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Abstract

Transliteration is aimed at dealing with unknown words in Cross Language Information Re-
trieval (CLIR) and Machine Translation (MT). Most of the transliteration tasks depend on a
similarity estimation stage where a model is utilized with the aim of identifying a translit-
eration match for a given source word. In this paper, we evaluate the application of two
related frameworks to transliteration identification. Both frameworks model string similar-
ity as the cost incurred through a series of edit operations. One framework implements Pair
Hidden Markov Models (Pair HMMs) (Mackay and Kondrak 2005) while the other imple-
ments classes of Dynamic Bayesian Network (DBN) models (Filali and Bilmes 2005). For
each Pair HMM, we adapt different algorithms for computing transliteration similarity es-
timates. For the DBN framework, we modify the DBN classes in (Filali and Bilmes 2005)
and specify models from the classes to represent factorizations that we hypothesize could
affect the value of a transliteration similarity estimate. Separate tests applying models from
the two frameworks result in high transliteration identification accuracy on an experimen-
tal setup of Russian-English transliteration. A check on the output from models associated
with the two frameworks suggests that there can be improved transliteration identification
accuracy through a combination of models.

1 Introduction

Transliteration tasks require analyzing strings where each of the languages uses a
different writing system, for example determining the level of similarity between
a string written in English “Czeladź” and its Russian representation “Челядзь”.
The main aim of a transliteration analysis process is to determine a correct repre-
sentation of a string in a different writing system that is expected to bear a pronun-
ciation similar to that of the original source word. It is no surprise that most of the
earliest attempts at automated transliteration proposed phoneme-based approaches
(Knight and Graehl 1998, Jung et al. 2000). Recently, approaches that consider
only orthographic representations have resulted in comparable if not better ma-
chine transliteration performance than phoneme-based approaches (Li et al. 2004).
Currently, various approaches are being sought to develop automated translitera-
tion systems; the shared tasks on machine transliteration and transliteration mining
(Li et al. 2009, Kumaran et al. 2010) represent such ongoing attempts at evaluating
state of the art machine transliteration systems. In this paper, we investigate the use
of two methods in automated transliteration identification: Pair HMMs and DBNs.
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The two methods model transliteration as a cost incurred in transforming a source
word to a target word through a series of edit operations. The three edit operations
are: substitution, insertion, and deletion. Each of the methods utilizes different
algorithms for estimating the edit cost as a similarity score from the edit based
transformation of a source string to a target string. The edit cost is in turn used to
find the most likely transliteration out of a set of candidate transliterations. The
Pair HMM method specifies the edit operations as states in which we estimate pa-
rameters associated with source-target character relationsips including those with
empty symbols. The DBN framework specifies source-target string transformation
through factorizations on edit operations. The two methods have been proposed in
previous related work (Filali and Bilmes 2005, Mackay and Kondrak 2005), and
although there are comparisons when applied in the task of cognate identification
(Kondrak and Sherif 2006), the proposal to apply the methods to transliteration
tasks, also necessitates comparison. In this paper, we specify and test additional
variants of models from both frameworks and later compare their performance.
The models from both frameworks are also evaluated against those of a baseline
method of using paired trigram statistics in the given source and target language
corpora. We also check the transliterations identified from each model with the
aim of determining whether there could be benefit in combining two or more mod-
els from each framework or from both frameworks for estimating transliteration
similarity. The paper is organized as follows: section 2 describes the Pair HMM
and DBN frameworks, section 3 suggests some of the challenges associated with
using the two frameworks on data associated with different writing systems, sec-
tion 4 describes the transliteration experimental setup and discusses results from
testing different pair HMM and DBN models. Section 5 concludes the paper with
pointers to future work.

