¢ by consuming the string.

In a similar way, we can construct an accep%r: (%, 6, ‘70,7,?) and a
function i by reversing and determinising. Accordinglyfﬁ(?(?o, v~1)) is the
set of all stateg € @ such thay = F.

If now w = uv € £, then the intersectior (rl (To,u)) N <F(?(‘jo,zrl)) is
the set of all states on a successful patifiaccepting after consuming the prefix.
Thus, given a stringy = ay . . . a;, we can determine the successful path@ in time

O(t) by:

e running 4 on stringw and keeping the paty’ y G 1,-.-, Ty
. runningﬁ onw~! and keeping the patiy ‘7 1, ..., T
. formmg a sequence akachability setsRy,..., R; constructed as follows:

Ry=h(T)N R (T). j=0,....1

Since T is non-deterministic, there are several alternative pathfd =
eg’), e ,egl) for w, each associated with a unique scat€ .score. The preferred

Preference-Driven Bimachine Compilation 211

translation is the output of the first patti?) according to the lexicographic order of
the path scores. Thus, the preferred path can be found detstioally in time O ()
according to the following formulé:

o — { min~(Out(qo,a1)) j=1 B
J min<(Out(ej_1.source,a;)) j > 1

In this way, we arrive at a deterministic parsing strategt tluarantees finding the
best parse (according to the locally expressed disamligupteferences) in time
O(t).

The construction ofd and A together with a recursive formula for the best path is
closely related tdimachinegBerstel 1979, Roche and Schabes 1996hirAachine
is atripleB = (Z,Z,y), where 4 = (2,6,70,?,@) is a left-to-right DFSA,
4 =(2,0Q.,7,7F,Q)is aright-to-left DFSA, andy : § x @ — A* the output
function of B. Applied to a stringv = a; ... w;, B outputs the string; ... b;, where
bi =7(8 (Toib1-..bi1), 0 (Tobi...by)).

The importance of bimachines lies in the fact that a) theydaterministic and
b) every unambiguous FST — even a non-determinisable one r-beaconverted
to a bimachine. Since most interesting cases of FSTs agtaedlambiguous, the
construction presented in this section extends the nofibmtachines to FSTs which
are disambiguated at runtime via preference mawkscordingly, the output function
is not specified explicitly; instead, it follows from the tesive formula (1).

6 Optimisation and Evaluation

6.1 Runtime Optimisation

The aIgo_r)ithm can be made more efficient by means of precatigil. Instead of
running A and A separately, and then performing the disambiguation stegritbed
by (1), the task can be performed in only two stages.

In the first pass, the accepto? is run on the reversed input string, pro-

ducing a path‘g,,...,7,. This path is then combined with the original in-
put w in order to form a sequence of state-input pairs of the fdhgwform:
(a1, "Ty—1)s- -5 (aj, Tp—j)s---»{at, To). This sequence serves as input to the

second component of the system, which is a sequential waesd™ = (X x
Q,A,Q,qo,é, o, F) over the complex input alphab#t x a If w is acceptedy’
outputs the preferred translation®f The functions) ando are defined as follows.

8(g;(a,q")) = ming, ({re %(q’) tq =g o))
o(q,(a,q')) = olg,a,0(q,(a.q))).

The application of the above device to a strings deterministic and very efficient: it
requires2|w| transition lookup steps; the execution time of each of tis¢ses can be
made constant by employing appropriate data structures.

40ut(q, a) denotes the set of all transitions leaviggia symbola. min~ is well-defined because the
transitionse € Out(ej_1.source, ay) have distinct scores, i.e., they are totally ordered<y
5For another application of the concept of bimachine facatios to ambiguous FSTs, see Kempe (2001).

Preference-Driven Bimachine Compilation 212

6.2 Compile-Time Optimisation

There are several possible optimisations aiming at spgedp the compilation
process. First of all, the structu(e?, T) introduced above for runtime optimisation
is also faster to compile since its compilation involvesyamhe potentially expensive
determinisation step (fo(ﬁ) instead of two (forZ andz).

