13

An efficient memory-based
morphosyntactic tagger and
parser for Dutch

Antal van den Bosch Bertjan Busselr, Sander Canisius and Walter Daelemaris
tTilburg University
tUniversity of Antwerp

Abstract

We describerADPOLE, a modular memory-based morphosyntactic tagger and depend

parser for Dutch. Though primarily aimed at being accurtte,design of the system is
also driven by optimizing speed and memory usage, usingeebtrsed approximation of
k-nearest neighbor classification as the basis of each modWeperform an evaluation

of its three main modules: a part-of-speech tagger, a méoglual analyzer, and a depen-
dency parser, trained on manually annotated materialablaiffor Dutch — the parser is

additionally trained on automatically parsed data. A glaalysis of the system shows
that it is able to process text in linear time close to an et 2,500 words per second,
while maintaining sufficient accuracy.

13.1 Introduction

In this paper we introduceTADPOLE (TAgger, Dependency parser, and
morphaLogical analyzr), a modular morpho-syntactic tagger, analyzer and parser
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for Dutch. In designingraADPOLE we aim for three partially competing goals:
(1) high accuracy, (2) high and preferably linear processipeed, and (3) low
memory usage. ADPOLE is particularly targeted at the increasing need for fast,
automatic NLP systems applicable to very large (multi-ionillto billion word)
document collections that are becoming available due tptbgressive digitiza-
tion of both new and old textual data. This scale does not fitwith systems that
perform exponentially in terms of the length of their inmpending perhaps min-
utes on single sentences, and neither with linear-timelbut grocessing system
that would take, e.g., a second per word — which would implyentban ten days
to process just one million words of text.

Rather than a mix of methods, we opt for a single processigmerio be used
in all modules to simplify the software engineering aspeststhe core engine we
chose memory-based learning, in particular a fast trietapproximation ok-
nearest neighbor classification, IGEE (Daelemans et al. 1997a). Memory-based
learning has been shown to produce competitive, statheskit performance in
part-of-speech tagging (Daelemans et al. 1996) and mavgluall analysis (Van
den Bosch and Daelemans 1999), and has recently also beéyenhim a depen-
dency parser (Canisius et al. 2006) with some initial sus&cé6 TREE has been
shown to speed up normidnearest neighbor classification several orders of mag-
nitude, while retaining much of its generalization accyraith IGTREEwe aim
to reach high processing speed (an aspect of goal 2) and lomomyausage (goal
3); the accuracy levels (goal 1) are expected to be lower tihase ofk-nearest
neighbor classification; empirical tests are needed tor&snehe gap.

Linear processing speed (another aspect of goal 2) is btfaig/ardly
achieved with memory-based part-of-speech tagging angmotwgical analy-
sis; both approaches are fully linear in their default segeeprocessing method
(Daelemans et al. 1996, Van den Bosch and Daelemans 1998).défjendency
parsing, however, linearity is an issue. The approach megdy Canisius et
al. (2006) involves a processing step that is quadratic incfpie, but linearly
bounded, and a deterministic search through the prediepedrtlency relations.

In this paper we first lay out the architecture of the syste®dntion 13.2. We
then provide evaluations of the three modules in Sectio®, BHhd we evaluate the
system globally in Section 13.4. Related work is discusseSiaction 13.5. We
close the paper with a discussion of future work in Sectio613

13.2 Architecture

The intended function ofADPOLE is to automatically annotate Dutch text with
morpho-syntactic information at the word level, and sytitadependency rela-
tions between words at the sentence level. To enable a ptagzment of in-
coming text, a tokenizer is used for preprocessing. We adopt rule-based
tokenizer that splits punctuation markers from words, gisred lists of com-
mon Dutch abbreviations, and that splits sentences acwptdia set of heuristic
rules (Reynaert 2007). Tokenized text is then fed to thegiaspeech tagger and
the morphological analyzer. Subsequently, predicted-qfaspeech tags are for-
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Part-of-speech tagger H Multi-word chunker |

—>| Tokenizer v v

Morphological analyzer I I Dependency parser I

Figure 13.1: Schematic architecture@DPOLE. The grey boxes represent non-machine-
learning-based modules.

warded to the morphological analyzer, which uses the taghtose among the
analyses it has generated for ambiguous words. The tagdsaresed as input
to the dependency parser, which in turn demands that a figedflimulti-word
phrases and all multi-word proper nouns are collated byaégstiforward lookup-
based multi-word chunker.