2 Models for Transliteration similarity estimation

Transliteration similarity estimation can be looked at as determining the level of
relationship between two strings in different writing systems. Different methods
can be used in the process of measuring string similarity. A common approach
that is followed in this paper uses the notion of edit distance where string similar-
ity is associated with the cost of ‘edit operations’ required to transform one string
to another string. Figure 1 illustrates the sequence of edit operations required to
transform the Russian string “пётр” to the English string “Peter” (a) and the Dutch
string “Pieter” (b). In Figure 1, the edit operations are denoted by M(Substitution),
and I(Insertion). For the case where we would have aligned a character in the Rus-
sian string to a gap in the English or Dutch string, the edit operation is denoted as a
D(Deletion). The Pair HMM and DBN methods represent this process differently,
and we distinguish between them in the following subsections.
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Figure 1: Illustration of alignment through edit operations required to transform a name
written in Russian “пётр" using the Cyrillic alphabet with corresponding English (a) and
Dutch (b) representations written using the Latin alphabet.

2.1 Edit distance based Pair HMM method

In a Pair HMM, edit operations such as those illustrated in Figure 1 are defined as
“emission” states that are used to model the relationship between source and target
language characters. The probabilistic relationship for each source language char-
acter and target language character is modeled in the substitution state (M); that
for each source language character and an empty target language symbol is mod-
eled in the deletion state (D); and that for each each target language character and
source language empty symbol is modeled in the insertion state (I). We also have
the option to represent transitions between a Pair HMM’s states in various ways.
A transition parameter represents the probabilistic value associated with moving
from one state to another or the same state for a given Pair HMM. While using
Pair HMMs, the main focus is usually on comparing the effectiveness of differ-
ent Pair HMM algorithms and determining the optimal structure of the underlying
model. Generally, to determine the optimal Pair HMM structure, we can examine
the relative contribution of three sets of parameters (Mackay and Kondrak 2005):
substitution parameters, gap parameters (insertion and deletion), and transition pa-
rameters. Because substitution parameters constitute the core of a Pair HMM,
focus is usually put on the gap and transition parameters. In this paper, we deter-
mine the effect of Pair HMM transition parameters on the task of transliteration
similarity estimation for a given language pair dataset. We have therefore speci-
fied four Pair HMM variants where we vary the size and properties of transition
parameters.

The first Pair HMM variant does not use transition parameters between each
of the edit states; it only uses transition parameters from a start state to one of the
edit states, and from one of the edit states to the End state. The second Pair HMM
variant (Figure 2(a)) uses three transition parameters (α, β, and δ), where each
transition parameter is associated with leaving one of the edit states and the start-
ing parameters are associated with the transition parameters from the substitution
state to one of the edit states. The third Pair HMM variant (Figure 2(b)) is adapted
from previous work (Mackay and Kondrak 2005, Wieling et al. 2007) where the
starting parameters are also associated with the transition parameters from the sub-
stitution state. The last Pair HMM variant (Figure 3) uses nine distinct transition
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Figure 2: (a) Pair HMM with three transition parameters (b) Pair HMM with five transition
parameters (Mackay and Kondrak 2005). Solid edges are associated with transitions to
emitting states and solid nodes are emitting states. dotted edges transit to the non-emitting
End state.

parameters between each of the Pair HMM states and the starting parameters have
similar properties as those of the two previous Pair HMM variants. Each variant is
designed to model the parameters in the insertion and deletion states distinctly.

For each Pair HMM variant, an implementation of the Pair HMM’s Baum-
Welch algorithm is used to estimate all its transition and emission parameters given
source target language training data. Four different algorithms are defined for each
Pair HMM variant and are used to compute similarity scores for source and target
language strings given the corresponding Pair HMM. The scoring algorithms are
(Mackay and Kondrak 2005): forward, Viterbi, Viterbi log odds, and forward log
odds. For a brief description of these algorithms: the forward algorithm considers
all possible alignments when determining a string similarity estimate; the Viterbi
algorithm considers the best alignment(s); and the log odds versions normalize
the base algorithm (forward or Viterbi) scores using a random model score. The
random model assumes no relationship between sequences and captures the prob-
ability of a pair of symbols co-occuring by chance.

