
2

Putting the t where it belongs

Solving a confusion problem in Dutch

Herman Stehouwer and Antal van den Bosch
Tilburg centre for Creative Computing, Tilburg University

Abstract

A common Dutch writing error is to confuse a word ending in -d with a neighbor word
ending in -dt. In this paper we describe the development of a machine-learning-based dis-
ambiguator that can determine which word ending is appropriate, on the basis of its lo-
cal context. We develop alternative disambiguators, varying between a single monolithic
classifier and having multiple confusable experts disambiguate between confusable pairs.
Disambiguation accuracy of the best developed disambiguators exceeds 99%; when we ap-
ply these disambiguators to an external test set of collected errors, our detection strategy
correctly identifies up to 79% of the errors.

2.1 Introduction

Learners of languages with alphabetic writing systems and overt morphology at
some point face the task of learning the language’s derivational and inflectional
paradigms. Mastering these paradigms is the key to producing grammatical sen-
tences, with all the proper agreements and the proper choices of morpho-syntactic
categories and their associated inflections. An important subtask to master is to
choose the contextually appropriate form out of a set of paradigmatic alterna-
tives. In the sentence “He smiled broadly”, the writer has to decide the proper

Proceedings of the 18th Meeting of Computational Linguistics in the Netherlands, pp. 21–36
Edited by: Suzan Verberne, Hans van Halteren, Peter-Arno Coppen.
Copyright c©2008 by the authors. Contact: j.h.stehouwer@uvt.nl

21

22 Herman Stehouwer and Antal van den Bosch

forms are He, not Him; smiled, not another inflection of the same verb; and the
adverbial form broadly, not the adjective broad. This task can be all the harder
when the learner is a second-language learner whose native language uses different
paradigms. A related task is faced by natural language generation systems, which
need to generate the appropriate forms after having made their lexical choices.

In this paper we describe the development of a grammar checking module that
could be integrated into a larger proofing system. We exemplify the approach us-
ing a notorious problem of paradigmatic choice in Dutch that takes learners some
time to master. The problem, in its core a verb inflection task, still manages to con-
fuse even experienced writers, witnessed by the many errors found on webpages,
emails, and student reports. It serves as an illustration; as we will argue, the ap-
proach is easily transportable to similar morphological-paradigmatic confusability
problems.

Making a forced choice in paradigmatic derivation or inflection, given a sen-
tential context, can be straightforwardly cast as a classification task, which can
be learned by a machine learning algorithm – much like selecting the appropriate
sense for a polysemous word in word sense disambiguation systems. If a classifier
can be trained to make the choice with zero error, then this classifier could be used
as a grammar checker, applicable to any unseen text that contains a variant of the
derivation or inflection the classifier is trained on. On the basis of the context, the
perfect classifier could decide on which form is appropriate, given the context; if
the classifier’s prediction contradicts the form actually used, then the form could
be flagged as a grammatical error.

Taking this route, we distinguish two views on the same problem, which lead
to somewhat different machine learning experiments. From one perspective the
task can be seen as a morphological generation task in which, given a context,
the appropriate morphological operation needs to be triggered. For example, in
deciding whether it should be word or wordt in hij [word] thuisgebracht (he is
(being) brought home), a machine learner would be faced with the particular con-
text Hij . . . thuisgebracht, the unresolved word [word], and the task to classify this
situation. Although this definition of the task seems straightforward (it does not
presuppose any linguistic analysis of the data, as it operates just on surface cues
found in wordforms), and the type of task appears quite central to natural language
generation, there is not an abundance of literature approaching this task in this
knowledge-free way. In (Yarowsky and Wicentowski 2000) a successful “mini-
mally supervised” morphological analyzer is introduced which also works well on
highly irregular forms. Similar work is described in (Schone and Jurafsky 2001),
who focus on the inflection system of Dutch, English, and German. More gener-
ally, our definition is related in spirit to machine-learning approaches to morpho-
logical generation tasks at the word level, such as in past tense generation with
English verbs (Mooney and Califf 1995) or diminutive inflection on Dutch nouns
(Daelemans et al. 1997b), except that our predictive features come from the neigh-
boring sentential context, not from the word itself.

