Exploiting logical forms

Crit Cremers and Hilke Reckman
Leiden University Centre for Linguistics (LUCL)

Abstract

This paper presents a semantic setup for Dutch on the basis of deep processing. The parser
and generator Delilah computes a system of logical forms that is both semantically ade-
quate, and instrumental in processing tasks like disambiguation and inference. The logical
forms are derivationally related but differ as to the level of specification and exploitability.
The semantic setup is new, and is likely to be the first computed, fully specified seman-
tics for Dutch. One of the logical forms introduces a new way of compiling out semantic
dependencies. The resulting system is discussed at the crossroad of logical semantics and
computational linguistics.

1.1 Logical form and grammar

Logical form we take to be that level of linguistic analysis at which lexical con-
cepts, inferential semantics and information structure interact. The required anal-
ysis is formal, in the sense that it should account for the intersubjective and —
thus — systematic aspects of sentential and lexical meaning. In particular, logical
form is a level of grammatical representation at which semantic consequences can
be computed — a view already expressed by Higginbotham (1985). Thus, logical
form is one of the ultimate targets of linguistic analysis and the representation of
what makes natural language a unique module of human cognition. Typically, log-
ical form emanates from deep processing; there are no shallow ways to semantic

Proceedings of the 18th Meeting of Computational Linguistics in the Netherlands, pp. 5-20
Edited by: Suzan Verberne, Hans van Halteren, Peter-Arno Coppen.
Copyright (©)2008 by the authors. Contact: c.].j.m.Cremers @let.leidenuniv.nl

6 Crit Cremers and Hilke Reckman

precision.

The claim that logical form is formal by necessity, does not imply that it is
bound to comply with first-order predicate logic. Predicate logic does not en-
tertain a privileged relation to semantic interpretation: the set of meanings of a
natural language is neither a subset nor a superset of the well-formed and inter-
pretable propositions of predicate logic or their complement. It may be a helpful
tool in describing certain aspects of the relations between concepts and operators
in natural language; in our view, however, it is neither the target nor the anchor of
natural language semantics. Logical form must be casted as a representation for
which some adequate notion of semantic consequence (entailment) can be defined.

Overviewing modern grammar, it makes sense to state that the relation between
logical form and syntactic structure defines the arena. That is not a trivial obser-
vation: though linguistics ranks among the elder sciences in the world, it took
millennia before the proper balance between form and interpretation was ques-
tioned from a grammatical perspective. In recent times, Bertrand Russell (1949)
has argued that logical form is not homomorphic to syntactic structure. Genera-
tive grammar split on the question with which aspects of meaning grammar could
afford to deal (Seuren 1998, ch. 7). In the same period, Montague (1973) defined
logical form by compositional interpretation, but correlated it to a pseudo-syntax.
Pursuing this semantic perspective, categorial grammar (CG) started to take syn-
tax seriously and to produce interpretations by derivation, deduction or unification
(Moortgat 1997, Morrill 1994, Steedman 1996, Carpenter 1998). CG’s strong gen-
erative capacity, however, challenges the boundaries of linguistic relevance. At the
same time, modern grammar theories appear to converge at some formal link be-
tween structure and interpretation. The compositional nature of the main semantic
configurations is by now undisputed (Heim and Kratzer 1998), that is, if we agree
on the lexicon being the only source of semantic wisdom and on meaning being
computable at all.

In computational linguistics, logical form is not a very common module of lan-
guage processing systems. Approaches that avoid to incorporate explicit grammar,
deliberately refrain from logical form. Many scholars working on such systems
seem to share the scepticism about the computability of meaning that some theo-
retical linguists entertain. These ‘agnostic’ strategies govern the field, in our days.
As a matter of fact, for each language that is targeted by computational efforts,
the number of systems doing semantic analysis is quite restricted. Among these,
computation of logical form for inference is rare. Notorious icons here are the
HPSG LinGO enterprise (Copestake and Flickinger 2000), the grammars involved
in the Verbmobil project (Wahlster 2000), the PARC XLE parser (Maxwell and
Kaplan 1993), and DRT-related approaches, like (Bos 2001) and (Bos 2004). Non
of these deals with Dutch.

Memory-based language learning as established in Daelemans and van den
Bosch (2005), however, does not seem to target propositional interpretation or
any other semantic level, till now. Undoubtedly, the problem for these learning ap-
proaches is twofold: there is hardly any semantic tagging from which propositional
semantics can be induced — there is nothing to be stored or learned — and if it

Exploiting logical forms 7

existed, the scarceness of data might be overwhelming with regard to the subtlety
that propositional interpretation for inference calls for. The text of the STEVIN
program to stimulate the infrastructure for Dutch computation assigns high prior-
ity to semantic research but only refers to lexical semantic tagging (Nederlandse
Taalunie 2004). Inference — the core business of computational semantics ac-
cording to Bos (2004) — is not addressed.