Figure 13.1 schematically illustrates the information flovthe processing
modules. Each memory-based module (the white boxes) udassfication en-
gine that converts its input to a partial output; each casieerstep is one classi-
fication of a windowed snapshot of the input sequence intoudpud label. Se-
quences of output labels are gathered until the end of the wosentence, and
subsequently converted into a full output (per word for therphological ana-
lyzer, and per sentence for the part-of-speech tagger ggehdency parser). Sec-
tion 13.3 provides more detailed information on the funditig of each module.

The classifier engine in the three memory-based processiodules is
IGTREE (Daelemans et al. 1997a), an algorithm for the top-down dtido of
decision trees. It compresses a database of labeled exampdea lossless-
compression decision-tree structure that preserves liadirig information of all
examples, and technically should be nameddeaaccording to Knuth (1973). A
labeled example is a feature-value vector encoding inpubr case, windowed
subsequences of letters, words, or part-of-speech taglspatput (in our case,
labels encoding morphological information, part-of-ggeéags, or syntactic de-
pendency relation types).

An IGTREE is a hierarchical tree composed of nodes that each reprasent
partition of the original example database, and are lablejethe most frequent
class of that partition. Besides a majority class labelnibges also hold complete
counts of all class labels in the database partition theyesgmt. The root node
of the trie thus (1) represents the entire example dataf@searries the most fre-
quent value as class label, and (3) holds the occurrencesotiall classes in the
full training set. In contrast, end nodes (leafs) represgmbmogeneous partition
of the database in which all examples have the same clads thé@aode merely
stores this label along with the size of the homogeneoustipart Non-ending
nodes branch out to nodes at deeper levels of the trie. Eactthhrepresents a
test on a feature value; branches fanning out of one nodertegtiues of the same
feature.
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To attain high compression levels, IGEE branches out from the root node by
testing on the most informative, or most class-discrimasfeature first, followed
at the next level by the second-most discriminative featli@&TREE uses infor-
mation gain (IG) to estimate discriminativeness. The |Geaitfire; is measured
by computing the difference in uncertainty (i.e. entropgjvbeen the situations
without and with knowledge of the value of that feature witkpect to predicting
the class labellG; = H(C) -}, ¢y, P(v) x H(C|v), whereC'is the set of class
labels,V; is the set of values for featuigand H(C') = — 3 . P(c) log, P(c)
is the entropy of the class labels. IGEE computes the IG of all features once
on the full database of training examples, makes a featulerioig once on these
computed IG values, and uses this ordering throughout tiodentie.

IGTREE effectively performs a lossless compression of the lagaliforma-
tion of the original example database. As long as the datalass not contain
fully ambiguous examples (with the same features, butmiffeclass labels), the
trie produced by IGREE is able to reproduce the classifications of all examples
in the original example database perfectly.

13.3 Modules

We describe for each of the three |&dE-based modules how their tasks are en-
coded into classification tasks, and provide estimateseif tieneralization per-
formance on unseen words and text.

13.3.1 Part-of-speech tagging

The approach to part-of-speech tagging takemAnpPOLE was originally intro-
duced by Daelemans et al. (1996). The proposed tagger is hication of a
submodule that disambiguates the tags of words it has sderepgiven their
context, and a submodule that predicts tags to words it hasesm before. Both
taggers process from left to right, and use windowing togs@nt the local context
around the word to be tagged. The left part of the window alstudes the joint
tagger's previously predicted tags, while in the right pErthe window the yet
ambiguous tags of the known right neighboring words arerppam@ted.