2.2 DBN-based edit distance method

The DBN-based edit distance method uses the graphical models approach of Dy-
namic Bayesian Networks where random variables are used to represent hidden
edit operation states that are used in estimating string similarity. Generally, DBNs
are used to represent both time-series data that is generated by some causal pro-
cess and sequence (e.g. Natural Language Processing or Biological) data where
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Figure 3: Pair HMM with nine transition parameters.

we are doubtful about the generating mechanism (Murphy 2002). DBNs general-
ize HMMs by representing the hidden state as an arbitrary set of random variables
with arbitrary conditional independence assumptions (Zweig and Russell 1998).

The DBN method is implemented using the Graphical Modelling ToolKit
(GMTK) (Bilmes and Zweig 2002) that simplifies the representation and modi-
fication of various types of models including HMMs. We have various options to
vary the type of dependencies on the hidden edit operation states representing var-
ious factorizations that we postulate could affect the probabilistic similarity value
associated with a pair of strings. Most of the models that were initially specified
in (Filali and Bilmes 2005) are adapted in this paper. We start by adapting the base
DBN model that is also referred to as the Memoryless and Context Independent
(MCI) model. Figure 4 is shows the graphical templates for the start Bayesian
Network (BN), inter-slice BN, chunk BN, and end BN for the MCI DBN model.

To help understand the graphical representations of the edit distance based
DBN models, let us first review the stochastic extension of string edit distance in
(Filali and Bilmes 2005) upon which the edit distance based DBN framework was
developed. Given a source string sm1 = s1s2...sm of length m over an alphabetAs,
and a target string tn1 of length n over an alphabetAt; we can model edit operations
using a hidden random variable Z, that takes values in (As ∪ ε × At ∪ ε) \ (ε, ε)
where ε represents an empty string, and Z is perceived as a random vector with
two components (Z(s) and Z(t)). To estimate string similarity, we follow a simi-
lar approach, where we determine the joint probability P (sm1 , t

n
1 |θ) of observing

the source/target string pair (sm1 , t
n
1 ) given model parameters θ. In (Filali and

Bilmes 2005), the probability of a particular pair of strings is expressed as the sum
of the probabilities of all possible ways of generating the pair:
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Figure 4: Graphical template for the MCI DBN model. Following the common convention
for representing graphical models, shaded nodes represent observed variables, unshaded
nodes represent hidden nodes, and nodes with dots represent deterministic hidden variables.
Adapted from (Filali and Bilmes 2005).

P (sm1 , t
n
1 |θ) =

∑∑
zl1:v(zl1)=〈sm1 ,tn1 〉,max(m,n)≤l≤m+n

P (zl1, s
m
1 , t

n
1 |θ)

where v(zl1) represents the string pair generated from the sequence zl1.
For the MCI DBN model, because there is no dependence between edit oper-

ations, P (zl1, s
m
1 , t

n
1 |θ) can be factored as

∏
i P (zi, s

m
1 , t

n
1 ) where 1 < i < l and

zi = 〈z(s)
i , z

(t)
i 〉. It is also noted that although the term context independent is

used for the MCI DBN model, there is a global dependence between zi and source
target string symbols that forces zl1 to generate (sm1 , t

n
1 ).

In Figure 4, Z represents the current edit operation variable. spos and tpos
are variables representing the current position in the source and target strings re-
spectively. s and t represent the current character in the source and target strings
respectively. The sc and tc nodes are source and target consistency1 nodes. The
end node is a switching parent of Z and represents the variable that indicates when

1The sc and tc nodes have a fixed observed value 1 and the only configuration of their parents are such
that the source component of the edit operation variable Z is s or an empty symbol for sc and t or an
empty symbol for tc and that Z does not generate empty source and target symbols at the same time
(Filali and Bilmes 2005)
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we are past the end of both the source and target strings, i.e. when spos > m and
tpos > n. The send and tend nodes represent variables that ensure that we are past
the end of the source and target strings respectively.