Computing logical form is the main objective of the Dutch language proces-
sor Delilah. Delilah (http://www.delilah.eu) parses and generates sentences by
applying a rigid combinatory categorial grammar, by graph unifying extensive
attribute-value matrices and by computing a fully specified semantic represen-
tation. The categorial grammar can be viewed as combining Combinatory Cat-
egorial Grammar (e.g. Steedman (1996)) and Multimodal Categorial Grammar
(Moortgat 1997), in the spirit of Baldridge and Kruijff (2003). It was defined orig-
inally by Cremers (1993) and argued to be mildly context sensitive in Cremers
(1999) and as such described in Cremers (2002). It does not, however, support hy-
pothetical reasoning but entertains syntactically rigid derivations. Thus, it avoids
spurious ambiguity at the cost of giving up direct composition of fully specified
semantics. As a consequence, in complex symbols syntactic and semantic types
may shift. In particular, quantifiers are arguments in syntax but functors in seman-
tics. The grammar is lexicon-driven: all grammatically relevant specifications are
stored in the lexicon and subsumed to lemmas. The lexicon specifies extended lex-
ical units in the sense of Pofl and van der Wouden (2005). In that respect and in the
way the lexicon is defined, Delilah — like most lexicalist processing systems —
embodies a Construction Grammar (e.g. Croft (2001)). The product of parsing and
generation is a comprehensive attribute-value matrix in HPSG-style, or a family of
these matrices.

Semantically, a derivation in Delilah produces a value to a field in the matrix.
This value is an underspecified structured storage of lambda-terms, dubbed Stored
Logical Form. A separate algorithm converts these terms into a fully specified Flat
Logical Form. In the remainder of this paper, the different functions of these levels
of semantic representation in processing Dutch will be discussed.

1.2 Logical form in Delilah

Delilah computes three related levels of logical form: Stored Logical Form (SLF),
Normal Logical form (NLF) and Flat Logical Form (FLF).

SLF is derivational: it is constructed by applying rules of grammar, which in-
duces unification of complex symbols. It is compositional in that it expresses and
reflects important aspects of the grammatical structure, and by being built deriva-
tionally. Moreover, it is underspecified. Important features of the interpretation
are not made explicit at SLF. SLF underlies the construal of both NLF and FLF.
Specialized algorithms translate SLF in NLF and FLF post-derivationally. Conse-
quently, NLF and FLF are no longer fully compositional in the strong sense: not
every aspect of these logical forms is functionally related to the grammatical struc-
ture. NLF and FLF both specify all definable features of the interpretation. They

8 Crit Cremers and Hilke Reckman

differ in the ways of specifying semantic properties. In NLF, matters of scope and
semantic dependency are encoded globally and implicitely, as in standard predi-
cate logic. In FLF, scope and semantic dependency are compiled out and made
explicit at local levels.

Underspecification tends to be seen as a felicitous feature of computed logical
form. It can even be the base of inferential semantics, as was argued in Bos (2001).
Bunt (2007) states that full specification has been proven to be intractable. We are
particulary interested in underspecification of semantic scope. Like Bunt, Ebert
(2005) argues that specifying full scope leads to a combinatorial explosion. A
sentence like

A politician can fool most voters on most issues most of the time

with five (italicized) operators would lead to 5! analyses. In our view, this may
be an artifact of the semantic formalism but not a property of the interpretation.
For interpretation, scope is only relevant to determine which terms are (or could
be) semantically dependent upon the interpretation of other terms, i.e. to find out
where to skolemnize dynamic quantifiers. Knowledge of language tells us that
there are several types of lexical and local restrictions on semantic dependency in
this sense. For example, variables bound by definite quantifiers are for their valua-
tion not dependent on any other variable. Indefinite quantifiers do not influence the
valuation of each others’ variables. Dynamic quantifiers do not scope out of strong
islands. In Delilah, fully specified logical form is derived from underspecified SLF
by an algorithm that exploits this type of grammatical knowledge. A comparable
strategy is proposed in Koller and Thater (2006). Consequently, NLF and FLF are
protected against spurious redundancy while being constructed, by incorporating
grammatical knowledge.

Alshawi (1992) explicitly addresses the question why one should entertain
multiple levels of logical form. He claims the Quasi Logical Form of the Core
Language Engine to be a single level of semantic representation, with additional
resolution procedures providing values for free variables. In that sense, our three
logical forms also provide one single representation that is constructed in several
layers. We claim that these different layers can serve distinct functions. We cer-
tainly do not claim that the logical forms arise from different semantic modes.
There is one process of logical form construal unfolding at different stages.

1.3 Stored Logical Form
1.3.1 Construal

Each lexical phrase is endowed with a template — an HPSG-style attribute-value
matrix — that specifies a structure Store+Body as the value of the If-feature seman-
tics. The Body is a lambda term, representing the canonical meaning of the phrase.
The Store contains slots for the logical forms of dependent phrases: a verb stores
the If of its arguments, a preposition the If of its complement, efc. The storage
reflects the combinatoric patterns specified in the syntax. Thus, the store contains

Exploiting logical forms 9

lambda terms for all dependent constituents, and not just for scope-sensitive oper-
ators, as was proposed by Cooper (1983) and for early Montague grammar. For
each slot in a Store, the variable it operates on in the Body is specified. Here is
a general scheme for a Store+Body structure in a lexical template; all markers are
variables, except for the predicates and relations in Store.

