
A Sentence Generator for Dutch
Daniël de Kok and Gertjan van Noord

University of Groningen

Abstract

The paper presents an efficient, wide-coverage, sentence generator for Dutch, which em-
ploys the Alpino grammar and lexicon. This generator consists of a chart-based sentence
realizer that builds grammatical sentences for a given abstract dependency structure, and a
maximum-entropy fluency ranker which selects the most fluent sentence from a set of can-
didate sentences for a given dependency structure. The coverage, speed and accuracy of the
generator is evaluated on several corpora.

1 Introduction

Sentence realizers have been developed for various languages, including English
and German. While the generation algorithms used in sentence realizers are very
generic, the implementation of a realizer is quite specific to the grammar formalism
and input representation. This paper describes a sentence realizer for the wide-
coverage Alpino grammar and lexicon.

Alpino (van Noord 2006) is a parser for Dutch which includes an attribute-
value grammar inspired by HPSG, a large lexicon, and a maximum entropy dis-
ambiguation component. Dependency structures are constructed by the grammar
as the value of a dedicated attribute. These dependency structures constitute the
output of the parser. Detailed documentation of the dependency structures is given
in van Noord et al. (2010).

In generation, the grammar is used in the opposite direction: we start with a de-
pendency structure, and use the grammar to construct one or more sentences which
realize this dependency structure. In the general case, a given dependency struc-
ture can be realized by more than a single sentence. For instance, the sentence Na
de verkiezingen beklijfden de adviezen echter niet (After the elections the advises
did, however, not persist.) is mapped to a dependency structure which can also be
realized by variants such as Na de verkiezingen beklijfden de adviezen niet echter,
or echter beklijfden na de verkiezingen de adviezen niet. Therefore, a maximum
entropy fluency ranker is part of the generator. The fluency ranker selects the most
appropriate, ‘fluent’, sentence for a given dependency structure.

1.1 Dependency Structures

Various different abstract sentence representations have been proposed as input for
sentence realization algorithms, such as Minimal Recursion Semantics (Copestake

Proceedings of the 20th Meeting of Computational Linguistics in the Netherlands
Edited by: Eline Westerhout, Thomas Markus, and Paola Monachesi.
Copyright c© 2010 by the individual authors.

75

76 Daniël de Kok and Gertjan van Noord

et al. 2005) and dependency structures (Hays 1964). A useful representation con-
forms to three characteristics: the representation should be easy to process by
external applications; the representation should be abstract enough to map to in-
teresting variation in realizations; and the representation should be native to the
grammar and lexicon.

Dependency structures can be argued to conform to these three characteristics.
There is plenty previous work based on dependency structures, such as sentence
compression (De Kok 2008), machine translation (Lin 2004), and sentence fusion
(Marsi and Krahmer 2005), demonstrating its usability. Dependency structure is
also native to the Alpino grammar and lexicon.

For the sentence realizer, we use the same dependency structure as created by
the Alpino parser, except that we remove information about word order and word
inflection. Words are represented in the dependency structure by their root forms,
plus optional additional POS-tag information to select for a specific reading. The
POS-tag information is presented by attributes such as pos with values verb, noun,
. . . , and num with values sg,pl. Underspecification of such attributes in the input is
possible. For instance, leaving out the attribute for number (num) for a noun might
realize the noun in singular or plural.

2 Sentence realization

2.1 Representation of dependency structures

The attribute-value grammar underlying Alpino constructs dependency structures
by means of unification. Dependency structures are represented by attribute-value
structures. A category such as np has a special attribute dt which represents its
dependency structure.

The attribute-value structure representation includes information of the head
word of that dependency structure, as well as attributes such as su, obj1, obj2,
mod, det for each of its dependents (subject, direct object, secondary object, mod-
ifier, determiner). If there can be multiple dependents of the same type (e.g. for
modifiers), a list-valued attribute is used. A special atomic value is used to repre-
sent the lack of a dependent of a particular type. For instance, if the input does not
contain a direct object dependency, then the value of the attribute obj1 will be the
atom nil.

Consider, for example, the dependency structure in Figure 1a. The word ad-
viezen (advises, represented by the root advies) has one dependent, de (the) with
the relation det. The word beklijven (to persist) is represented by the root bek-
lijf, and takes the dependency structure associated with advies as its subject. This
dependency structure is represented by the attribute-value structure shown in Fig-
ure 1b. In this structure we only list the attributes which have a value different
from the special value nil.