The second submodule, theknown wordsagger, cannot use the word in fo-
cus as a predictive feature since it has not seen it befotspoe surface features
of the word are represented. Furthermore, both taggersedpedby converting
low-frequency words to more generic placeholder strings ttain some of their
surface features. Also, the unknown words tagger is natéchon the full training
set, but rather on a subset of low-frequency words in theiteod in the training
set, as they are the most representative of actual unseeis wanich will tend to
occur in the same frequency band. In detail, the featurebétwo subtaggers are
the following:

e For theknown wordstagger: the focus word and its immediate left and
right neigboring words, the three preceding predicted,tagd the two still
ambiguous tags to the right.
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Task Full tag Main tag
Known words 96.8 98.7
Unknown words  76.4 84.3
All words 96.5 98.6

Table 13.1: Percentages of correctly tagged test wordsalbybottom line) and split into
known words and unknown words, on the full tag and on the nzajronly.

e For theunknown wordsagger: the first two letters and the last three letters
of the focus word; binary features marking whether the werchipitalized,
contains a hyphen, or one or more numbers; its immediateateftright
neighboring words; the three preceding predicted tagstlatvo still am-
biguous tags at the right.

When trained on a substantial training corpus, often leas 0% (or even
less than 5%) of words in new text will not have occurred inttlaéning corpus.
Hence, the first submodule, tkeown wordgagger, is responsible for a major part
of the work. Yet, the remaining work for the unknown word tagg harder. For
the TADPOLE part-of-speech tagger we opted to use K&E for the known words
tagger, but useriBL for the unknown words tagger.RIBL is a hybrid between
the fast approximation IGAEE and the slowers1-1G algorithm that implements
k-nearest neighbor in its unabridged form (Daelemans et9@74); it builds a
trie structure for the most informative features, and penfok-nearest neighbor
classification on the remaining features. For building #gger, the Mbt wrapper
was usedl

The data used for training tiADPOLE tagger consists of a broad selection
of available manually annotated part-of-speech taggepocarfor Dutch tagged
with the Spoken Dutch Corpus tagset (Van Eynde 2004): Theoappately nine-
million word of the transcribed Spoken Dutch Corpus its@lbétdijk et al. 2002),
the ILK corpus with approximately 46 thousand part-of-getagged words, the
D-Coi corpus with approximately 330 thousand words, and 8#ethousand word
Eindhoven corpus (Uit den Boogaart 1975) which has beemaattoally retagged
with the Spoken Dutch Corpus tagset. Together this accdiont40,979,827
manually-checked part-of-speech tagged words, all usiagsame rich tagset of
316 tags.

We split this 10 million-word corpus randomly (at the semehevel) into a
90% training set and a 10% test set. The performance of thlgetagn known
words and unknown words in the test set, as well as on all testlay is listed
in Table 13.1. Not surprisingly, the tagger has significantbre trouble tagging
unknown words. The Spoken Dutch Corpus tagset makes adlistirbetween the

1IGTREE, TRIBL, andiB1-IG are included in the TIMBL software package, version 5.1lalste from
http://ilk.uvt.nl/timbl.
2Mbt, version 2.0.1http://ilk.uvt.nl/mbt
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main tag (a traditional 12-tag distinction) and the morpimdactic subtags, which
are not always used in higher-level applications; the gdization accuracy on the
main tag reaches a respectable 98.6%.

In the overall tagging accuracy, the influence of the unknawend tagger is
of course related to the amount of unknown words in the texietdagged. In
the 10% test set, about 98.8% of all tokens is also presemteir®®% training
set, but this test is a sentence-level partition of the saxis s the training set
is drawn from. Typically, coverage of tokens in a randomlieseed text from
outside the (genres of the) training set will be somewhaelpws illustrated by
the following two examples. A first random text, offering geal instructions on
Unix, containing many foreign words and command line fragteeis covered
by 89.8%. The second text, the full text of the not#dt boetekleeda Dutch
translation of lan McEwen’&itonementis covered by 97.9%.