Alternatively, and this is our second perspective, the task can be seen as a mul-
titude of pairwise confusable disambigation tasks, where each pair of alternatives

Putting the t where it belongs 23

is the domain of one classifier, henceforth confusable expert. For instance, there
would be a separate confusable expert for deciding whether the word houd or the
word houdt would be appropriate in a given context. This is in essence the same
two-class task as the first formulation, but a machine learner performing one partic-
ular confusable disambiguation will only see training examples of the two alternate
wordforms. Defined as such, this definition joins a long list of earlier approaches to
context-based confusable set disambiguation or the related issue of accent restora-
tion (Yarowsky 1994, Golding 1995, Mangu and Brill 1997, Wu et al. 1999, Even-
Zohar and Roth 2000, Huang and Powers 2001, Banko and Brill 2001, Van den
Bosch 2006). Most of this work has concentrated on a hand-selected set of no-
torious confusables due to homophony (to, too, two) or similar spelling (desert,
dessert). Yet, some of it has also touched upon inflectional or derivational con-
fusables such as I versus me (Golding and Roth 1999), the type of task we also
target.

The novelty of the approach presented here resides in the fact that we com-
bine the two approaches in order to achieve optimal results. The key difference
between the two perspectives is the specificity of the classifiers. It can be expected
that the monolithic classifier can leverage from the massive amounts of examples
it can be trained on, while the confusable experts may draw some advantage out
of the fact that there may be specific lexical contextual markers for individual con-
fusables (such as particular verbs that a confusable adverbial form will typically
follow) that would go unnoticed by the monolithic classifier. By combining the
two approaches, a best-of-both-worlds solution may be reached.

A powerful help to both approaches, and a strong point for the reusability of
the approach in general, is that large amounts of labeled examples can be gath-
ered freely from digital text corpora, without the need for annotation. The very
occurrence of any word belonging to a confusable pair is effectively an example in
context, labeled with one of the two possible outcomes. The only disadvantage of
this “free lunch” is that if a text corpus in fact contains a writing error (e.g. a text
may contain the incorrect hij *word thuisgebracht), this example will either turn
up as a falsely labeled training example, potentially causing the resulting classifier
to err later on, or as a falsely labeled test example, causing errors in statistics of
false hits and misses. We will not be able to solve this, nor measure the size of the
effect of this hidden noise. However, this hidden factor does not invalidate the tar-
get of our study, which is to measure the error detection capabilities of our trained
classifiers on actual, manually collected cases of confusion.

The latter is the reason why our evaluation focuses on two aspects: (1) First
we measure how accurately our classifiers can decide between the two outcomes
of the task – at this point, we ignore whether our test data might actually contain
corpus errors; (2) Second, we also confront our best-performing classifiers with
pre-compiled lists of confusable errors in context, collected on the web, to see
what portion of these errors are actually recognized as such, providing a sample-
based error detection recall estimate.

It is unlikely that we would be able to develop perfect classifiers, but low error
rates should be attainable. The goal of this paper is to test whether classifiers can

24 Herman Stehouwer and Antal van den Bosch

be trained to classify at such low error rates that they can detect confusions well
beyond the baseline level.

This paper is structured as follows. First, in Section 2.2 we introduce the task
in some detail. Section 2.3 describes the systems developed. Section 2.4 reports
on the experiments we performed; the results of the experiments are given in Sec-
tion 7.4, and their wider implications are discussed in Section 2.7.

2.2 The confusion of Dutch words ending in -d versus -dt

The frequently occurring confusion of words ending in -d or -dt in Dutch is rooted
in a verbal inflection choice, but extends to other forms as well. We first focus on
the verbal inflection issue. A notorious problem in Dutch is the normal singular
present tense -t inflection of verbs of which the stem ends in -d. The problematic
issue is that the inflected form is pronounced the same as the form without the -t,
as word-final -d and -dt are both devoiced and pronounced as /t/ in Dutch. So, the
frequent verbs word and wordt (become and becomes) are both pronounced /wOrt/.
When wordforms are homophonic, they tend to get confused often in writing (cf.
the situation with to, too, and two, or there, their, and they’re in English) (Sandra
et al. 2001, Van den Bosch and Daelemans 2007).

As a rule, the singular second-person and third-person forms of Dutch present-
tense verbs receive a -t inflection: ik loop (I walk), jij loopt (you walk), zij loopt
(she walks). Besides exceptions with high-frequency irregular verbs such as zijn
(to be), an important subregularity is that when the second-person subject occurs
after the verb, e.g. in questions, the -t inflection is not realized (compare jij loopt
– you walk, to loop jij? – do you walk?) (Geerts et al. 1984).