Sentences are realized using a bottom-up chart generator. The generator as-
sumes that grammar rules contain the attribute-value structure of the mother node,
and a list of attribute-value structures for each of the daughter nodes. Moreover,

A Sentence Generator for Dutch 77

HD
[

LEX beklijf
]

CAT smain

SU

HD

[
LEX advies

]
CAT np

DET 〈
[

HD
[

LEX de
]]
〉

Figure 1: (a) Dependency tree and (b) attribute-value structure for De adviezen beklijven.

one of the daughters is identified as the head of the rule (typically a daughter is se-
lected as the head if its dependency structure is equal to the dependency structure
of the mother). The chart generator is described in Section 2.2.

In order that the generator constructs partial analyses that are realizing the input
dependency structure, top-down guidance is crucial. Top-down guidance requires
that every category considered during generation contains a dependency structure
which unifies with a part of the input dependency structure. Top-down guidance is
explained in more detail in Section 2.3.

During generation, partial realizations are packed in a realization forest for
efficiency. Full realizations can be extracted from the packed representation, po-
tentially using the fluency model described in Section 3 to extract only the best
possible realization(s). Packing and unpacking are described in Section 2.4 and
Section 2.5.

2.2 Chart generation

Chart generation (Shieber 1988, Kay 1996) closely resembles bottom-up chart
parsing. A bottom-up chart parser builds derivations bottom-up from the words,
chart generation also starts from the words. However, since the ordering of the
words is yet to be determined, the worst-case time complexity of chart generation
is exponential rather than cubic. This worst-case scenario is observed in practice
when we consider modifiers: if a word has k modifiers, often 2k orderings are
admitted by the grammar. Still, chart generation is a relatively efficient algorithm,
since partial analyses are constructed only once.

The algorithm schema of chart generation is simple: new edges are put on an
agenda. During every iteration, the generator processes one edge from the agenda,
and attempts to combine it with edges from the chart. This may lead to new edges.
After an edge is processed, it is removed from the agenda and placed on the chart.

An edge represents a grammar rule that is partially or fully completed. Com-
pletion here means the process of filling daughter slots. We use two types of edges:
inactive edges that have all daughters completed and active edges that have uncom-
pleted, active, daughter slots. An active edge contains the attribute-value structure

78 Daniël de Kok and Gertjan van Noord

of the mother of a rule, and the list of attribute-value structures of the active daugh-
ters of a rule. An inactive edge only contains an attribute-value structure for the
mother node.

During initialization, all relevant lexical entries are added as inactive edges to
the agenda, as well as all mother categories of rules without any daughters (epsilon
rules).

When an active edge is processed, the chart is inspected for an inactive edge
whose attribute-value structure unifies with the active daughter. Processing an
inactive edge involves the same mechanism: find an active edge on the chart such
that its active daughter unifies with the inactive edge. In addition, an inactive edge
can be used to initialize an active edge if there is a grammar rule with a head
daughter that unifies with the inactive edge.

If an edge on the agenda has been processed in all possible ways, it is removed
from the agenda and put on the chart. Generation ends when the agenda is empty.
Inactive edges with a dependency structure which equals the input dependency
structure represent successful realizations.

2.3 Top-down guidance

When chart generation is finished, we are only interested in those derivations
where the resulting dependency structure equals the input dependency structure.
The input dependency structure constitutes our top-down information. During pro-
cessing, we only need to construct edges which can be part of a derivation which
leads to this input dependency structure.

Since the Alpino grammar is highly lexicalized, top-down information can be
enforced in a very efficient manner. The dependency structure of the left hand-
side of a rule is built up by unification on the basis of the dependency structures
of each of the daughters of the right hand side, in such a way that all dependency
information in lexical items ends up as a part of the dependency structure of the
top node of the derivation tree. As a consequence, it is possible to ‘inject’ expected
dependency information in the attribute-value structure of the lexical items.