13.3.2 Morphological analysis

We take the task of analyzing the morphology of Dutch wordsi¢ctude (1) seg-
menting a wordform into its morphemes; (2) labeling eachpgheme with its
function (e.g. a stem with a certain part-of-speech tag,eind a derivational
affix, or an inflection), and (3) identifying all spelling ainges between the word-
form and its underlying morphemes (Van den Bosch and Daelerh@99). We
draw our examples from the CELEX lexical database (Baayah é893), which
features a full morphological analysis for 363,690 of théie took each word-
form and its associated analysis, and created task examgieg a windowing
approach, which transforms each wordform into as many elegs it has let-
ters. Each example focuses on one letter, and includes arfixatber of left and
right neighbor letters, chosen here to be five. Consequerdlyh example spans
eleven letters, which is also the average word length in tBeEX database.

To illustrate the construction of examples, Table 13.2ldigpthe 15 examples
derived from the Dutch example woabnormaliteiten (abnormalities) and their
associated classes. The class of the first example is “A’chvhieans that the
morpheme starting ia is an adjective (“A"). This morpheme continues up to the
eighth example, which is labeled with “0+Da”, meaning thiatheat position, an
a is deleted from the underlying morpheme. The coding thus tkht the first
morpheme is the adjectivebnormaal. The second morpheméeit, has class
“N_Ax". This complex tag indicates that whéeit attaches right to an adjective
(encoded by “A"), the new combination becomes a noun ("N Finally, the third
morpheme i€n, which is a plural inflection (labeled “m” in CELEX).

This way we generated a database of 3,209,064 examplesn\idse exam-
ples, 3,806 different class labels occur. The most fredy@cturring class label
is “0”, occurring in 69.3% of all instances. The three mostftent non-null labels
are “N” (6.9%), “V” (4.2%), and “A’ (1.3%).

When a wordform is listed in CELEX as having more than one iptessnor-
phological labeling (e.g., a morpheme may be N or V, the itif\ec-en may be
plural for nouns or infinitive for verbs), these labels arméal into ambiguous
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instance left focus right

number context letter context TASK
1 _ _ _ _ _ a b n o r m A
2 _ _ _ _ a b n o r--m a 0
3 _ _ a b n 0 r m a | 0
4 _ _a b n 0 r- m a | i 0
5 _a b n o r m a I i t 0
6 a b n o r m a | i t e 0
7 b n o r m a | i t e i 0
8 n o r m a | i t e i t | 0+Da
9 0 r m a | i t e i t e | N_Ax
10 r m a | i t e i t e n 0
11 m a | i t e i t e n _ 0
12 a | i t e i t e n _ _ 0
13 | i t e i t e n _ _ 0
14 i t e i t e n _ _ _ _ m
15 t e i t e n _ _ _ _ _ 0

Table 13.2: Instances with morphological analysis classifins derived fromabnor-
maliteiten, analyzed agabnormaal] 4[iteit]y _a«[€N]m.

classes (“N/V”). Ambiguity in syntactic and inflectionaboccurs in 3.6% of all
morphemes in our CELEX data. When the morphological analygeerates more
than one analysis based on these ambiguous classes, ibaske part-of-tagger
to break the tie — hence the arrow from the tagger to the aealyz=igure 13.1.
We created a translation table between combinations of GEirfain tags and
inflectional markers such as “m” on the one hand, and the C@sldéthe part-of-
speech tagger on the other hand, to allow matching the CGi\Ntdethe ambiguous
analyses. We observed that when the tagger is correct arahétgzer generates
the appropriate analyses, the CGN tags predicted by thertagih their main
tag and the morpho-syntactic subtags, always provide mirffimatches to disam-
biguate between ambiguous analyses. If due to an errort@raitodule no match
is possible to break the tie, a random choice is made.

To evaluate the morphological analyzer, we split the CELEXabase ran-
domly in a 90% training set (of 362,690 words, or 2,888,19@neples) and a
10% test set (of 36,369 words, or 320,867 examples). Whémetteon the full
90% training set, IGREE correctly segments 79.0% of test words; e.qg., it would
segmentabnormaliteiten correctly into[abnormal][iteit][en]. Also taking into
account spelling changes and morpheme types (stems witofsspeech, affixes,
inflections, e.g[abnormaal] 4[iteit]y_a.[en].), 56.3% of all test words are fully
correctly analyzed. These generalization accuracieajrad on a random 10% of
CELEX words, can be seen as approximations of the analygerfermance on
unknown words in free text. Performing a coverage checkairto the one in the
previous section, we observe that CELEX covers about 98f3%edokens in the
test material of the tagger, 83.9% of the Unix instructioawoent, and 98.1% of
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the word tokens iHet boetekleedAs IGTREE performs a lossless compression
of the training set, the analysis or alternate analyses pfward that is also in
CELEX will be flawlessly retrieved; hence, the effective @@y of the analyzer
on a text such as the novel is at least 98.1%, and possibl\ndr88%, as we
estimated that about 56.3% of unknown words receives aca@aralysis.