Although this verbal inflection issue lies at the root of the -d versus -dt confu-
sion problem, it also affects words with the same form that are not present-tense
verbs. Verb forms ending in -d often occur with that same form as a singular noun
(e.g. strand can occur as a noun, e.g. het strand – the beach, or as a verb, ik strand
– I get stuck), and in a similar vein present-tense verbs in -d can have the same
form as the past participle form of the same verb (e.g. ik verwoord het – I phrase
it, versus ik heb het verwoord – I phrased it). Due to the homophonic confusion
and due to cognitive errors of language learners and writers in general, also these
forms may occasionally get an incorrect -dt ending.

2.3 System architecture

2.3.1 Example generation

We collect examples from large unannotated tokenized texts by (1) finding all
words ending in -dt, and (2) finding all corresponding alternatives having the same
character string up to -dt, ending in -d. We did not filter out nouns and past par-
ticiples, to keep the method as general and knowledge-free as possible, as argued
in the previous section.

Putting the t where it belongs 25

Koningin Beatrix wordt vrijdag 70 jaar.

_ BeatrixKoningin vrijdag 70 jaar dt

right context featuresleft context features class

word

masked
focus word

Figure 2.1: Generation of one Dutch windowed and labeled example.

For our experiments on the Dutch task we use the Twente News Corpus1, which
contains about 365 million tokens. The corpus is part-of-speech tagged with a
state-of-the-art tagger for Dutch2 at an estimated accuracy of 96.5%. Alterna-
tively, the corpus is also tagged with unsupervised part-of-speech tags generated
with Biemann’s Chinese Whispers algorithm (Biemann 2007) on which an MBT
tagger was trained3. In the experiments described in more detail in Section 2.4,
we compare three experimental conditions in which we either do not use tags, or
use Biemann’s unsupervised tags, or the tags generated by the language-specific
part-of-speech tagger. In the corpus we find 2,975,185 examples of -d versus -dt
wordforms. Words ending in -d are in the majority (65%), which is partly due to
the fact that the matching nouns and past participle forms all end in -d.

To turn the words in their sentential contexts into proper machine learning ex-
amples, a window with a limited focus of three words to the left, and three words to
the right is imposed on the sentence, centering on the focus word. The focus word
itself, containing the answer to the problem, is necessarily masked; we remove the
information to be predicted by reducing the focus word to the shorter of the two
forms. Figure 2.1 illustrates the conversion of an occurence of a Dutch confus-
able in context, to labeled examples. In the experimental conditions in which we
also include part-of-speech information, the tags of all context words in the input
window are included. However, the tag of the focus word is masked, as the focus
tag reveals the outcome. Any feature that would unequivocally vote for the class
suggested by the focus wordform would be counterproductive in a system that is
to be used to detect that the focus wordform is in fact contextually inappropriate.

In order to be able to extract these local contexts we must first identify which
words are part of the confusable problem. We used the following simple rule to
build lists of confusable pairs: We select all words of the form [stem-d]t for which
we also find at least one occurrence of the word [stem-d].
1http://wwwhome.cs.utwente.nl/˜druid/ TwNC/TwNC-main.html
2http://ilk.uvt.nl/tadpole
3See http://ilk.uvt.nl/mbt/ – MBT is also the tagger used in Tadpole.

http://wwwhome.cs.utwente.nl/~druid/
TwNC/TwNC-main.html
http://ilk.uvt.nl/tadpole
http://ilk.uvt.nl/mbt/

26 Herman Stehouwer and Antal van den Bosch

2.3.2 Combining classifiers

As our end goal is to develop a maximally accurate disambiguator for the two
confusable tasks in order to detect actual writing errors, the question is which of
the possible classifier architectures would be the most accurate. The most extreme
outcomes may be on the one hand that the classifier trained on the generic mor-
phological generation task is the best, possibly because it can be trained on most
examples. On the other hand, it may turn out that an ensemble of all individual
confusable experts offers the best performance. A downside of the latter architec-
ture is that this would involve an architecture with thousands of classifiers. We
decided to explore the space of combinations of generic classification with selec-
tions of word experts, under the assumption that there is an optimal selection of
confusable experts that can be combined with a more generic classifier.

These ensemble systems act as gating systems: if the test word to be checked
against the prediction of the system is handled by one of the selected confusable
experts, the case is given to be classified to the appropriate expert; otherwise, it
is passed on to be classified by the morphological generator, acting as a back-
off classifier. Given such a gating architecture, the monolithic classifier can be
trained in two ways: first, using all available training examples including the ones
also handled by the selected confusable experts; and second, by using all training
examples except those used by the specific confusable experts. The architecture of
this system is visualized in a flowchart in Figure 2.2.