Note that this mechanism is related to Shieber’s semantic monotonicity re-
quirement (Shieber 1988), but not identical. In our case, we do assume, as in
(Shieber 1988), that the grammar exhibits the monotonicity requirement with re-
spect to dependency structure. But we exploit this requirement one step further:
the ‘semantics’ of a lexical entry is instantiated with part of the goal ‘semantics’.
As a consequence, our bottom-up algorithm is more goal-directed.

As an example, consider the dependency structure given earlier in Figure 1a.
During initialization of the chart, lexical look-up is performed with the additional
requirement that the value of dt unifies with 1b or with a sub-part of 1b. This im-
plies that only the words de, advies, adviezen and inflectional variants of the verb
beklijven are selected during lexical look-up. Moreover, the dependency struc-
ture of those lexical entries is already instantiated with parts of the dependency
structure of 1b. For instance, the lexical entry for beklijfden is given in Figure 2a.
Top-down guidance results in the entry given in figure 2b. The example is simpli-

A Sentence Generator for Dutch 79

VFORM fin

SUBJ 1

AGR pl
DT 3

CASE nom

SC 〈 1 〉
CMODS 〈〉
MODS 2

DT

HD

[
LEX beklijf
SURF beklijfden

]
SU 3

MOD 2

VFORM fin

SUBJ 1

AGR pl

DT 3

HD

[
LEX advies

]
CAT np

DET 〈
[

HD
[

LEX de
]]
〉

CASE nom

SC 〈 1 〉
CMODS 〈〉
MODS 〈〉

DT

HD

[
LEX beklijf
SURF beklijfden

]
SU 3

MOD 〈〉

Figure 2: Attribute-value structure for beklijfden before (a) and after (b) top-down guidance.

fied for expository purposes.
In Figure 2a, the attribute-value structure states that the subcat list (the attribute

SC) of the verb contains a single entry which is identical to the subject (attribute
SUBJ). The dependency structure associated with the subject is identical to the SU
of the dependency structure of the verb. In addition, the verb can take an arbitrary
amount of modifiers. The pair of attribute CMODS and MODS are used to collect
those modifiers in a derivation; CMODS contains the list of modifiers found so far,
whereas MODS represents the complete list of modifiers.

In Figure 2b, the dependency structure has been instantiated as a result of top-
down guidance. Therefore, the verb can only combine with a subject which has a
dependency structure associated with de adviezen. Moreover, the attribute value
structure indicates that there cannot be a single modifier attached to the verb, nor
any other dependents.

Top-down guidance not only prevents too many dependencies to be con-
structed, but it also enforces that all required dependencies are found. For instance,
if the input contains a dependency structure of a verb with a subject and a direct
object, then lexical look-up will typically not propose an attribute-value structure
for the intransitive reading of that verb: that attribute-value structure will have, in
the lexicon, the value nil for the attribute obj1 which will not unify with the goal.
Similarly, if the input contains a number of modifiers associated with a head, then,
typically, maximal projections of that head with fewer modifiers are also ruled out,
solving one of the problems raised in (Kay 1996).

Top-down guidance is thus achieved by instantiating each lexical entry with
part of the dependency structure of the input. In addition, Shieber’s semantic
monotonicity requirement is enforced for other edges as well. A new edge is

80 Daniël de Kok and Gertjan van Noord

constructed only in case its dependency structure is unifiable with part of the de-
pendency structure of the goal.

2.4 Packing

For input with a high complexity the generation chart can grow enormously, while
there may be many edges with the same attribute-value structure. For instance, the
use of optional punctuation does not change an attribute-value structure, while it
does introduce new edges for all allowed combinations of punctuation. Another
source of growth of the chart are lexical items that have more than one valid in-
flection.

To compress the chart, we apply packing. In packing one inactive edge can
represent multiple derivation histories with the same attribute-value structure. The
history is represented by simple items, where each item is numbered by the inactive
edge representing the item, and contains the identifier of the rule or lexical item
used to construct the edge. In the case of a rule we also include a list of pointers
to inactive edges that were used to fill the daughter slots of the rule.

For instance, the derivation history his(31,r(top_start,[23,30]))
represents one particular way the attribute-value structure of inactive edge 31 was
constructed, by completion of the top_start grammar rule using inactive edges 23
and 30. Derivation histories representing terminal nodes contain lexical informa-
tion, such as the root and the Alpino part of speech tag, rather than a list of inactive
edge pointers.