13.3.3 Dependency parsing

In the TADPOLE approach to dependency parsing, IREE is trained to predict
(directed) labeled dependency relations between a heaa @eplendent. For each
token in a sentence, examples are generated where this i®kepotential de-
pendent of each of the other tokens in the sentence. To prexplosion of the
number of classification cases to be considered for a semtermcrestrict the max-
imum distance between a token and its potential head. Wetsdl¢his distance
so that 95% of the dependency relations in the training data@vered, which is
at a maximum distance of eight words. The label that is ptedifor each classi-
fication case serves two different purposes at once: 1)nessgvhether the token
is a dependent of the designated head token, and 2) if thenicestdoes in fact
correspond to a dependency relation in the resulting pdrdednput sentence, it
specifies the type of this relation as well.

The features we used for encoding instances for this cleagdn task corre-
spond to a rather simple description of the head-dependértofoe classified. For
both the potential head and dependent, there are featwrediag a 1-1-1 window
of words and part-of-speech tags predicted by our taggeaddition, there are
two spatial features: a relative position feature, enagéihether the dependent is
located to the left or to the right of its potential head, ardistance feature that
expresses the number of tokens between the dependent aedds

Thus, dependency parsing is first broken down into clastiics at the level
of word-to-word dependency relations. In a second stegethelations need to be
gathered per sentence to form a dependency tree. A deperdeads regarded as
a set of dependency relations connecting a head and a depeRdea set of such
relations to form a valid dependency tree, some constraimsild be satisfied:
1) each token can only be linked as a dependent to maximaéyhead token
(though a token may be a head to more than one dependent)) degpendency
relations should not form a cycle. As long as these two caimgs are satisfied, a
dependency tree can be treated as a set of dependencyn®latibout losing any
information.

Naively applying this approach results in a number of pcatissues however,
which may also negatively affect the performance. First, ¢tassification task
as formulated gives rise to a highly skewed class distiipuitn which examples
that correspond to a dependency relation are largely ouieted by “negative”
examples. Second, there is a quadratic increase of instdadee classified as
sentence length increases, that is, a senteneetokens translates ta(n — 1)
classification cases.

One issue that may arise when considering each potentiahdepcy relation
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as a separate classification case is that inconsistentaregsoduced. For exam-
ple, atoken may be predicted to be a dependent of more thameae To recover
a valid dependency tree from the separate dependency tioadica simple infer-
ence procedure is performed. Consider a token for whichépemidency relation
is to be predicted. For this token, a number of classificateses have been pro-
cessed, each of them indicating whether and if so how thentiskeelated to one
of the other tokens in the sentence. Some of these prediatialy be negative, i.e.
the token is not a dependent of a certain other token in thieises, others may be
positive, suggesting the token is a dependent of some atkent

If all classifications are negative, the token is assumedat@ mo head, and
consequently no dependency relation is added to the trabifotoken. If one of
the classifications is non-negative, suggesting a depepdetation between this
token as a dependent and some other token as a head, thisldepgmelation
is added to the tree. Finally, there is the case in which niwaia bne prediction
is non-negative. By definition, at most one of these prealictican be correct;
therefore, only one dependency relation should be addedetdrée. To select
the most-likely candidate from the predicted dependeni@ioms, the candidates
are ranked according to the classification confidence ofise blassifier that pre-
dicted them, and the highest-ranked candidate is seleatéuskrtion into the tree.
For example, if in the sentendle hoor haar zingen, | hear her singingthe word
haar is classified as relating thoor in the “OBJ1” relation (direct object) with
confidence 8, and toingen in the “DET” relation (determiner) with confidence 5,
the first prediction is selected, and the second discarded.