(1) Store: { DependentLF;#X,, DependentLF, #X,, }
Body: operator; "~ ... operator, relation; (X;, X;) & ... & relation, (X, Xom)

The variables in the Store that stand for the logical forms of dependent constituents
— DependentLF; in (I)) — are linked inside the template to these logical forms
(1 <4,j,k,m < n). In general, they are instantiated by Store+Body structures
themselves in the process of unification. As the outcome of this graph unification,
the template of the computed phrase provides a Store+Body structure that contains
all relevant logical forms of the subphrases involved but underspecifies the inter-
action of operators. The relations in (I)) are, in general, constants specified in the
template itself.

The store may contain elements that do not correspond to syntactic con-
stituents. In particular, the store of a lexical verb will contain a quantifier that
introduces the event characterisation of the verb. This is a typical choice that re-
flects the level of morphological decomposition fixed in the lexicon and the nature
of the morpho-syntactic interface.

For a very simple sentence like Every man works the Store+Body structure after
unifying the relevant templates for every, man and works looks like this:

(2) Store: { {Store: {Store: {0, Body: Ax. man (x) }40}
Body: \P.¥y. Q(y) — P (y)}#s,
Jz. event(z, work)#E }
Body: agentof (E,S) & attime(E,T) & time (T, present)

The conversions of the stored lambda terms into a fully specified representation is
discussed in the next section about FLF. Here it is only relevant to note that repre-
sentations for the quantifier, the noun, the verb and the inflectional element occur
in a structured and labeled way in the sentential SLF: they are explicitly linked to
constituents in the grammatical analysis. In (3)), part of the lexical specification of
the verb zag ‘saw’, as in Elke man zag Henk werken ‘every man saw Henk work-
ing’, is represented (slightly edited). Links between SLF and the other components
of the analysis are underlined.

(3) Imp:asB
| HEAD: | CONCEPT: see
| |PHON: ziet
| | QLF : see
| | SYNSEM: |[ETYPE:state
| | |PERSON:or ([2, 3])
| | | TENSEOP:at-pres
| | |VITYPE: semi_aux
| PHON: C
| PHONDATA:1ijnop (ziet, A+B, [arg(left(l),0,D),
arg(left (11),wh,E), arg(right(1l),9,F
IsLF: {{[G& (B+H) I,

1, C)

10 Crit Cremers and Hilke Reckman

{{13s ge(B+L)#M], [1, [1},
AN.3JO.quant (O, the) & property(M, O) & entailsl (0O, decr) & N
& entails (O, incr)} & (B+L)#P,
AQ.3JR. (quant (R, some) & see(R) & state(R) & entailsl (R, incr)
& Q & entails(R, incr)))s& (A+B)#S], [1, [1},
experiencer_of (S, I) & goal_of (S, T)& theme_of (S, P)
& attime(S, K) & tense(S, pres)}
| SYNSEM: |CAT:s_vn
| | CONTROL:controls (goal_of™ [A+B, T], U™ [B+L, T])
| |PREDTYPE:nonerg
| | TENSE:tensed
|TYPE:s_vn\0~ [np" 0#B+W, np wh#B+H] /0~ [vp~9#B+L]
|ARG: | ID:B+H
| |PHON: E
|SLF:G
| SYNSEM: | CASE : nom
| |CAT:np
| | NUMBER: sing
| |OBJ:subject_of (A+B)
| |PERSON:or ([2, 31])
| | THETA:experiencer_of
RG: |ID:B+L
|PHON: F
|SLF:J
| SYNSEM: |CAT:vp
| |EXSEM: X
| |EXTTH:U™ [B+L, T]
| | THETA:theme_of
ARG: | ID:B+W
| PHON : D
| SLF:X
| SYNSEM: |CASE:obliqg
| | CAT :np
| |OBJ:dirobject_of (A+B)
| | THETA:goal_of

A

In this example, it is clear that whatever plays an active role in SLF, is anchored to
the grammatical analysis. In this sense too, SLF is compositional and derivational.

1.3.2 Application of SLF: disambiguation

As said, SLF reflects the morpho-syntactic complexity of the phrase: every con-
stituent that contributes to the meaning of the whole phrase, is represented in the
relevant Store+Body structure. For this reason, different SLFs of the same sentence
correlate to different syntactic ways of composing a meaning for a sentence. This
property of SLF can be used to determine to which extent extended lexical units
or ‘constructions’ have contributed to an SLF and thus, which degree of lexical
aggregation is represented by it. Normally, an interpretation with a high degree
of lexical aggregation is to be preferred over an interpretation that was not or less
based on extended lexical units. For the sentence Nobody kicked the bucket till
now the reading 7ill now nobody hit the bucket such that it fell should have a con-
siderably lower priority than the reading 7ill now nobody died. Comparing SLFs
in this respect suffices in Delilah to select the most aggregated interpretation. Here
is the relevant reasoning and measurement.