Packing is performed when an inactive edge is completed. If an inactive edge is
found on the chart with the same attribute-value structure, the history of the new in-
active edge is added to the existing inactive edge. We have also experimented with
forward-packing (where packing is applied when the new edge is subsumed by an
inactive edge on the chart) and backward-packing (where the new edge subsumes
an inactive edge on the chart). However, the benefits of both forms of packing did
not outweigh the decreased performance caused by subsumption checking.

2.5 Unpacking

After chart generation, full and partial realizations can be retrieved (unpacked)
from the packed forest. During unpacking, a derivation tree is created for these
derivations. A full realization is represented by an edge with a top category and has
a dependency structure that unifies with the target dependency structure. Deriva-
tion trees are constructed by expanding histories top-down. The algorithm for
expanding a history recursively is shown in the following Prolog fragment:

unpack(Id,AttrVal,Tree) :-
his(Id,His), unpack_his(His,AttrVal,Tree).

unpack_his(r(RuleId,Ds),LHS,tree(LHS,RuleId,Trees)) :-
grammar_rule(RuleId,LHS,RHS),
unpack_ds(Ds,RHS,Trees).

A Sentence Generator for Dutch 81

unpack_his(l(Lex),AttrVal,Tree,tree(AttrVal,Lex,[])) :-
lexical_entry(Lex,AttrVal).

unpack_ds([],[],[]).
unpack_ds([Id|IdT],[AttrVal|AttrValT],[Tree|TreeT]) :-

unpack(Id,AttrVal,Tree), unpack_ds(IdT,AttrValT,TreeT).

The unpack predicate retrieves a history with a particular identifier. The
auxiliary unpack_his predicate performs the actual unpacking. If the history
represents a non-terminal, the unpack_his predicate applies unpacking to all
daughter identifiers. The attribute-value structure of the inactive edge is then re-
constructed by retrieving the grammar rule, and completing the rule using the un-
packed daughters. If the history represents a lexical node, we retrieve the attribute-
value structure for this lexical node, and form a derivation tree leaf node.

Since multiple realizations can generally be generated for a dependency struc-
ture, there can be many realizations in the packed forest. Depending on the ap-
plication, we may want to unpack all or a specified (N) number of realizations.
We will use N-best unpacking to unpack a specific number of realizations, using a
beam that retains only the most fluent realizations for histories representing maxi-
mal projections.

3 Fluency ranking

3.1 Introduction

Often many different realizations can be generated for a given input. While all
realizations are grammatical, if the grammar is not too permissive, they often differ
greatly in fluency. For this reason, we constructed a fluency ranker to select the
most fluent realization.

3.2 Model

Different statistical models for fluency ranking have been proposed in the past,
such as n-gram language models, maximum entropy models, and support vector
machines (Velldal 2008). N-gram language models calculate the probability of a
realization purely based on words, while maximum entropy models and support
vector machines are linear classifiers that can integrate arbitrary features. Since
feature-based models can integrate more information, they perform better than
n-gram language models. As Velldal (2008) shows, maximum entropy models
perform comparably to support vector machines for fluency ranking, while having
a shorter training time. For this reason we use a maximum entropy model in our
fluency ranker.

The principle of maximum entropy models is to minimize assumptions, while
constraining the expected feature value to be equal to the feature value observed
in the training data. In its canonical form, the probability of an event (y) within
a context (x) is a log-linear combination of features (fi) and their weights (λi)

82 Daniël de Kok and Gertjan van Noord

(Berger et al. 1996), normalized over all events in that context (Z(x)):

p(y|x) =
1

Z(x)
exp

n∑
i=1

λifi (5.1)

The training process estimates optimal feature weights, given the constraints
and the principle of maximum entropy. In fluency ranking, a dependency structure
is a context, and a realization of that dependency structure is an event within that
context.

In fluency ranking, we are not interested in the probabilities of the realizations
of a given input, but in the ordering imposed by the probabilities. Since the nor-
malization is constant for every realization given an input, we can simply calculate
the linear combination of features and their values to assign a score to a realization:

score(y) =

n∑
i=1

λifi (5.2)

3.3 Features

Since a maximum entropy model ranks realizations based on feature values, we
have to settle on a set of features that can adequately describe characteristics of
fluent sentences. Features for fluency ranking can be divided in two classes: (1)
output features that describe aspects of the produced sentence, such as the fre-
quency of a word n-gram in the sentence, and (2) Construction features that de-
scribe aspects of the process that constructed the sentence, such as the frequency
of a particular rule being used to derive the sentence. Our current research does
not integrate extra-sentential features.