Based on the MCI model, we have currently adapted three other DBN model
classes that were initially introduced in (Filali and Bilmes 2005). The DBN model
classes represent different dependencies on the edit operation random variables
and include: edit operation memory dependencies; source and / or target character
context dependencies; and edit operation length dependencies. We briefly point
out the main properties of these other DBN models.

Figure 5 represents the interslice network for a context independent Memory
(MEM) DBN model. The starting, chunk, and end networks for the MEM DBN
model are not included in Figure 5 since they are similar to those of the MCI
DBN model (Figure 4). In Figure 5, a variable H that can be used to implement
various dependencies with Zi is introduced. Generally, H can be stochastic or
deterministic, and its cardinality determines the amount of information that can be
“summarized” from one slice to another (Filali and Bilmes 2005). In this paper,

�
Inter-slice network 

Z 

spos 

Z 

spos 

H 

spos spos 

Figure 5: Inter-slice graphical template for the context independent Memory model.
Adapted from (Filali and Bilmes 2005).

we only test the deterministic implementation of H, where H is a simple copy of
Z, which is as well represented by the specification P (Zi|Zi−1).

Figure 6 represents the starting, inter-slice, chunk, and end networks for a Con-
text (CON) dependent DBN model, where we add edges from si, sprevi to Zi. In
the other CON DBN model that is tested, we only add an edge from si to Zi.

Figure 7 shows the graphical templates for the inter-slice and intra-slice net-
works for the MCI length DBN model. Additional variables are used to specify the
logic needed to factor in the length of the edit sequence in the final transliteration
similarity estimate. In Figure 7, incl, represents a random variable that determines
the number of allowed edit operations. The variable cnt is used to determine the
slice number and is used to trigger the random variable reql when the required
frame number is reached.
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Figure 6: Graphical template for a context dependent DBN model.

We mainly modify the DBN models considering the type of data on which they
are to be applied. For example in previous work, the DBN models were applied on
data where the source and target language used the same writing system and hence
the size and alphabets that were specified for both languages was the same. For the
transliteration task, the source and target languages use many different characters
and the total number of characters used for each writing system is not the same; we
therefore modify the DBN models to represent the different characteristics inherent
in the source-target language transliteration data.

For each DBN model, the training procedure requires and leads to the speci-
fication of various types of parameters including: a triangulated structure for the
DBN model, conditional probability tables representing the dependencies between
variables for both inter-slice and intra-slice networks for a given DBN; decision
trees; deterministic relationships; etc. A generalized Expectation Maximization
(EM) algorithm is used for each of the DBN models that are tested in this paper.
Similar to the cases in (Filali and Bilmes 2005, Kondrak and Sherif 2006), we use
only three iterations for the EM procedure to avoid over-fitting the models. We
have observed this number of EM iterations to be optimal for transliteration data
as well. To obtain similarity estimates for source target language strings, we use
GMTK’s junction tree algorithm which uses learned parameters from the EM step
and also uses transliteration data dependent parameters.
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Figure 7: Graphical template for the MCI length DBN model. Some nodes and edges
for example those associated with source and target symbols are omitted in this figure to
simplify the description of additional variables for factoring in the edit sequence length.
Adapted from (Filali and Bilmes 2005).