An important variable in this architecture is the criterion for selecting the con-
fusable experts. In our experiments, the performance of the confusable experts in
terms of error rate on 10-fold cross-validation experiments on the training set de-
termines their selection. If an expert performs better on average than the generic
morphological generator on the same 10-fold cross-validation experiment, it is se-
lected.

2.4 Experimental setup

To provide training and test examples, we randomly shuffle all sentences in the
corpus, and then divide them over a 90% training corpus, and a 10% test corpus.
Our main experiment involves the disambiguation of all cases of -d vs. -dt words,
in the 10% test corpus, by the ensemble system with automatically selected con-
fusable experts. We compare the ensemble system against three simpler systems:

1. A baseline system that predicts the overall most likely outcome; this
amounts to always predicting -d;

2. A confusable expert baseline system that predicts for each confusable expert
the most likely outcome, which may deviate from the overall most likely
outcome (analogous to the “most frequent sense” baseline in word sense
disambiguation);

3. The monolithic classifiers in isolation, i.e., the ensemble system without the
confusable experts.

Putting the t where it belongs 27

..., left context,
focus, right
context, ...

is focus word
covered by a word

expert?

monolithic
classifier

yes no

word
expert 1

word
expert 2

,,,
word
expert n

create
windowed
example

d/dt
classification

classification
agrees with
focus word?

focus is assumed
to be correct

focus is assumed
to be incorrect; flag

error

yes no

Figure 2.2: Flowchart of the grammar checking process with the ensemble system of con-
fusable experts and the monolithic classifier. A potentially confused word in context, en-
coded as a windowed example, is classified by either a confusable expert or the monolithic
classifier. If the classification does not agree with the original wordform in focus, an error
is flagged.

28 Herman Stehouwer and Antal van den Bosch

While the monolithic classifier has a total of 2,646,369 cases to train on (the
number of -dt and -d tokens in the training corpus), some of the confusable experts
will have but a handful of examples. The most frequent confusable pair, word
versus wordt (become vs. becomes) is represented by 679,808 training examples.

The ensemble system (cf. Figure 2.2) offers one aforementioned experimen-
tal option that we decided to vary systematically, which is whether the monolithic
classifier retains the examples of the confusable experts or not (henceforth referred
to as the Keep and ¬Keep variants). If a confusable expert is selected in cross vali-
dation, it could be argued that the monolithic classifier does not need to be trained
on examples of the particular word pair covered by the selected confusable expert
anymore, since the monolithic classifier will not deal with that particular word pair.
On the other hand, it could be argued that the monolithic classifier should keep all
examples including those already covered by the selected confusable experts, since
they might turn out useful training examples also for other words.

Adding to the Keep versus ¬Keep variants, we expand the experiments with the
ensemble systems by three variants of using part-of-speech information, resulting
in a 2 × 3 matrix of experiments. In the first variant, language-specific part-of-
speech tags are included; in the third, unsupervised tags generated by Biemann’s
Chinese Whispers (Biemann 2007) are incorporated in the feature vector. In the
third variant, the windowed examples do not include part-of-speech information at
all (such as depicted in Figure 2.1).

To allow for fast training and testing even with millions of examples, we
used IGTree, a fast approximation of k-nearest neighbor classification (Daelemans
et al. 1997a), as the core classifier in our experiments. IGTree compresses a set of
labeled examples into a decision tree structure similar to the classic C4.5 algorithm
(Quinlan 1993), except that throughout one level in the IGTree decision tree, the
same feature is tested. Classification in IGTree is a simple procedure in which the
decision tree is traversed from the root node down, and one path is followed that
matches the actual values of the new example to be classified. If an end node is
met, the outcome stored at the end node is generated as classification. If the last
visited node is a non-ending node, but no outgoing arcs match with the next value
to be tested, the most likely outcome stored at that last visited node is produced as
the resulting classification.

IGTree is typically able to compress a large example set into a lean decision
tree with high compression factors, in reasonably short time, comparable to other
compression algorithms. More importantly, IGTree’s classification time depends
only on the number of features (O(f)). Indeed, we observe high compression
rates: trained on almost 2 million examples of the task, IGTree builds a tree con-
taining a mere 46,466 nodes, with which it can classify 17 thousand examples per
second on a current standard computing server.