It is by now widely acknowledged — and it has never been denied, by all we
know — that the lexicon of a natural language processing system not only specifies

Exploiting logical forms 11

single words. It must also — and maybe even predominantly — contain phrases
or phrase structures that have a specialized syntax and/or semantics. At present,
scholars proclaiming Construction Grammar (Croft 2001) stress the central role
of non-atomic construal in natural language, up to rejecting an interesting level of
syntactic combinatorics. In formal grammar and computational linguistics, how-
ever, applicants of HPSG, Categorial Grammar and Tree Adjoining Grammar al-
ways seem to have accounted for considerably more involved structures than just
atomic units. Pof} and van der Wouden (2005), for example, make clear that there
is a huge variety of ways in which words and structures cluster to build complexes
with specialized syntax or semantics. In general, lexical units that limit lexical
selection or syntactic transparency will come with a meaning to which not every
proper part contributes according to its proper class. Here are just some examples
from Dutch:

e hebben with a DP can mean possess, among others; together with mass
nouns like honger and dorst it expresses in all its morpho-syntactic vari-
eties the property of being hungry (thirsty); the verb itself hardly contributes
to this meaning; the construal fo possess hungriness (thirstiness) cannot be
banned from being parsed;

e prepositional phrases may introduce adjunctive modifiers, but very of-
ten verbs select certain prepositions to express specialized meanings, e.g.
werken op iemands DP, meaning affect somebody’s DP, where the DP intro-
duces a psychological concept; parsing cannot be witheld from an adjunctive
construal, but the selected meaning deserves priority;

e intransitive verbs V can be part of the so-called Dutch way-construction,
expressing the meaning of moving to a certain position by V-ing, e.g. fo
laugh oneself a way/path to DP; the characteristic DP with the way-type NP
does not play a role in the semantics.

In all these cases, the Store+Body structure representing the meaning of the ex-
tended lexical unit, is simpler than the SLF resulting from a parse that does not
account for the lexicalized meaning. In particular the store will contain less dis-
tinct lambda-terms. Crucially, we do not presuppose that the semantic structure
of an extended lexical unit is simpler in any logical or arithmetical sense. All we
claim is that the store of an extended lexical unit will show less internal structure
than its distributed counterpart. This follows from the construal of SLF. Thus, a
simple measurement on the stores of SLFs may select the simplest and thus highly
aggregated and most ‘normal’ reading.

Here is an example. Any sentence containing phrases of the type honger
hebben will come with two analyses: one reflecting the reading ‘be hungry’, the
other reflecting the reading ‘possess hungriness’. The latter SLF will contain a
store where the lambda-term for ‘hungriness’ is specified. The former SLF will
have an empty store instead, as the lambda-term for ‘to be hungry’, whatever its
logical complexity is, will not be stored but specified in a body field of SLF. Com-
puting the aggregated complexity of the stores and comparing them, will identify

12 Crit Cremers and Hilke Reckman

the former SLF as the simpler one. Since this SLF is part of a full analysis, we
can select this analysis as the preferred interpretation. The case is illustrated for
the sentence Ik heb honger ‘1 possess hungriness’ c.q. ‘I am hungry’, with simpli-
fied representations of the Store+Body structures for the sake of transparency. The
preferred reading has a simpler store than the dispreferred one.

4) SLF1:{ { ik:x + be_hungry (x) }
SLF2:{ { ik:x, hungryness:y }, possess(x, y) }

Delilah produces all readings permitted by the grammar. It defines for each SLF
the structural complexity, i.e. the degree of embedding of Store+Body structures.
For every acceptable parse, it computes a number that expresses the ratio between
the structural complexity of the SLF and the total number of elements specified
in the stores. This ratio marks the semantic complexity of the SLF. Parses can
be ordered according to these ratios. Moreover, it computes the total number of
predicates or small clauses in the bodies of the SLFs. This number is used as a
secondary marker for semantic complexity, but does not necessarily discriminate
between lexical units and semantically composed phrases.

Delilah is trimmed to pop up the simplest reading for a sentence by exploiting
the underspecification of SLF. This method is utterly reliable, because it anchors
in lexical specifications. In the analysis of the sentence Sommige kinderen hadden
weinig honger (‘some children were a little bit hungry’) the possess-reading will
be suppressed. This is because the lexicon contains an extended lexical unit re-
lating honger and hebben, the SLF of which is simpler than the SLF constructed
from independent lemmas for to have and hungriness. The SLF for the whole sen-
tence is constructed by sheer unification (¢f. Reckman (to appear)). Therefore, the
complexity of the lexically specified SLFs is conserved in the derivation.

1.4 Flat Logical Form
1.4.1 Construal

Each SLF that passes the complexity test, is submitted to a post-derivational al-
gorithm. This algorithm performs two tasks: it converts the SLF into a coherent
formula and it compiles the additional semantic information resulting from this
conversion onto each variable.