As a measure of confidence for the predictions made byREETwe divide
the tree-node counts assigned to the majority class by taédounts assigned
to all classes. Though this confidence measure is ratheecart should not
be confused with any kind of probability, it tends to work tguivell in practice
(Canisius et al. 2006).

The base classifier in our parser is faced with a classificasisk with a highly
skewed class distribution, i.e. instances that corresporddependency relation
are largely outnumbered by those that do not. In practiceh suhuge number
of negative instances usually results in classifiers thad te predict fairly con-
servatively, resulting in high precision, but low recali.the approach introduced
above, however, it is better to have high recall, even at ts¢ of precision. A
missed relation by the base classifier can never be recobgrite inference pro-
cedure. Also, due to the constraint that each token can entydependent of one
head, excessive prediction of dependency relations chietcorrected by the
inference procedure. An effective method for increasirggriftall of a classifier
is downsampling of the training data. In downsampling,anses belonging to
the majority class (in this case the negative class) are vechfrom the training
data, so as to obtain a more balanced distribution of negatid non-negative
instances.

Canisius et al. (2006) describe the effect of systemagicalinoving an in-
creasingly larger part of the negative instances from thaittg data. They report
that downsampling helps to improve recall, at the cost ofigien, but indeed im-
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Figure 13.2: Dependency parsing learning curves in terntookctly labeled dependen-
cies, unlabeled dependencies, and label accuracy.

proving the dependency parser, with a maximal performandgevensampling rate
1: 2 (i.e. twice as many negative examples as positive onesg tHat downsam-
pling is naturally restricted to the training data; the @ata is not downsampled
as the labeling is not known yet.

As training material for our parser we used all manually datenl data avail-
able in the Alpino Treebarik(Van der Beek et al. 2001), amounting to 262,452
words, converted to 2,959,456 pairwise examples, and qubsly downsampled
to 726,440 examples. We also collected data that is autoatigtparsed by the
Alpino parser (Malouf and Van Noord 2004), available in digantly larger quan-
tities than manually annotated data. We added severabnsllivords of automati-
cally parsed text from Wikipedia pages, newspaper artieled the full Eindhoven
corpus except a portion taken out as test set (see below)okveted this Alpino
output to the column format used in the CoNLL-X Shared Taskctiholz and
Marsi 2006), replacing the part-of-speech informationegated by Alpino by the
output of TADPOLE's tagger described in Subsection 13.3.1. Also in this pssce
in special cases (particularly with multi-word units andtinations without a
conjunction) multiple heads in the original treebank arcdided, keeping only
the leftmost head.

Figure 13.2 displays the learning curves of three commosBdevaluation
metrics (Buchholz and Marsi 2006), viz. labeled and unletbelependency rela-
tion accuracy, and the accuracy on the label per word. Theeéesonsists of 2,530
sentences (47,471 words) taken from the manually parsetsesf the Eind-
hoven corpus (thedbl part); this is newspaper text with relatively long sentence
with many subclauses and quotations. The vertical line 140D downsampled
pairwise examples marks the transition of manually labetaderial to automat-

3Alpino Treebank:http://www.let.rug.nl/ vannoord/trees/
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% Correct assignment
Aspect Only manual data Automatic data added
Labeled dependencies 67.3 74.3
Unlabeled dependenciges 70.6 77.1
Label accuracy 76.3 81.5

Table 13.3: Percentages of correctly assigned dependeneith and without labeling,
and the accuracy on labels only, trained on the maximal atrmfunaining data, tested on
newspaper texts, before and after the addition of autoalbtiparsed training data.

ically parsed data. Despite a dip in performance in all tleesuation metrics,

the curves suprisingly return to their trajectories, andticwe to rise — albeit at
a sub-loglinear rate with increasing amounts of trainingad@he exact scores of
the parser, trained on a current maximum of 29,778,197 elemnand tested on
the aforementioned manually parsed test set, are displaykble 13.3. At best,

the parser identifies and labels dependency relations batwerds at an accuracy
of 74.3.