Features can be hand-crafted or created by applying feature templates to train-
ing or evaluation data. A feature template can be seen as a function that has a
derivation as its input and a set of features as its output. In the following two sec-
tions we describe the output and construction features that we use in our fluency
ranker.

Output features

Currently, two output features are used, that represent auxiliary distributions
(Johnson and Riezler 2000): trigram models for words and part-of-speech tags.
For example, consider the sentence de optische astronomie maakt gebruik van
zichtbaar licht (the optical astronomy makes use of visible light), and the corre-
sponding sequence of part of speech tags (determiner(de)..noun(het,sg,[])).

We can use the word trigram model to estimate Pword(de..licht) and the tag
trigram model to estimate Ptag(determiner(de)..noun(het, sg, [])). The log-
arithms of these probabilities then become the values of the ngram_word and

A Sentence Generator for Dutch 83

ngram_tag features, respectively. As shown in Table 5.1, these values are mul-
tiplied by the weights of the features that were found during training of the max-
imum entropy model. If we have no other features, the score of this realization is
then the sum of the weighted scores.

Feature Weight (λi) Value (fi) λi · fi
ngram_word 0.0158 -62.70 -0.9907
ngram_tag 0.0115 -24.05 -0.2766

Score (
∑n
i=1 λifi) -1.2673

Table 5.1: Example output feature values for the sentence de optische astronomie maakt
gebruik van zichtbaar licht (the optical astronomy makes use of visible light). Each value
multiplied by the feature weight that was found during training of the maximum entropy
model. The score of the realization is obtained by summing the weighted feature values.

Both models are trained on newspaper articles from the Twente Nieuws Cor-
pus1, consisting of 110 million words. For the part-of-speech tag trigram model
we use the Alpino part of speech tags.

The probability of unseen trigrams are estimated using linear interpolation
smoothing (Brants 2000), where unknown word probabilities are estimated with
Laplacian smoothing.

Construction features

We experimented with construction features originating from parse disambigua-
tion, as well as features specifically crafted for fluency ranking. The parse disam-
biguation features are used in the Alpino parser, and model linguistic phenomena
that indicate preferred readings. Phenomena that are modeled include: topical-
ization of (non-)NPs and subjects; the use of long-distance/local dependencies;
orderings in the middle field; identifiers of grammar rules used to build the deriva-
tion tree; and parent-daughter combinations.

Furthermore, we use some of features that were devised by Velldal (2008) for
fluency ranking. These features describe local derivation sub-trees with optional
grandparenting, including variants that contain the binned frequency and standard
deviation of the words a sub-tree dominates over.

3.4 Feature selection

Since most features are extracted automatically using feature templates, many fea-
tures are not necessary in an effective model because they occur only sporadically,
correlate strongly with other features in the model (they show the same behavior
within specific events), or have little or no correlation to the ranking.

1http://wwwhome.cs.utwente.nl/druid/TwNC/TwNC-main.html

http://wwwhome.cs.utwente.nl/druid/TwNC/TwNC-main.html

84 Daniël de Kok and Gertjan van Noord

Feature selection tries to extract S ⊂ F from a set of features F , such that
a model using S performs comparable to a model using F . This is particularly
useful if |S| � |F |, which is true in our experiments where we compress the most
effective model from 500,911 features to 2,200 features.

Frequency-based selection has often been used in the literature. In this method
features that change often within the same context are selected. However, this ap-
proach does not account for overlapping or noisy features (De Kok 2010). For this
reason, we use a maximum entropy selection method. In this selection method, a
maximum entropy model is built one feature at a time, always selecting the feature
the brings the model closest to the training data. To make this computationally
tractable, the method assumes that the weights of features that were previously
selected are not affected by the addition of a new feature. Since noisy and over-
lapping features do not contribute to the model, they are not selected.