Another improvement is related to the representation ofthekers, which need
not be present at runtime. Instead, alternative transitcam be stored in a list in an
order corresponding to the relatien

6.3 Compilation Speed

As mentioned above, the determinisationzbfis the only expensive step in the con-
struction. It took 28 minutes for a grammar fragment conipgis 8 rules, while the
running time of the remaining compilation steps was undeecasds. For larger
grammar fragments, the discrepancy was even bigger, imaicecalability problems.
Therefore, the decision was taken to introduce two compitainodes:development
andrelease

In the development modéd is not constructed, and the search for the optimal
parse involves backtracking. On average, this is aroundnidstslower than deter-
ministic search, but the difference is not noticeable togreemmar developer. The
benefit is that a grammar can be developed, compiled anditesézactively.

In the release mode, the construction®fis sped up by removing some irrelevant
bracketing information from the FST. For the above testrfragt, the size of the
grammar transducer was thus reduced from 110,056 to 29@3ditions, and4 took
only 8 minutes to construct. For the largest grammar aviailalmmprising 214 rules,
compilation took 34 minutes, resulting in an FST contairifg,551 transitions (after
reduction).Z had 671,331 transitions.

The above behaviour of the compiler means it is scalable Wiumesized sys-
tems comprising hundreds of rules. For even larger grammagscontemplate the
construction of several preference-based bimachinesbionachine recognising the
matches of the top-level grammar rules (edgt e, t i me or phone_nunber), and
one for each of the respective subgrammars.

6.4 Expressive Power

The formalism presented in this paper is a compromise betergressive power and
processing efficiency: linear-time parsing is achievechatéxpense of keeping the
formalism relatively simple. The question is how much thstnietions imposed on
the grammar affect the convenience of grammar development.

As far as text normalisation in TTS systems is concernedgctimepromise pays
off to a large extent. The predecessor of our system, whicpl@rad exactly the
same disambiguation strategy (longest match plus a leiggtd preference order on
disjunctive rules), proved to be expressive enough as adiesm for industrial-scale

Preference-Driven Bimachine Compilation 213

multilingual developmerft. The grammar developers have largely found the parsing
strategy intuitive and easy to follow — despite some citiciexpressed with regard to
the global ordering of rules, which was deemed too rigid inaie cases. Hence, the
development of larger grammar fragments (partly using raat@ conversion from
the old grammar formalism), can be expected to be straighial.

7 Extensions

In section 4.1, the inventory of regular operators was ictett to the primitive ones:
union, concatenation and closure. Obviously, the disaogtign semantics can be
extended to other, derived operators sucRasr R+ by setting the transition scores
accordingly on the choice points introduced by these opesat

The user may also wish to retain some ambiguity, using theepdor filtering
rather than finding one optimal solution. In such a case,epeetce marks are not
inserted at the affected nodes of the regular expressiansa&arch algorithm requires
a straightforward adaptation to the case of multiple opitjpa¢hs.

8 Related Work

Discussion of related work is split into three areas: thergnar formalism, expressing
preferences in hand-writable rules and the run-time etialuaf such preference-
based grammars.

8.1 Formalism

In the area of text-to-speech synthesis, pioneering fsitiee work has been done in
the framework of weighted FSTs at Bell Labs (Sproat 1996, iahd Sproat 1996).
There, as in most finite-state approaches to NLP, text psougdasks are viewed
as successive stages of string rewriting, each implemeétezh FST; the FSTs for
different stages may be combined via FST composition.

In the formalism presented here, a similar idea underliegdtvrite rules for-
mulated in a regular calculus. However, there are also thee rsipucture-oriented
parsing rules which establish a tree-shaped derivation for the contstrioeing nor-
malised. The possibility of producing such derivations pas/ed to be of great help
to the grammar developers.