3 Challenges of applying edit distance based methods to transliteration

For the edit distance based methods, we specify tokens on single character basis.
To improve processing, each token takes the form of a unique whole number. For
example, if English is one of the languages and 26 characters are used in the data,
each of the characters is converted to a whole number wni, where 0 ≤ wni ≤ 25.
This kind of approach to character representation is expected not to be suitable
for all writing systems. Previous work (Filali and Bilmes 2005, Mackay and
Kondrak 2005, Kondrak and Sherif 2006, Wieling et al. 2007, Nabende et al. 2010)
suggests that tasks where languages use phonemic alphabets (for example the Latin
alphabet) usually benefit from this approach. As a preliminary test, we applied
the Pair HMM variant illustrated in Figure 3 on UTF-8 encoded Chinese-English
transliteration data from the NEWS 2009 shared task on machine transliteration,
and where Chinese is analyzed as the source language while English is the target
language. In this case the writing system used for Chinese is mostly different from
that of a phonemic alphabet and is mainly considered to be syllabic or logographic.
For the Chinese-English transliteration data, 26 characters are used for the English
part of the dataset and 370 simplified Chinese characters are used for the Chinese
part of the dataset. We mapped each of the characters to unique whole numbers
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in each of the respective languages and carried out an experimental transliteration
identification run. We trained the Pair HMM variant on 31961 matching Chinese-
English name pairs. We then tested the model on 2896 Chinese names in a held out
test set. We obtained an accuracy of 0.213 and a Mean Reciprocal Rank (MRR) of
0.327 for the forward log odds algorithm which resulted in the best performance
in this case. These preliminary results on the Chinese-English transliteration data
suggest that the edit distance based methods that are tested in this paper are not
valuable for all writing systems unless when a suitable representational approach
is used. We intend to revisit this issue as future work where we propose to apply
the Pair HMMs on a Romanized representation of the Chinese transliteration data.

4 Experiments

Two sets of experiments have been used: one set for Pair HMMs and the other for
DBN models. The main difference in the two sets of experiments is the approach
that is used to evaluate the models. A stratified 10-fold cross validation approach
is used for the Pair HMMs while a hold-out method is used for the DBN models.
The difference in testing approaches is mainly attributed to the amount of time it
takes for some of the DBN models to execute to completion on the transliteration
data-sets. The Pair HMMs are relatively faster on the same data-sets making it
easy to follow the cross-validation approach. For both sets of experiments, UTF-8
encoded Russian-English datasets associated with the 2009 shared task on Ma-
chine Transliteration are used. When comparing models from each of the edit
distance based framework, we use results from the respective sets of experiments.
However, when comparing models across the two frameworks, only the hold-out
method is used to enable evaluating more plausible DBN models.

4.1 Pair HMM Experiments

For the Pair HMMs, we split the English-Russian datasets into ten subsets that are
mutually exclusive on the test set and where the set of characters used is the same
as in the original dataset. Therefore, from a total of 7840 Russian-English translit-
eration pairs, we have 784 names in each subset as test data and the remaining data
as training data. On the Russian side of the dataset, 34 characters constitute the
alphabet while for English, 86 characters consitute the alphabet used for English.
The large size of characters for English are mainly due to the large number of di-
acritics that are used for English in this particular dataset. We leave any diacritics
in both datasets so as to maintain any associations that may exist regarding their
rendering the other language.

The Cross Validation Accuracy (CVA) of any Pair HMM algorithm that is
tested is simply calculated by averaging 10 individual accuracy measures:

CV A = 1
10

10∑
n=1

An, where An is the accuracy of a model on the nth test dataset,
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An = 1
N

N∑
i=1

1 if ∃ri,j = ci,1; 0 otherwise, where ri,j is the jth reference translit-

eration for the ith name in the test set and ci,1 is the first candidate transliteration
that is identified based on a model’s similarity estimate. N is the total number of
names in each test set.

In a manner similar to that for CVA, the Cross Validation Mean Reciprocal
Rank (CVMRR) is calculated by averaging the 10 individual MRR measures:

CVMRR = 1
10

10∑
n=1

MRRn, where MRRn is the MRR of a model on the nth

test set, MRRn = 1
N

N∑
i=1

1

R(i)
, where R(i), is the rank of the correct matching

transliteration candidate in a set of identified candidate transliterations associated
with the ith source language name in the test dataset. The values for CVA and
CVMRR range from 0 to 1 and the closer the CVA or CVMRR is to 1, the better
is a model’s transliteration identification quality.