4 Evaluation methodology and results

4.1 Sentence realizer

We evaluated the sentence realizer using the Alpino test suites and sentences from
Wikipedia. These test suites contain sentences, and their manually corrected de-
pendency structures. The test suites are used to detect regressions in the parser,
and are now used for the same purpose in generation.

To test the sentence realizer we keep track of the fraction of dependency struc-
tures for which realizations could be constructed (coverage), the number of realiza-
tions, and the time required for constructing all realizations for a given dependency
structure. Using this information, we can extract various interesting characteris-
tics, such as the coverage of the realizer, and the average generation time for a
dependency tree of a certain complexity.

We have evaluated the sentence realizer using three Alpino test suites (the so-
called g, h, and i suites). These suites where created during grammar development,
are generally of increasing complexity, and cover a wide array of lexical and gram-
matical phenomena. Additionally, we have created a new suite for the evaluation
of the sentence realizer, based on sentences of 5 to 25 tokens that were randomly
selected from the Dutch Wikipedia of August 20082. This suite was added to eval-
uate the sentence realizer and fluency ranker on real-world data. Table 5.2 shows
the coverage of the sentence realizer for these suites.

As we can see in this table, coverage is complete for the g suite, and very good
for the h and i suites. Most of the problematic dependency structures from the h
and i suites contain lexical information that could not be found in the lexicon, nor
be handled through the productive lexicon. There are also some less interesting
cases, such as empty dependency structures, derived from sentences that only con-
tain punctuation. As expected, the coverage on the Wikipedia suite is lower. In this
suite, the generator encounters more unknown roots and noise, such as equations
and English phrases.

2http://ilps.science.uva.nl/WikiXML/

http://ilps.science.uva.nl/WikiXML/

A Sentence Generator for Dutch 85

Suite Inputs ≥ 1 realization Coverage (%)
g_suite 996 996 100.0
h_suite 991 965 97.4
i_suite 271 262 96.7

Dutch Wikipedia 15398 13701 89.0

Table 5.2: Coverage of the chart generator on various test suites.

0 5 10 15 20
Lexical items

0

50

100

150

Ti
m

e
(s

)

Generation
Exponential

Figure 3: Average time for generating all realizations of dependency structures with a vary-
ing number of lexical items.

As described in Section 2.2, the worst-case time complexity of chart generation
is exponential. Figure 3 shows the average time for generating all realizations of
dependency structures with 5-22 roots, derived from the Wikipedia suite. The
figure also shows the exponential after fitting with the average times. We can see
that the amount of time required for generation grows enormously with the input
complexity, but not yet exponentially.

4.2 Fluency ranking

Generation of data

The training and evaluation data for the fluency ranker was created by parsing the
Wikipedia sentences described in Section 4.1 using the Alpino parser. The depen-
dency structure corresponding to the best parse as selected by the disambiguation
component was extracted and assumed to be the correct parse. Alpino achieves a
concept accuracy of around 90% on common Dutch Corpora (Van Noord 2007).

86 Daniël de Kok and Gertjan van Noord

Furthermore, we assume that the sentence from Wikipedia is the most fluent re-
alization of the extracted dependency structure. This assumption often does not
hold in the strict sense. If we are charitable, we can assume that a writer expresses
meaning in the most fluent manner, however this does not exclude the possibility
that there are multiple fluent realizations.

We then use the chart generator to build the sentences that realize each depen-
dency structure. The derivation trees and associated feature structures for these
realizations are compressed, and stored in a derivation tree-bank. We also assign a
quality score to each realization by comparing it to the original Wikipedia sentence
using the General Text Matcher (GTM) method (Melamed et al. 2003). Finally, we
extract the fluency features of all trees in the derivation tree-bank.

4.3 Training of the model

To assess the usefulness of various classes of features, we train fluency ranking
models with different sets of features. Each model is trained using 6786 train-
ing instances, where each training instance represents a dependency structure, and
consists of the quality score and extracted feature values for each realization of
that dependency structure. For each training instance, we randomly select 100 re-
alizations to get a representative sample of the training data. A maximum entropy
model is trained with a Gaussian prior of 0.001.

Quantitative evaluation

The fluency ranking models are evaluated by applying the rankers to 6785 test
cases, counting how often each model chooses the most fluent realization from the
set of realizations for a particular dependency structure. The realization with the
highest GTM score is considered to be the most fluent realization in the set (best
match).