8.2 Parsing Preferences

There are two basic ways of expressing parsing preferencadinite-state frame-
work. One is to encode them as real-valueglghtsassociated with the transitions of
aweighted FST (Mohri 1997). The transducer is ambiguousadding weights along
alternative paths yields a preference order over the plegsivsing results. Thus, the
weights may be used to guide the search for the optimal solufihis framework is

6The languages covered comprised English, Greek, GermanisBpamd French; each of the language-
specific grammars consisted of up to one thousand rules.

Preference-Driven Bimachine Compilation 214

particularly well-suited for probabilistic NLP approashehere the weights express
probabilities (typically as logarithms).

The other way of handling preferences is to apply them at dentime, when
particular rules and constraints are combined to form a gransystem. The result-
ing FST contains only the optimal paths; hence it is unamliguand can be either
determinised or converted to a bimachine.

A possible method of combining prioritised rules is to exgsreach of them as an
FST and then join these FSTs via an operation cadhéatity union (Karttunen 1998).
The priority union of of two FST§ andT: is defined ag} U (T o (Upper(T1))),
whereL is the complement of a regular languagend Upper(T) is the language
accepted by transduc@t. Priority union restricts transduc#&h to the complement of
T, . As aresult, all conflicts between translation§inandTs;, are resolved in favour of
T, while strings not accepted ly; can still be rewritten by/;. Similar formalisations
have also been given for the longest-match and shortestinsamantics of regular
expressions (Karttunen 1996, Gerdemann and van Noord 1999)

The main difficulty related to this “algebraic” approachhsatit involves repeated
application of costly operations such as regular complerfexponential inQ|) and
composition (quadratic ifQ|). The resulting FST is non-deterministic, hence an-
other worst-case exponential determinisation step ($udmsestruction or bimachine
creation) is required. All this may lead to very slow compda for realistic text nor-
malisation grammars. In order to estimate the processiathead caused by these op-
erations, we replaced all instances of regular union in taenghar by priority union.
As a result, the compilation time (before determinisatitor)the 78-rule grammar
evaluated in section 6.3 increased from below 2 seconds $e@&dnds.

One might argue that the running time of these operationg gecondary im-
portance as compilation can be done off-line. However — emadly mentioned in
section 1 — compilation times exceeding one minute may sstychamper the pro-
ductivity of grammar development.

This is the reason why we decided to employ a compilation otethat does
not eliminate non-optimal paths from the transducer at dentppne, but associates
its transitions with additional control information (peeénce markers). From this
perspective, our compilation method exhibits a strongmdsance to to the weighted
FST paradigm: ambiguity is left in the FST and resolved atino@ using dynamic
programming. However, the markers embedded into the ostdags of the FST are
evaluated in a completely different way than real-valuedivs are.

The construction of the FST encoding all the rules is chedpV is the num-
ber of regular operators and occurrences of symbols in thmgpar, it involves a)
Thompson construction leading to the creation of an FST y@th= O(N) states
and|E| = O(N) transitions in timeD(N) and b)e-elimination, which can be done in
time O(|Q| - |E|). Hence, the construction of the grammar FST is bounded (@y?).
The observed dependency betweérand the actual compilation time is linear. The
only costly operation is the creation of the reverse acce(ﬁt,o/vhich is omitted in the

7still, an unambiguous FST can always be recovered from an Fi8iTpreference marks, e.g. using the
directional best pathalgorithm (Eisner 2000, Eisner 2002) designed to implemeweictional constraint
evaluation in the OT framework.

Preference-Driven Bimachine Compilation 215

development mode.

8.3 Search for the Optimal Solution

The standard solution to the problem of finding the best pathafstringw in an
ambiguous FST is to compose the FST with an FSA encoding fht string. If
the scores associated with the transitions are viewed as wdights of a directed
graph, finding the best path in the resulting FST is then ataite of the single-
source shortest path problem. Viterbi search performs thatltomposition (creating
a structure called #ellis) and search for the optimal solution within this structure i
time O(|w).