The CVA and CVMRR results for the different Pair HMM variant algorithms
are shown in Table 7.1. The results suggest that it is important to model for Pair
HMM transition parameters. The results show that transliteration identification ac-
curacy improves when we increase the number of plausible transition parameters.
However, there is only a slight improvement in accuracy for three algorithms of
the Pair HMM variant with nine transition parameters (phmm_9_trans) compared
to that with five transition parameters (phmm_5_trans). The results also suggest
that the forward algorithm for each Pair HMM variant perform much better than
the other algorithms. These transliteration identification results are different from
those in (Mackay and Kondrak 2005) where the log odds algorithms performed
best from the cognate identification task. As we reported from our preliminary test
run on Russian-Chinese transliteration data, the results suggest that specific
language pairs influence the relative performance of the Pair HMM algorithms.

4.2 DBN Experiments

For the DBN experiments, we use the first subset of data from the Russian-English
transliteration data described in section 4.1. Excluding the division of the data into
10 subsets, the dataset is mantained as described in section 4.1. Since the hold-
out method is used, the DBN models are evaluated using Accuracy and MRR for
this particular dataset. In the next section, the results for the DBNs are presented
against those for the Pair HMMs on the same dataset.

4.3 Results from applying DBN models and best Pair HMM algorithms

The evaluation results for the DBNs against the Pair HMMs are shown in Table
7.2. Table 7.2 also shows results from a pair n-gram (in this case tri-gram) that is
used as a baseline. The pair tri-gram model uses counts based on the occurrence of
source-target trigrams. The method works in such a way that the source and target
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Pair HMM Variant Scoring Algorithm CVA CVMRR

phmm_0_trans

Forward 0.9174 0.9473
Viterbi 0.7958 0.8228
Forward log odds 0.4189 0.5064
Viterbi log odds 0.5296 0.6358

phmm_3_trans

Forward 0.9272 0.9522
Viterbi 0.9222 0.9397
Forward log odds 0.8906 0.9213
Viterbi log odds 0.8003 0.8464

phmm_5_trans

Forward 0.9806 0.9864
Viterbi 0.9302 0.9443
Forward log odds 0.9159 0.9468
Viterbi log odds 0.8343 0.8764

phmm_9_trans

Forward 0.9798 0.9858
Viterbi 0.9342 0.9477
Forward log odds 0.9208 0.9506
Viterbi log odds 0.8451 0.8853

Table 7.1: CVA and CVMRR results for the Pair HMM variant algorithms. phmm_0_trans
denotes the Pair HMM that uses no transition parameters; phmm_3_trans denotes the Pair
HMM with three transition parameters (Figure 2(a)), phmm_5_trans and phmm_9_trans de-
note Pair HMMs with five transition parameters (Figure 2(b)) and nine transition parameters
(Figure 3) respectively. The highest CVA and CVMRR values are in bold.

language strings are divided in overlapping tri-grams and the tri-grams are linked
based on their position in the string. Related tri-grams are counted and the counts
are used in estimating the similarity between two strings. In Table 7.2, we show
results for the best performing Pair HMM algorithms on this dataset for each Pair
HMM variant. phmm_0_trans, phmm_3_trans, phmm_5_trans, phmm_9_trans
are as defined in Table 7.1 above. dbn_mci represents the base MCI DBN
model (Figure 4); dbn_mci_len represents the MCI length DBN model (Figure
7); dbn_mem represents the MEM DBN model (Figure 5); dbn_con_si_si−1 rep-
resents a CON DBN model where the edit operation random variable Z depends
on the current (si) and previous (si−1) characters in the source string (Figure 6);
dbn_con_si represents a CON DBN model where Z has a contextual dependency
on the current character (si) in the source string; and dbn_con_si_len represents a
CON length DBN model that factors in the dependency of Z on the current char-
acter (si) in the source string and the length of edit operations for computing the
string similarity estimate.