The first step involves (-reduction of implicitly typed lambda-terms, explic-
itly specifying scope dependencies between semantic operators like quantifiers,
modalities and negation. This conversion is sensitive to scopal variation of oper-
ators, to the semantic nature of operators and to structural restrictions on scope
imposed by islands or other intervention effects. In this step, a good deal of a
semantic theory can be effectuated. The nature of the semantic theory in Delilah
is not at stake here, however, as the formalism does not impose constraints on the
theory that steers the conversion. It is noteworthy, though, that in Delilah we have
chosen to represent all quantifiers by descriptions, thus integrating first and higher
order forms of quantification for inference.

Exploiting logical forms 13

In the second step the information spelled out by the conversion is specified
onto each occurrence of each variable by a compilation protocol that turns the
semantic operators obsolete. After applying this protocol, each variable is locally
sugared with information as to

e its entailment property
o the quantificational regime it is bound to
e the variables its instantiation is dependent upon.

The entailment property indicates whether the predicate of which the variable
is an argument, allows for upward, downward or no entailment with respect to the
variable. The specification of ‘governing’ variables indicates whether a variable is
referentially independent or must be valuated by a choice function; the notion of
variables y; governing a variable x thus amounts to the introduction of a choice
function f(y;,...yn) for z.

Here is an example. The FLF for Every man works is produced from an SLF
like (2)). The outcome of the conversion step can be compared to a standard speci-
fied logical form like (5). In (6) then, is the corresponding FLF compiled from it.
Each variable is represented by a 4-tuple variable + entailment index + quantifier
index + governing variables. Semantic constants are italicized, logical constants
and standardized relations are in bold face.

(5) Vy man(y) — 3Jz. event(z, work) & agentof(z,y) &
attime(z,t) & time(t, present)

(6) man(y+down+every+[]) &
event (z+uptsome+[y], work) &
agentof (ztupt+some+[y], ytuptevery+[]) &
attime (z+tup+some+([y], t+up+tsome+[y] , present)

The information encoded on the variables is compiled from an intermediate
representation where lambda-terms are fully converted and scopes are specified.
The index with respect to entailment—in (6): up and down—specifies the local
monotony properties of the binding quantifier in the relevant domain, according
to its definition as a generalised quantifier. For simple, lexical determiners this
is straightforward, as these properties are lexically defined. For complex deter-
miners like ‘at least n but not more than m’ they have to be computed from the
composition; in many of these cases no monotony will be detected. This calculus
is discussed in Reckman (to appear).

The index with respect to the binding quantifier can be complex, as the quan-
tifier itself is complex. Yet, the intention is to classify also complex quantifiers in
such a way that e.g. existential impact of the quantifier can be derived immedi-
ately. Note that the entailment property of the variable y varies with the domain
of its quantifier: in the restriction of the universal quantifier, the variable bound
by it allows for downward entailment, in the nuclear scope it gives rise to upward
entailment. Referential dependency does not vary with domains.

14 Crit Cremers and Hilke Reckman

In case an SLF at the first step in its ‘spell out’ gives rise to real ambiguity,
this ambiguity is by definition expressed in terms of scopal dependencies, since
SLF is only underspecified for that. FLF takes the form of a single conjunction,
representing the complete class of readings, where each conjunct is annotated for
the reading(s) it is part of. A conjunct appears twice iff a variable occurring in it
may or may not be referentially dependent. To be precise, SLF will yield at
the first conversion step two readings, differing with respect to quantifier scope,
as in (7). (8) gives the FLF: the conjunction that represents the information of all
readings of the SLF.

(7) Vy man(y) — 3Jz. event(z, work) & agentof(z,y) &
attime(z,t) & time(t, present)

Jz. event(z, work) & Vy. man(y) —
agentof (z,y) & attime(z,t) & time(t, present)

(8) man(y+down+every+[]):[1,2] &
event (z+up+some+[y], work):[1l] &
event (z+up+some+[], work):[2] &

agentof (z+up+some+[y], y+uptevery+[]):[1l] &
agentof (z+tup+some+[], ytuptevery+[]):[2] &
attime (z+tupt+some+[y], t+up+some+[] , present):[1l] &

attime (z+tupt+some+[], t+uptsome+[] , present):[2]

1.4.2 Application: inference

FLF is an operator-free conjunction. All logical information is specified as indices
on variable occurrences. The representation is inferential: to decide whether a
certain inference is possible, it suffices to linearly inspect an FLF and for each
conjunct, to decide locally whether or not it gives rise to (part of) the hypothesis.

Suppose we have some model M, with standard definitions for predicates, or
an ontology (2, with a well-defined hierarchy of predicative concepts. Assume that
in M or) one place predicates P and P| are defined and ordered with respect to
PasP| < PandP < PT, respectively, where < expresses semantic subsumption.
Then, if P(x+_+_+_) occurs as a conjunct in an FLF, inferences like the following
immediately hold (f, denotes a choice function living on y):

) from p & P(x+up+some+[]) & 1 infer 3z.P(z) and Jy.P1(y)
from ¢ & P(x+up+some+[y]) & ¢ infer 3f,.P(f,(x)) and 3f,.PT (f,(x))
Sfrom o & P(x+down+no+[]) & v infer —3z.P(z) and —3z.P| (z)
from ¢ & P(x+down+every+[]) & ¢ infer Vz.P|(z) and 3z.P [(z)
from ¢ & P(x+up+every+[]) & ¢ infer ¥Yz.P1(z) and 3z.P 1(z)
Sfrom ¢ & P(x+down+many+[y]) & ¢ infer 3If, . P(f,(x)) and 3f,.P| (fy(x))