2.5 Results

We evaluate the trained classifiers in several ways. First, we measure how ac-
curately our classifiers can decide between the two outcomes of the task on the

Putting the t where it belongs 29

Table 2.1: Baseline and system error rates (%) of the monolithic classifier and the ensemble
classifiers with the monolithic classifier retaining the examples of the selected confusable
experts (“Keep”) or not, under three POS tagging conditions. Boldfaced results mark the
lowest error rate.

Baseline POS tagging
error System supervised unsupervised no POS tags
34.79 Monolithic 0.83 2.07 2.34
34.79 Keep 0.89 1.65 2.00
34.79 ¬Keep 0.94 2.08 2.00

test set given a windowed local context. Second, we measure the capacity of our
systems to detect errors in manually gathered list of confusions found on the web.

2.5.1 Disambiguation Error Rates

In order to ground our results, we first establish a naive baseline based on the
majority outcome. The majority class baseline obtains an error rate of 34.79%,
corresponding with the majority class occurring with 65.21% of all test instances.
The less naive baseline (mentioned to the left of “Keep” and “¬Keep” in the same
table) consists of a majority classifier for each word pair. The obtained error rate
of this baseline is almost the same as that of the simpler baseline, however it is in-
cluded here because, as we shall show later, it performs differently on the collected
confusions.

Table 2.1 also reports the error rates achieved by the monolithic classifier in the
line denoted with Monolithic. The monolithic classifier manages to attain an error
rate of only 0.83% using supervised part-of-speech tags. This result is markedly
better than the result obtained by the baseline (34.79%). Figure 2.3 shows the
learning curve of this classifier. We can see that although classification accuracy
improvement is slowing down with more training data, it would still continue to
improve if we had more training data. The results of the monolithic classifier when
using unsupervised part-of-speech tags or no part-of-speech tags are worse than the
results with supervised part-of-speech tags (2.07% and 2.34% respectively). Still,
they outperform the baseline by a wide margin.

Table 2.1 further displays the error rates measured for all of the 2 × 3 experi-
ments, varying whether confusable expert data was kept or not (Keep vs. ¬Keep),
and varying the information on part-of-speech tags across supervised, unsuper-
vised and none. The results show that combining the monolithic classifier with
confusable experts (selected because of their superior performance over the mono-
lithic classifier on heldout data) does not seem to work in our experiments. The
best result has a slightly higher error rate than the monolithic classifier (0.89% ver-
sus 0.83%), despite the fact that it uses 61 confusable experts to arrive at this result.
It appears that the monolithic classifier has an accuracy that is hard to surpass, and

30 Herman Stehouwer and Antal van den Bosch

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 100 1000 10000 100000 1e+06 1e+07

a
c
c
u
ra

c
y

#instances

Figure 2.3: Learning curve for the monolithic classifier using the supervised POS tags as
features. We plot the # of training instances used against the accuracy achieved. The x-axis
is logarithmic.

may be close to a ceiling performance – note that it is trained on nearly 3 million
examples. Also, estimated performances on cross-validation experiments do not
provide reliable clues with respect to the performance on unseen data, apparently.

In Table 2.2 we list the top ten selected confusable experts for our best perform-
ing combination system. These top improvements concern words in the medium
to low frequencies. Some high-frequency words are also selected for the combi-
nation classifier, but these show a much more modest improvement. For example,
word versus wordt, the most frequent confusable, is selected, however with an
improvement avarage of only 0.3%.

Focusing on the usage of supervised, unsupervised, or no part-of-speech infor-
mation, we observe the following. Overall, using supervised part-of-speech tags
as features yields the lowest error rates, both for the monolithic classifiers and the
combination systems. The use of unsupervised tags is not favored by our results,
as the error rates of these variants hardly differ from those of the systems that do
not employ part-of-speech information at all.

In sum, the lowest estimated error rate is 0.83%, produced by the monolithic

Putting the t where it belongs 31

Table 2.2: The top-10 better performing confusable pairs for the combination system that
keeps the examples for the confusable experts also as training material for the monolithic
classifier. We list the word, the number of instances it has in the training set, and the
average improvement over the monolithic classifier measured through cross-validation on
the training set.

Word # of instances Improvement (%)
onderhoud(t) 7040 .4112
spoed(t) 1083 .1994
verbreed(t) 394 .1221
ophoud(t) 950 .1198
aftreed(t) 255 .1189
strand(t) 5359 .1050
vasthoud(t) 884 .1028
aanmeld(t) 163 .0963
bijhoud(t) 238 .0955
vergoed(t) 1524 .0880

Table 2.3: Baseline and system error detection accuracy (%) on manually collected errors,
by the monolithic classifiers and the Keep and ¬Keep systems, under three POS tagging
conditions. Boldfaced results mark the highest detection accuracy.