Table 5.3 shows an example of this methodology. The table contains the real-
izations of a dependency structure obtained by parsing the phrase de geletterdheid
van de volledige bevolking wordt geschat op 36% (the literacy of the full popula-
tion is estimated to be 36%), along with their quality scores, and the fluency scores
assigned by the fluency ranking model. If the fluency ranker assigns the highest
score to the realization with the highest quality, it picked the most fluent sentence.
In our evaluation, we only consider dependency structures with ≥ 5 realizations
(5032 instances) to make the task difficult enough.

For the evaluation of the accuracy of fluency ranking models we apply very
mild feature selection using a low frequency cut-off, including features that change
their value within at least 4 contexts. Such a conservative selection has a negligible
impact on the accuracy of the ranker, while making evaluation faster.

We have evaluated various different models consisting of different classes of
features. In Table 5.4 we show the best match and GTM scores of the models
that we evaluated. The first model (ngram) focuses purely on output features,
integrating auxiliary distributions of the word and tag trigram models. Since this

A Sentence Generator for Dutch 87

Realization Quality (GTM) Ranker score
de geletterdheid van de volledige bevolking
wordt geschat op 36%

1.00 -1.20

de geletterdheid van de volledige bevolking
wordt op 36% geschat

0.74 -1.56

op 36% wordt de geletterdheid van de
volledige bevolking geschat

0.65 -1.66

op 36% wordt de geletterdheid geschat van
de volledige bevolking

0.51 -1.81

Table 5.3: A fluency evaluation example for a dependency structure with four realizations.
If the fluency ranker assigns the highest score to the realization that has the highest quality
score (as in this example), the ranker has picked the most fluent realization.

model is also trained using maximum entropy modeling, weights are assigned to
each auxiliary distribution.

Model Best match (%) GTM
ngram 33.35 0.6266

ngram + parse 41.41 0.6586
ngram + velldal 43.60 0.6580

all 44.69 0.6633

Table 5.4: Best match accuracies and GTM scores for fluency models incorporating n-gram,
parse disambiguation, and Velldal’s generation features. The model using a combination of
these features outperforms models that do no include one (or more) of these feature sets.

Adding parse disambiguation features (ngram + parse) or Velldal’s genera-
tion features (ngram + velldal) to the model improves performance considerably.
Here, Velldal’s features seem to have more effect, although many of the features
extracted using Velldal’s templates indirectly describe the same characteristics as
the more linguistically-motivated parse disambiguation features. Finally, combin-
ing all these feature classes gives the best model.

The best match accuracies in Table 5.4 may seem relatively low, however, these
scores should be seen as an indication of the relative performance of each model.
Since we created the training and testing data from Wikipedia sentences, there was
no manual verification that the dependency structure used was the correct reading
of the original sentence. Additionally, we only have the original sentence as an
annotation, while there is often more than one fluent sentence. For this reason, the
next section describes a qualitative evaluation.

88 Daniël de Kok and Gertjan van Noord

Qualitative evaluation

We have performed a preliminary qualitative evaluation, by manually judging the
realization that was selected by the fluency ranker with all features for 100 eval-
uation instances ourselves. To each selected realization, we assign one of three
categories: fluent; neutral (fluent with some minor deficiency, such as missing
punctuation or an harmless incorrect inflection); or non-fluent. We found that 80%
of the evaluations was fluent, 8% neutral, and 12% not-fluent.

Nearly all of the realizations in the ‘neutral’ category had a missing comma
where it would improve fluency, or an incorrect noun inflection. For efficiency, we
currently generate with the minimum amount of punctuation possible. Allowing
more punctuation could improve readability. The incorrect noun inflections were
produced by the productive lexicon.

Realizations in the ‘not-fluent’ category are more diverse, but a problem that
we often encounter is ordering in coordinations. For instance, the fluency ranker
currently has no preference for de man en zijn hond (the man and his dog) over
zijn hond en de man (his dog and the man), unless a particular case was seen in the
training data.

Feature selection

Finally, we compress the best-performing model using feature selection. To com-
press the model, we first extract the best 10,000 features according to maximum
entropy feature selection. We then create models of 100 to 10,000 features with a
step size of 100 features. After plotting the accuracies of all models, we pick the
amount of features that gives the same accuracy as the baseline model. The base-
line model uses mild feature selection (excluding features with values that change
within less than 4 contexts).