That is, for our sentence Every man works and well-defined concepts person,
young man and do something in M or €, each of the following entailments can
be made without any additional calculation:

(10) someone does something

Exploiting logical forms 15

every man does something
all young men work

some man does something
some man works

In the inferences with respect to the universal quantifier, we assume with Seuren
(2006) that universal quantification in natural language should not be modeled
with empty restrictions. Every inference machine, however, may implement its
own theory on semantic entailments and logical consequence. That is not at stake
here. The point is that FLF offers semantic representation at a level of specification
that obsoletes deep inspection of the formula for the sake of automated inference.

Under these conditions, generalized entailment according to the definition of
the RTE challenges (Dagan et al. 2005) can easily be defined for FLF.

(11) generalized entailment
A text T, represented in FLF entails hypothesis H represented in FLF iff
H is a finite conjunction of clauses /; and for each #; there is a cover ¢ &
p & ¥ of T such that p entails #;

Clearly, for each ‘small clause’ &; the p it needs for entailment is given by its main
predicate. We assume that each predicate is explicitly ordered—ontologically or
lexically—to not more than a finite number of other predicates. Under that as-
sumption, for each i, only a linear inspection of T’s representation suffices to find
a possible antecedent to an entailment relation. If that possible antecedent is found,
entailment is checked by inspecting the entailment tables. No serious computing
is involved.

There is one complication. Once a partial hypothesis living on a variable X is
established, other instances of X in the hypothesis can only be derived under the
same set of dependency constraints. This requires some bookkeeping, but does
not frustrate the computation. Below, a simple example is given of a one line
text Elke man zag Henk werken and a hypothesis lemand zag iets ‘somebody saw
something’. Each part of the hypothesis is inferred from the co-marked clause in
the text’s FLF. (We assume that man is subsumed under person and property under
thing, temporal information is ignored.)

(12) FLF(Elke man zag Henk werken) =

/A man (A+decr+every+[]) &

O property (B+decr+the+[]) &
exists (C+incr+henk+[]) &
work (D+incr+some+[B]) &
event (D+incr+some+ [B]) &

agent_of (D+incr+some+[B],C+incr+henk+[]) &

attime (D+incr+some+ [B],E) &

see (F+incr+some+[A]) &

state (F+incr+some+[A]) &

experiencer_of (F+incr+some+[A], A+incrt+every+[]) &
goal_of (F+incr+some+[A], C+incr+henk+[]) &

P 3

16 Crit Cremers and Hilke Reckman

#® theme_of (F+incr+some+[A], B+incr+the+[]) &
attime (F+incr+some+[A], H) &
tense (F+incr+some+[A], past)

FLF(lemand zag iets) =

/\ person (Z+incr+some+[]) &

O thing(Y+incr+some+[]) &

& experiencer_of (X+incr+some+[], Z+incr+some+[]) &
{$ see (X+incr+some+[]) &

Q state (X+incr+some+[]) &

theme_of (X+incr+some+[], Y+incr+some+[])

On inspection of this type of inference, one can easily conclude that partial entail-
ment is defined straightforwardly on the base of (IT): a hypothesis <hy,...h,,> is
partially entailed by T if some h; is entailed and some h; is not. Partial entailment
may induce a whole range of qualifications of the relation between a hypothesis
and a text. In particular, an inference engine for FLF combined with an 1f-driven
generator can construct those subhypotheses that are entailed.

1.5 Normal Logical Form

In our approach, there is no special grammatical task for NLF. It is casted as en-
riched predicate logic, in the sense that it should be able to accommodate other
than strict logical operators and quantifiers. For comparison, we give for a sen-
tence like Elke man zag Henk werken SLF, FLF and NLF respectively.

(13) SLF
{00 {{e{{ry, 11, 11}, A.man(I)}$Je(9+11)#K1, [1, [1}, AL.3J.quant (J,
every) & K & entailsl(J, decr) & L & entails(J, incr) }&(5+9)#M,
{{r{{r {1, 11, 11}, AN.30. exists(0) & quant (O, henk) & N &
entails (0, incr)}&(16+99)#P, AQ.JR.quant (R, some) & work(R) &
event (R) & entailsl (R, incr) & Q & entails (R, incr)&(5+16) #S],