Baseline POS tagging
error System supervised unsupervised no POS tags

31 Monolithic 63 63 65
36 Keep 75 68 67
36 ¬Keep 79 63 65

classifier using supervised part-of-speech tags. This error rate appears low; yet,
the question is whether these systems are accurate enough to actually spot cases of
confusions to a reasonable degree.

2.5.2 Error Detection Capability

To obtain an estimate of the error detection capabilities of all 2 × 3 system vari-
ants, we measure their error-detection performance on confusions as they occur in
texts from the web. We gathered 525 errors, bootstrapping our search using simple
two-word queries such as “ik wordt”, indicative of possible errors. We manually
selected all genuine cases of errors from the search results, making sure that we
sampled widely across confusable words and error patterns. All sentences with er-
rors were tokenized and part-of-speech tagged, converted to windowed examples,
and processed by the 2×3 systems, as well as by the most-frequent outcome base-

32 Herman Stehouwer and Antal van den Bosch

line systems. Correct error detection occurs when the system predicts a different
outcome than actually present in the test example; if the system agrees with the
error, the system has not detected it.

Table 2.3 lists the error detection accuracies on the collected errors. Comparing
Table 2.3 to Table 2.1, one observation is that the highest error detection accuracy,
79%, is not obtained by the system with the lowest error rate. In fact, the system
that uses supervised part-of-speech information and does not keep the training data
of the confusable experts in the training data of the monolithic classifier, is the best
error detector. The utility of using unsupervised part-of-speech data is not apparent
from the results obtained. Again, we do not see evidence that unsupervised part-
of-speech information could replace supervised part-of-speech information.

Overall, we observe that our classifiers perform markedly better than the most-
frequent baselines; all systems more than double the accuracy of the baseline sys-
tem (31% for the most-frequent outcome baseline, 36% for the confusable expert
baseline). In terms of error reduction over the baseline, our best system is able to
reduce the error by 70%.

As an additional appraisal of our approach, we compared the detection capac-
ities of our classifiers against that of the grammar checker in the Dutch proofing
tools included in the commercial word processor Microsoft Word 2003. Tested on
the 525 errors, the Word grammar checker spots 88 errors, or 17%, and does not
raise an alarm with the remaining errors. Our approach, with 63%–79%, clearly
outperforms the Word grammar checker with respect to d/dt-error detection.

Yet, the 79% detection accuracy is considerably lower than the 99% accuracy
obtained on test data, attained by the best classifiers. The discrepancy between
these numbers can be explained as follows. The 99% accuracy score concerns the
disambiguation of all cases of d/dt words occurring in context in newspaper text,
most of which can be expected to be correct. Newspaper artices constitute pro-
fessionally text that tends to be proofread and checked before publication—it has
been mentioned that in texts published by the Associated Press service, 1 in 2000
words are incorrectly spelled (Church and Gale 1991). In contrast, our external
test set contains only errors, occurring in text that is mostly non-professionally
written, and often contains other grammar and spelling errors as well. Of the 525
errors in context, 79% can be detected correctly; it would seem that these 79% oc-
cur in contexts that resembles a context seen earlier in the newspaper text training
material, while there is a 21% portion of cases where the context does not provide
clues that the d/dt form in focus is actually inappropriate.

2.6 Conclusion

We presented an approach to detecting a class of confusable errors, namely those
related to choices in the writing process between two similar words which dif-
fer only in their ending. We exemplified the approach on distinguishing between
Dutch homophonic words ending in -d and their counterpart ending in -dt, the latter
typically marking a second-person or third-person present-tense verbal inflection,
such as word versus wordt (become versus becomes).

Putting the t where it belongs 33

The reasoning underlying our approach is that by training classifiers on large
amounts of confusable cases that can disambiguate between confusable alterna-
tives at high accuracy, we effectively produce grammar checking subsystems that
can pinpoint errors in text. By virtue of being very accurate, a discrepancy be-
tween the classifier and the actual confusable word as it occurs in running text,
may well signal that the word in the text is contextually inappropriate. The ques-
tion is whether we are able to train classifiers with such high accuracy (or low
error rate) that they indeed can pinpoint errors with high accuracy as well. On the
test problem we attained an error rate of under 1%. When applied to a manually
gathered list of confusable errors found on the web, the systems are able to detect
over 70% of the errors (at best 79%), markedly better than naive most-frequent
outcome baselines which only correct 35% of the errors, and also better than Mi-
crosoft Word 2003 which detected only 17% of the errors.