Method Features Accuracy (%)
no selection 500,911 44.83

baseline (cutoff-4) 90,521 44.69
frequency 8,900 44.12

maximum entropy 2,200 44.12

Table 5.5: Accuracies and model sizes after applying feature selection. Maximum entropy
selection compresses the model enormously, while giving a accuracy comparable to other
models.

As we can see in Table 5.5, only 2,200 features are required to make a model
that performs comparably to a model with a fixed frequency-based cut-off. This
model is tiny in comparison, and can give good insights in what features are impor-
tant for fluency ranking (De Kok 2010). We also show the results of a frequency-
based selection that picks the N most frequently changing features. This method
results in a model that is more than four times larger than applying maximum

A Sentence Generator for Dutch 89

entropy feature selection.

5 Conclusion

In this paper we have presented a sentence generator that leverages the Alpino
grammar and lexicon to provide high-coverage realization from dependency struc-
tures. The sentence realizer uses a novel approach to top-down guidance, where
information about expected and absent dependency relations is added to the depen-
dency structure of lexical items. This ensures that only the required dependencies
are present in derivations. The sentence generator also contains a fluency ranker
which attempts to select the most fluent realization for a dependency structure.

In the future, we hope to improve the performance of the generator on very
complex dependency structures. For instance, we are currently refining and ex-
perimenting with N-best extraction, for applications where only the most fluent
realization is required. Additionally, we hope to add more linguistically inspired
fluency ranking features to replace the Velldal (2008) features.

References

Berger, A.L., V.J.D. Pietra, and S.A.D. Pietra (1996), A maximum entropy
approach to natural language processing, Computational linguistics 22
(1), pp. 71, MIT Press.

Brants, T. (2000), TnT – a statistical part-of-speech tagger, Proceedings of the
Sixth Applied Natural Language Processing (ANLP-2000), Seattle, WA.

Copestake, A., D. Flickinger, C. Pollard, and I.A. Sag (2005), Minimal recur-
sion semantics: An introduction, Research on Language & Computation 3
(4), pp. 281–332, Springer.

De Kok, D. (2008), Headline generation for Dutch newspaper articles through
transformation-based learning, Master’s thesis, University of Groningen.

De Kok, D. (2010), Feature selection for fluency ranking, Proceedings of the 6th
International Natural Language Generation Conference, pp. 155–163.

Hays, D.G. (1964), Dependency theory: A formalism and some observations, Lan-
guage 40 (4), pp. 511–525, Linguistic Society of America.

Johnson, M. and S. Riezler (2000), Exploiting auxiliary distributions in stochas-
tic unification-based grammars, Proceedings of the 1st NAACL conference,
pp. 154–161.

Kay, M. (1996), Chart generation, Proceedings of the 34th annual meeting on ACL,
ACL, pp. 200–204.

Lin, D. (2004), A path-based transfer model for machine translation, Proceedings
of the 20th COLING conference, ACL, p. 625.

Marsi, E. and E. Krahmer (2005), Explorations in sentence fusion, Proceedings of
the European Workshop on Natural Language Generation, pp. 8–10.

Melamed, D., R. Green, and J. Turian (2003), Precision and recall of machine
translation, HLT-NAACL.

90 Daniël de Kok and Gertjan van Noord

Shieber, S. (1988), A uniform architecture for parsing and generation, Proceedings
of the 12th COLING conference, Budapest.

van Noord, G. (2006), At Last Parsing Is Now Operational, TALN 2006 Verbum
Ex Machina, Actes De La 13e Conference sur Le Traitement Automatique
des Langues naturelles, Leuven, pp. 20–42.

Van Noord, G. (2007), Using self-trained bilexical preferences to improve disam-
biguation accuracy, Proceedings of the 10th International Conference on
Parsing Technologies, ACL, pp. 1–10.

van Noord, G., I. Schuurman, and G. Bouma (2010), Lassy syntactische annotatie,
revision 17566.

Velldal, E. (2008), Empirical Realization Ranking, PhD thesis, University of Oslo,
Department of Informatics.

	A Sentence Generator for Dutch