This method can also be used to find the best-scoring patfeioase of our con-
struction. However, parsing would most certainly be le§isiefit than in the case of a
bimachine due to the overhead caused by the constructitwe tfellis and keeping up
to |Q| best path candidates for each string position, which isaisly more expensive
than2 - |w| lookups in the transition table (i.e. the total parsing éoghe case of a
bimachine).

9 Conclusion

The rule compiler described in this paper presents an altigento both traditional
weighted FST compilation (Mohri and Sproat 1996) and thgéhtaic” approach
in the vein of Kaplan and Kay (1994). Ambiguity is dealt witking a simple
but powerful disambiguation strategy that may be viewed asidure of priority
union (Karttunen 1998) and longest/shortest match (Geadarand van Noord 1999).
The use of preference markers makes it possible to avoicethvely costly opera-
tions typically associated with the compilation of the abawonstructs. On the other
hand, the resulting structure (an ambiguous FST contaipieterence markers and
a right-to-left deterministic acceptor) still makes it piide to conduct deterministic
search for the optimal result. In this way, the compiler comab fast compilation and
efficient processing at runtime.

References

Berstel, J.(1979)Transductions and Context-Free LanguagBsubner Verlag.

Eisner, J.(2000), Directional constraint evaluation irti@plity Theory,Proceedings
of COLING 2000 Saarbiicken, Germany, pp. 257-263.

Eisner, J.(2002), Comprehension and compilation in Ogiiyn@heory, Proceedings
of the 40th Annual Meeting of the Association for Computetid.inguistics
Philadelphia.

Ellison, M.(1994), Phonological derivation in optimalityeory, COLING 1994

Gerdemann, D. and van Noord, G.(1999), Transducers fromiteemles with back-
referencesProceedings of EACL 99

Hopcroft, J. E., Motwani, R. and Ullman, J. D.(200lgtroduction to Automata The-
ory, Languages, and Computatioiddison-Wesley.

Preference-Driven Bimachine Compilation 216

Hunt, A. and Black, A.(1996), Unit selection in a concatér@aspeech synthesis sys-
tem using a large speech databdeceedings of ICASSP 9%ol. 1, Atlanta,
Georgia, pp. 373-376.

Kaplan, R. M. and Kay, M.(1994), Regular model of phonolagjicile systemsCom-
putational Linguisticpp. 331-378.

Karttunen, L.(1996), Directed replacemantA. Joshi and M. Palmer (ed€)yoceed-
ings of the Thirty-Fourth Annual Meeting of the AssociafienComputational
Linguistics Morgan Kaufmann Publishers, San Francisco, pp. 108-115.

Karttunen, L.(1998), The proper treatment of optimalitycmmputational phonol-
ogy, in L. Karttunen (ed.) International Workshop on Finite State Methods
in Natural Language Processindssociation for Computational Linguistics,
Somerset, New Jersey, pp. 1-12.

Kempe, A.(2001), Factorization of ambiguous finite-staaemsducersl-ecture Notes
in Computer Science

Mohri, M.(1997), Finite-state transducers in language smekech processing;om-
putational Linguistic®3(2), 269-311.

Mohri, M. and Sproat, R.(1996), An efficient compiler for wkted rewrite rules,
Meeting of the Association for Computational Linguistiog. 231-238.
Roche, E. and Schabes, Y.(1996), Introduction to finiteestizvices in natural lan-
guage processingechnical reportMitsubishi Electric Research Laboratories,

TR-96-13.

Sproat, R.(1996), Multilingual text analysis for textdpeech synthesisMorkshop
on Extended Finite State Models of Language (ECAI '96), Aug2-16 von
Neumann Society of Computer Science, Budapest, Hungary.