Our systems consist of a combination of selected confusable experts combined
with a back-off monolithic classifier. The selection of confusable experts is per-
formed automatically, based on superior performance over the monolithic classifier
in a cross-validation experiment on training data. In a 2 × 3 experimental matrix,
we varied (1) whether the monolithic classifier retains or loses the training exam-
ples of the selected confusable experts, and (2) which part-of-speech information
is used as input features: supervised, unsupervised, or no tags at all. On the tar-
get task, the detection of errors, we found that the best system was the ensemble
system composed of selected confusable experts, where the monolithic back-off
classifier did not retain the training examples of the selected confusable experts,
and supervised part-of-speech tags were used in the input feature vector. We did
not observe that using unsupervised tags be a proxy for having supervised tags;
hence, for now we have to assume that our approach assumes the presence of a
language-specific part-of-speech tagger.

To conclude the paper we discuss the novelty and generality of the approach,
and we critically review the issue of evaluation. First, the core novelty of our
approach lies in the fact that our systems use an ensemble architecture. In the
ensemble, some classifiers are confusable-specific (the confusable experts), while
one monolithic classifier generically solves the problem. Our systems are gating
systems (cf. Figure 2.2) that use the monolithic classifier as a back-off classifier
for solving those cases not covered by the selected confusable experts. Earlier
approaches either focused on the monolithic solution (Yarowsky and Wicentowski
2000) or on individual confusable expert submodules (Golding and Roth 1999).
Our results on error detection show that the monolithic approach can be improved
by adding a selection of confusable experts in the ensemble.

In sum, we believe the proposed approach to be usable in proofing tools.

2.7 Discussion

Concerning the generality of the approach, the proposed method applies to con-
fusable cases in which the writer is forced to choose among a set of paradigmatic
alternatives for derivation or inflection, and in which the alternatives have a similar

34 Herman Stehouwer and Antal van den Bosch

but discernable surface form that uniquely identifies at least one of the two alter-
natives. A word ending in -dt will almost exclusively be a present-tense singular
verb form, or a typo of a word that should end in -d. This identification enables
the knowledge-free extraction of these cases and their counterparts from large text
corpora; no annotation effort is needed.

Intrinsic to our approach is the inclusion of “leaked” examples of words with
other part-of-speech tags than just the main tag associated with the underlying
inflection, e.g. in our case, past participles and nouns ending in -d. These words
however can also be, and judging from web queries, are, frequently misspelled
with -dt at the end. These occurrences will in principle also be corrected by our
system.

Similar cases to which this method could be applied straightforwardly include
confusable sets with two or more than two outcomes, as long as they keep the
property of having marked alternative word endings of which at least one uniquely
identifies a morphological inflection or derivation. If one is marked, then the coun-
terparts can be extracted automatically as well. Some random examples that fit
the bill would be Dutch diminutive inflection -tje vs. -je, -etje, -pje, and -kje
(Daelemans et al. 1997a); English gerund/infinitive inflection -ing versus forms
without -ing; -y versus -ily, and -ation versus -ization.

A final point concerns evaluation. On the larger issue of spelling correc-
tion, it has been argued that the precision and recall of error detection and cor-
rection (which are not the same, but in our case of two-way confusable out-
comes, are conflated) constitute the best evaluation of a spelling correction system
(Reynaert 2005). A spelling error detector should not produce false hits (detect an
error when there is none) nor produce misses (fail to detect an error where there is
one). Precision and recall are the appropriate measurements for these two aspects.
However, to estimate precision and recall reliably, the test would involve process-
ing a (preferably large) corpus of free text in which all actual errors are detected
in advance. As these corpora are not available as yet, we have to downgrade our
evaluation to recall estimates such as the one presented in this paper, in which a
precompiled list of errors in context is presented to the error detector. We do not
know yet the precision of our systems, i.e., the relative amount of cases it disagrees
with a wordform in free text in which it actually flags an error correctly. Estimates
on professionally written, edited text such as the text we train our classifiers on, in-
dicate that this precision is only between 2% and 10% – but this is double-checked
text that is supposed to be devoid of errors already. If in journalistic texts only 1
in 2000 words are incorrect (Church and Gale 1991), then a 99% correct classifier
would raise about 20 alarms in a 2000-word text, while there would only be one
error in the text; the precision could in that case be 5% at best.