13.4 Speed and memory usage analysis

Thus far we have not reported on speeds and memory usaget éxqeassing
when comparing the morphological analyzerigd-IG. Three design goals of
TADPOLE relate to speed and memory: we want the system to be fasheas ks
possible in the length of the input, and costing as little mmgnas possible. We
measured the speed of our classifiers in terms of the numbeomfs they pro-
cessed per second, and the bytesize of theREE*. Table 13.4 summarizes the
measurements taken at the maximal sizes of the trainingusetsin the previous
section to estimate the generalization accuracies of eaclul®. The table also
lists the speed of the rule-based tokenizer and multi-wbrthker for complete-
ness, as these modules do cost some mehamg time. As can be seen in the
table, the parser consumes most memory, being trained aldeedargest amount
of training examples (nearly 30 million). The part-of-spe¢agger consumes a
fair bit of memory as well, due to theriBL-basedunknown wordsagger.

Disregarding the fast rule-based preprocessing modhlesatiger is the fastest
module with about 10,160 words per second, while the moq@ichl analyzer is
the slowest, processing about 6,715 words per second. @igémgle processor,
the aggregated speed with whithDPOLE can process text with all three modules
is about 2,488 words per second. This number assumes giRjlefull streaming
performance.

One remaining design goal is to include a parser with prefgdaear perfor-
mance. We measured the speed and accuracy of the parsefeyarditentence

4The hardware used for testing is equipped with Dual Core AMile@n 880 2,412 Mhz processors.
5They are implemented as Perl scripts and require the Peruigatale at runtime.
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Module Memory (Mb) 1000 words/s
Part-of-speech tagging 23.3 10.1
Morphological analyzer 2.9 6.7
Dependency parser 68.9 7.6
Tokenizer (rule-based) Perl 81.9
MWU chunker (rule-based) Perl 120.3
Total 95.1+ Perl 2.5

Table 13.4: Amount of memory used, and numbers of words geazeby the five modules
at maximal training set sizes. Bottom line sums the amoumerhory, and aggregates the
speeds.

rrect labeled dependencies

%
2

Figure 13.3: Generalization accuracies (left) and secpedsentence (right) of the depen-
dency parser trained on maximal amounts of data, measurestptence length from 2 to
50.

lengths found in our test set. Figure 13.3 shows both, medseparately for all
sentence lengths from 2 to 50. As the left graph of Figure $B@®vs, sentences
shorter than length 20 are parsed at above-average perfoentevels. The right
graph of Figure 13.3 shows a perhaps more unexpected liekéion between the
length of a sentence and the average time it takes to par&aitier we noted
that for each sentence pairwise examples are generafed-( 1), to be exact),
but we also constrained this (also with test sentences)ite pawords within a
range of eight words from each other, as 95% of all relatiornthé training cor-
pus occur within that range. This fixed constraint boundsitimaber of examples
per sentence, making the relation between the sentenctland the number of
examples effectively linear.

13.5 Related research

Most if not all related work on morpho-syntactic analységding, and parsing on
Dutch has focused on these tasks in isolation. Schone aaf$kdy(2000) describe
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an unsupervised approach to computational morpholognzdysais, using CELEX
as a gold standard. Their knowledge-free method analyzedsvima large corpus
above a frequency threshold of 10. Matching these analgsbs bnes in CELEX,
they report F-scores on correctly identified morphemesaiirzd 79.6. Without a
direct comparison, we can safely say that our supervisadrsygastly outperforms
this system, even if we would only look up analyses from CELEXich their
system is obviously not allowed to).

Van Halteren et al. (2001) provide generalization accesof various tagging
systems trained on Dutch data annotated using the Wotaettagsredecessor of,
and comparable to, the CGN tagset. Using additional legrmethods (hidden
markov models, transformation-based learning, and maxirantropy tagging)
and combinations of these taggers in ensemble architegthot using only the
754-thousand-words Eindhoven corpus, the best crosdatatl accuracy reported
is 93.3%, and 96.4% using a reduced version of the tagsettdivi/d@e”; this is
the performance of a stacked ensemble of classifiers. Inmagintvith about 10
million words of training data we attain about the same amcyn(96.5%) in a
similar experiment with a tagset that is at least as rich aW/dut using a single
classifier.