[1, [1}, AT.agent.of [S, P] & attime(S, T))}$Us&(5+16)#V], [1, [1},
AW.3X.quant (X, the) & property(V, X) & entailsl (X, decr) & W &
entails (X, incr)}&(5+l6)#Y, AZ.3JAl.quant (Al, some) & see(Al) &
state (Al) & entailsl(Al, incr) & Z & entails(Al, incr)é& (1+5)#B1],
[1, [1 }, experiencer_of (B1, M) & goal_of(Bl, P) & theme_of (Bl, &

attime (Bl, U) & tense(Bl, past) }
(14) FLF

man (A+decr+every+([]) &

property (Btdecr+the+[]) . [

exists (C+incr+henk+[]) &

work (D+incr+some+[B]) &

event (D+incr+some+[B]) &

agent_of (D+incr+some+ [B],C+incrt+henk+[]) &
attime (D+incr+some+ [B],E)] &

Exploiting logical forms 17

see (F+incr+some+ [A]) &

state (F+incr+some+[A]) &

experiencer_of (F+incr+some+[A], A+incr+every+[]) &
goal_of (F+incr+some+ [A], C+incr+henk+[]) &

theme_of (F+incr+some+[A], B+incr+the+[]) &

attime (F+incr+some+[A], H) &

tense (F+incr+some+[A], past)

(15) NLF
quant (A, every) . [man (A) — quant (B,the) . [property (B).
[quant (C, henk) . [quant (D, some) . [work (D) & event (D) &
agent_of (D,C) & attime(D,E)]]] &
quant (F, some) . [see (F) & state(F) &

experiencer_of (F,A) & goalof(F,C) & theme_of(F,B) &
attime (F,E) & tense(F,past)]]]

Just like FLF, NLF is spelled out post-derivationally from SLF. Contrary to FLF,
it is neither a conjunction, nor operator-free. Just like FLF, all semantic dependen-
cies are unambiguously and fully encoded. It is structured by logical operators.
NLF is best seen as the logic label of the semantic process. NLF or an impover-
ished version of it can be used for standard first-order theorem proving.

1.6 Discussion

Delilah computes, apart from a kind of standard full representation, two related
but procedural and formally very distinct levels of semantic representation: under-
specified, compositional SLF and fully specified, paracompositional FLF. SLF is
produced as part of the graph unification which is the kernel of the parsing and gen-
eration procedure. Therefore, its construction does not complicate the derivation.
Yet, on SLF measures can be defined that express essential semantic properties
of the structure and thus can be exploited for selection of readings and reduction
of ambiguity. We are still in the process of developing the best and most telling
measurements, but it is clear that hardboiled criteria can be found and applied in
reducing ambiguity there where it lives: in the semantic structure of a sentence.
Of course, not all problems of selecting readings can be handled at SLF. Pure local
polysemy can not be decided upon by inspecting SLF. But the delicate balance
between levels of lexical aggregation can most certainly be tracked at this level.
Because of its sensitivity to constituent structure, SLF seems a good level for
generation to take off. As a matter of fact, we are working on generation algo-
rithms that are fed with SLF and that aim at producing sentences the FLF of which
entails or is entailed by the FLF derived from the input SLF. In this sense the
labour division between SLF and FLF may contribute to purely meaning-driven
translation, as argued in Alshawi et al. (1991) and Copestake et al. (2005). As was
argued convincingly in Rosetta (Rosetta 1994), machine translation on a semantic
base — this is not a pleonasm nowadays — flourishes through compositionality.
FLF approaches the representation of meaning in the spirit of Minimal Recursion

18 Crit Cremers and Hilke Reckman

Semantics (MRS) as implemented in the English Resource Grammar (Flickinger
et al. 2000, Copestake et al. 2005). The main point of convergence is that MRS
and FLF present full semantics while avoiding syntactic complexity of the logi-
cal form. There are some differences, however. Since FLF is derived from SLF,
all constraints on the interaction of semantic operators — like weak island condi-
tions — are integrated in this derivation. The construal of FLF thus embodies an
explicit theory on the syntax-semantics interface. Furthermore, FLF encodes all
scopal and inferential information directly onto the logical form, rendering infer-
ence strictly local. Finally, in FLF neo-Davidsonian event structure is adopted, for
constructional reasons. Extended lexical units may be such that the modification of
elements that do not contribute to the meaning of the sentence, is to be interpreted
as a modification at the semantic top level. For example, in the constructions of
type honger hebben ‘to be hungry’ the mass noun honger may carry a determiner
that conveys the quantification or degree of the state: geen honger hebben (lit:
no hunger have) means ‘to be not hungry’ and weinig honger hebben (lit: little
hunger have) means ‘to be a little bit hungry’. Without quantification over states
and events no systematic or even finite treatment of semi-transparent extended lex-
ical units seems possible. In this respect, neo-Davidsonian event structure leads to
normalisation and homogenisation of logical form (c.f. Reckman (to appear)).

References

Alshawi, H., D. Carter, M. Rayner, and B. Gambick (1991), Translation by Quasi
Logical Form Transfer, Proceedings of the 29th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 161-168.

Alshawi, H., editor (1992), The Core Language Engine, The MIT Press, Cam-
bridge, MA, USA.

Baldridge, J. and G.-J. M. Kruijff (2003), Multi-modal Combinatory Categorial
Grammar, Proceedings of the 10th Annual Meeting of the European Asso-
ciation for Computational Linguistics, pp. 211-218.

Bos, J. (2001), DORIS 2001: Underspecification, Resolution and Inference for
Discourse Representation Structures, in Blackburn, P. and M. Kohlhase, ed-
itors, ICoS-3, Inference in Computational Semantics, Buxton, UK, pp. 117-
124.