In general we recommend that our method be applied to text that is written
outside of professional context, such as a lot of the material on the world-wide
web (Ringlstetter et al. 2006).

Putting the t where it belongs 35

References

Banko, M. and E. Brill (2001), Scaling to very very large corpora for natural
language disambiguation, Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, Association for Computational
Linguistics, pp. 26–33.

Biemann, Christian (2007), Unsupervised and Knowledge-free Natural Language
Processing in the Structure Discovery Paradigm, PhD thesis, Leipzig Uni-
versity.

Church, Kenneth Ward and William A. Gale (1991), Probability scoring for
spelling correction, Statistics and Computing 1 (2), pp. 93–103.

Daelemans, W., A. Van den Bosch, and A. Weijters (1997a), IGTree: using trees
for compression and classification in lazy learning algorithms, Artificial
Intelligence Review 11, pp. 407–423.

Daelemans, W., P. Berck, and S. Gillis (1997b), Data mining as a method for lin-
guistic analysis: Dutch diminutives, Folia Linguistica XXXI (1–2), pp. 57–
75.

Even-Zohar, Y. and D. Roth (2000), A classification approach to word predic-
tion, Proceedings of the First North-American Conference on Computa-
tional Linguistics, ACL, New Brunswick, NJ, pp. 124–131.

Geerts, G., W. Haeseryn, J. de Rooij, and M. van der Toorn (1984), Algemene Ned-
erlandse Spraakkunst, Wolters-Noordhoff, Groningen and Wolters, Leu-
ven.

Golding, A. R. (1995), A Bayesian hybrid method for context-sensitive spelling
correction, Proceedings of the 3rd workshop on very large corpora, ACL-
95.

Golding, A.R. and D. Roth (1999), A Winnow-Based Approach to Context-
Sensitive Spelling Correction, Machine Learning 34 (1–3), pp. 107–130,
Kluwer Academic.

Huang, J. H. and D. W. Powers (2001), Large scale experiments on correction of
confused words, Australasian Computer Science Conference Proceedings,
Bond University, Queensland AU, pp. 77–82.

Mangu, L. and E. Brill (1997), Automatic rule acquisition for spelling correc-
tion, Proceedings of the International Conference on Machine Learning,
pp. 187–194.

Mooney, R. J. and M. E. Califf (1995), Induction of first-order decision lists: Re-
sults on learning the past tense of English verbs, Journal of Artificial Intel-
ligence Research 3, pp. 1–24.

Quinlan, J.R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, CA.

Reynaert, M. (2005), Text-induced spelling correction, PhD thesis, Tilburg Uni-
versity.

Ringlstetter, C., K. Schultz, and S. Mihov (2006), Orthographic errors in
web pages: Toward cleaner web corpora, Computational Linguistics 32

36 Herman Stehouwer and Antal van den Bosch

(3), pp. 295–340.
Sandra, D., F. Daems, and S. Frisson (2001), Zo helder en toch zoveel fouten!

wat leren we uit psycholinguı̈stisch onderzoek naar werkwoordfouten bij
ervaren spellers?, Tijdschrift van de Vereniging voor het Onderwijs in het
Nederlands 30 (3), pp. 3–20.

Schone, P. and D. Jurafsky (2001), Knowledge-free induction of inflectional mor-
phologies.

Van den Bosch, A. (2006), Scalable classification-based word prediction and con-
fusible correction, Traitement Automatique des Langues 46 (2), pp. 39–63.

Van den Bosch, A. and W. Daelemans (2007), Dat gebeurd mei niet: Computa-
tionele modellen voor verwarbare homofonen., Academia Press.

Wu, D., Z. Sui, and J. Zhao (1999), An information-based method for selecting fea-
ture types for word prediction, Proceedings of the Sixth European Confer-
ence on Speech Communication and Technology, EUROSPEECH’99, Bu-
dapest.

Yarowsky, D. (1994), Decision lists for lexical ambiguity resolution: application
to accent restoration in Spanish and French, Proceedings of the Annual
Meeting of the ACL, pp. 88–95.

Yarowsky, D. and R. Wicentowski (2000), Minimally supervised morphologi-
cal analysis by multimodal alignment, Proceedings of ACL-2000, Morgan
Kaufmann, San Francisco, CA, pp. 207–216.

	Putting the t where it belongs