Buchholz and Marsi (2006) provide an overview of systems wbmpeted
in the CoNLL-X Shared Task, which also used a part of the mnaanotated
Alpino treebank, split in training data (195,069 words,343 sentences) and test
data (5,463 words, 386 sentences). For the best system (Mdet al. 2006) a
labeled dependency score of 79.2 is reported, clearly mupgernur 74.3 (obtained
with more training data, tested on a different test set)., ¥@¢ best performing
system is a more complicated two-stage discriminativequatsat first performs
unlabeled parsing, and then assigns labels, and runs i toi@ as opposed to
our linear parser.

An obvious competitor to our parser is the original Alpinag& (Malouf and
Van Noord 2004) which it hopes to emulate. Probably the bastgy for Dutch,
Alpino is a typical modern example of a rule-based approhahhas hybridized
with a stochastic, data-driven approach. After a rule-8a&see generates possible
parses for a given sentence (possibly hundreds or thousamdsochastic com-
ponent searches in this space of possibilities for the nilkediylparse, where the
statistics are derived from the Alpino treebank.

Alpino has been evaluated with various metrics; Malouf aad Moord (2004)
argue for using an adapted form @dncept accuracyo estimate the correctness
of the dependency labeling. The labeled dependencies axcunetric of the
CoNLL-X shared task (Buchholz and Marsi 2006), used in thjsqy, has the same
aim; both metrics essentially computeorrect/#total, i.e., the number of cor-
rectly assigned relations divided by the total number ddtiehs. The difference
between the two metrics is that Alpino generates a limitedwarhof non-terminal
nodes in its trees, which necessitates their metric, wireoeii case the number
of generated relations will never be larger than the numbé¢olens, hence the
simple labeled dependency accuracy metric suffices. Ghisnwe cannot cur-
rently compare our parsers to Alpino. Still, itis interagtio contrast some results
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obtained on the same or similar test sets. On a similar te$b £airs, composed
of news articles, Alpino is reported to attain a concept eacyiof 87.9%, which

is markedly higher than our 74.3% accuracy on labeled degreriels. On a small
corpus of quesions, Alpino attains a concept accuracy GP88a test of our parser
on this corpus yields a labeled dependency accuracy of 78 T8arly, our parser
lags behind Alpino in terms of accuracy.

13.6 Discussion

We have described theaDPOLE system, a robust modular morphological ana-
lyzer, part-of-speech tagger, and dependency parser fimhDuncluding the clas-
sification engine, the complete system costs about 95 Mb afiang and has an
estimated processing speed of close to 2,500 words perdegesuming a com-
mon processor type and full streaming performance. Thestaggstimated to be
about 96.5% correct on unseen text (98.6% in terms of mai).tdihe morpho-
logical analyzer can segment about 79.0% of unseen wordsatly; and can pro-
duce a completely correct analysis with part-of-speech &agl spelling changes
for 56.3% of unseen words. The coverage of the tagger and trphwlogical
analyzer is quite high; a random novel text is covered at 888% of all tokens.
In the case of the morphological analyzer this means thatabie to losslessly
reproduce correct analyses for at least these 98% tokersddjiendency parser,
feeding on tags generated by the part-of-speech taggesrajes dependency re-
lations between pairs of words at an accuracy rate of abaB84@4The parser is
observed to parse in linear time in function of the lengthhef input; although it
has a quadratic component in the example generation prabesprocess is con-
strained by a threshold that makes the number of examplearlin the length of
the sentence.

In future work we aim to prolong the learning curve of the degency parser,
as much more training data is still available. If the leagninirve does not flatten
too much it may be possible in the long run to develop a lin@ae- memory-
based emulation of the Alpino parser. We may introduce sottra enternal flow
of information, such as from the morphological analyzerhe tinknown-words
module of the part-of-speech tagger. Other future workliethe incorporation
of other modules intdADPOLE such as a named-entity recognizer, a semantic role
labeler, and a co-reference module, so that the abbrewiaiibstand fortagger,
Dependencyarser, andtherLanguagengines.
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