Bos, J. (2004), Computational Semantics in Discourse: Underspecification, Res-
olution, and Inference, Journal of Logic, Language and Information 13
(2), pp- 139-157, Springer.

Bunt, H. (2007), Semantic underspecification: which technique for what pur-
pose?, in Bunt, H. and R. Muskens, editors, Computing Meaning Volume 3,
Springer, pp. 55-85.

Carpenter, B. (1998), Type-Logical Semantics, The MIT Press, Cambridge, MA,
USA.

Exploiting logical forms 19

Cooper, R. (1983), Quantification and Syntactic Theory, Reidel, Dordrecht, the
Netherlands.

Copestake, A. and D. Flickinger (2000), An Open Source Grammar Develop-
ment Environment and Broad-coverage English Grammar Using HPSG,
Proceedings of the 2nd International Conference on Language Resources
and Evaluation, Athens, Greece.

Copestake, A., D. Flickinger, C. Pollard, and I.A. Sag (2005), Minimal Recur-
sion Semantics: An Introduction, Research on Language & Computation 3
(4), pp- 281-332, Springer.

Cremers, C. (1993), On Parsing Coordination Categorially, PhD thesis, Leiden
University, HIL dissertations.

Cremers, C. (1999), A Note on Categorial Grammar, Disharmony and Permuta-
tion, Proceedings of the 9th conference on European chapter of the Associ-
ation for Computational Linguistics, pp. 273-274.

Cremers, Crit (2002), (’n) Betekenis Berekend, Nederlandse Taalkunde
7, pp. 375-395.

Croft, W. (2001), Radical Construction Grammar, Oxford University Press, Ox-
ford, UK.

Daelemans, W. and A. van den Bosch (2005), Memory-Based Language Process-
ing, Studies in Natural Language Processing, Cambridge University Press.

Dagan, 1., O. Glickman, and B. Magnini (2005), The PASCAL Recognising Tex-
tual Entailment Challenge, Proceedings of the PASCAL Challenges Work-
shop on Recognising Textual Entailment pp. 1-8, Springer, Southampton,
UK.

Ebert, Chr. (2005), Formal Investigations of Underspecified representations, Phd
thesis, University of London.

Flickinger, D., A. Copestake, and I.A. Sag (2000), HPSG Analysis of English, in
Wahlster, W. and R. Karger, editors, Verbmobil: Foundations of Speech-to-
Speech Translation, Springer, pp. 254-263.

Heim, I. and A. Kratzer (1998), Semantics in Generative Grammar, Blackwell
Publishers, Oxford, UK.

Higginbotham, J. (1985), On Semantics, Linguistic Inquiry 16 (4), pp. 547-593.

Koller, A. and S. Thater (2006), An improved redundancy elimination algorithm
for underspecified representations, Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of
the ACL, Sydney, Australia, pp. 409-416.

Maxwell, J. T. and R. M. Kaplan (1993), The interface between phrasal and func-
tional constraints, Computational Linguistics 19 (4), pp. 571-590, The MIT
Press, Cambridge, MA, USA.

Montague, R. (1973), The Proper Treatment of Quantification in Ordinary English,
Approaches to Natural Language 49, pp. 221-242.

Moortgat, M. (1997), Categorial Type Logics, in van Benthem, J. and A. ter
Meulen, editors, Handbook of Logic and Language, Elsevier, Amsterdam
and The MIT Press, Cambridge, MA, USA, pp. 93—-177.

Morrill, G.V. (1994), Type Logical Grammar, Kluwer Academic Publishers,

20 Crit Cremers and Hilke Reckman

Boston, MA, USA.

Nederlandse Taalunie (2004), Vlaams-Nederlands meerjarenprogramma voor
Nederlandstalige taal- en spraaktechnologie STEVIN Spraak- en Taaltech-
nologische Essenti€le Voorzieningen In het Nederlands.

PoB3, M. and T. van der Wouden (2005), Extended Lexical Units in Dutch, in
van der Wouden, T., M. Po3, H. Reckman, and C. Cremers, editors, Com-
putational Linguistics in the Netherlands 2004, LOT, Utrecht.

Reckman, H.G.B. (to appear), Flat, not Shallow, PhD thesis, Leiden University,
LOT dissertations.

Rosetta, M.T. (1994), Compositional Translation, Kluwer, Dordrecht.

Russell, B. (1949), The Philosophy of Logical Atomism , University of Minnesota,
Department of Philosophy, Repr. as Russell’s Logical Atomism, Oxford:
Fontana/Collins, 1972.

Seuren, P.A.M. (1998), Western Linguistics. An Historical Introduction , Black-
well Publishers.

Seuren, P.A.M. (2006), The natural logic of language and cognition, Pragmat-
ics: Quarterly Publication of the International Pragmatic Association 16
(1), pp. 103-138.

Steedman, M. (1996), Surface Structure and Interpretation, The MIT Press, Cam-
bridge, MA, USA.

Wahlster, W., editor (2000), Verbmobil: Foundations of Speech-To-Speech Trans-
lation, Springer.