Training times for the respective models are also included in the second col-
umn in Table 7.2. As shown in Table 7.2, the baseline model and Pair HMMs
take shorter times for training, and the same is true for computing transliteration
pair similarity values. Moreover, the training times for the Pair HMMs represent
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Model Training Time (mins) Accuracy MRR
baseline(pair trigram) 2.5 0.9270 0.9450
phmm_0_trans < 3 0.9209 0.9501
phmm_3_trans < 3 0.9401 0.9577
phmm_5_trans < 3 0.9834 0.9898
phmm_9_trans < 3 0.9834 0.9897
dbn_mci 146 0.9783 0.9853
dbn_mci_len 140 0.9031 0.9408
dbn_mem 34 0.8876 0.9210
dbn_con_si_si−1 49 0.9796 0.9834
dbn_con_si 22 0.9872 0.9906
dbn_con_si_len 21 0.9834 0.9887

Table 7.2: Accuracy and MRR Results from applying best Pair HMM variant algorithms
and DBN models on 784 Russian-English test name pairs.

the total time over hundreds of iterations using the Buam-Welch algorithm on the
Russian-English transliteration datasets. The DBNs on the other hand take rela-
tively longer to train for the three specified EM iterations on the same translitera-
tion dataset. It also takes longer while using DBN models in computing transliter-
ation similarity estimates over the test dataset. However, the generic nature of the
DBN framework guarantees a bigger model space for exploration, and there are
already successful attempts at improving computational efficiency using DBNs.

For the qualitative measures, most of the edit distance based models perform
better than the baseline method of pair trigrams apart from the dbn_mem and
phmm_0_trans models. The results associated with the DBN models in Table
7.2 to a large extent are similar to those that were obtained from the pronunci-
ation classification task in (Filali and Bilmes 2005). The results also show that
the DBN context dependent models perform better than other DBN models. We
also see that the context dependent DBN model (dbn_con_si) performs best over-
all although only slightly better than some of the best performing Pair HMMs
and DBN models. The DBN MCI model, surprisingly performs better than some
complex DBN models which is unlike the case in (Filali and Bilmes 2005). But
this could be becuase of the nature of the English-Russian datasets in which both
languages use a phonemic alphabet and a one to one character mapping may be
already sufficient to compare a pair of strings. The results in Table 7.2 also sug-
gest that additional information in some cases slightly lowers the transliteration
identification accuracy of the DBN models on this particular dataset: for example
attempting to factor information about the size of edit operations in a similarity es-
timate slightly lowers the model’s transliteration identification accuracy although
to an insignificant level. But this is also the case with the Pair HMMs where we
have significantly better performance with the Pair HMM base Forward and Viterbi
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algorithms as compared to the log odds algorithms that involve using additional in-
formation from a random model. The context dependent DBN models generally
perform better, underlining the need for contextual representation in transliteration
similarity estimation.

We have also looked through the transliteration identification output from some
of the models. Table 7.3 shows the case where two models: a context dependent
length DBN model and a Pair HMM forward algorithm did not provide the correct
transliteration match at the first rank. A check on the output of the Pair HMM
algorithms showed that they were failing on the same source name(s) while that
for DBNs showed that they were mostly failing on different source names. Com-
paring the output of some of the Pair HMMs and the DBNs showed that a Pair
HMM failed on many if not completely different source names when compared
with a DBN model as is the case in Table 7.3. If the two models being com-
pared were combined, the results show that the combination would have resulted
in 100% transliteration identification accuracy. This seems to suggest that combin-
ing models from the two edit distance based methods could significantly improve
transliteration identification accuracy. However, the challenge remains in deciding
on what similarity estimate to use knowing that it is not yet possible to evaluate
the two methods at the stage when they only provide a similarity estimate.

Context dependent DBN model Pair HMM(Forward algorithm)

Russian English Rank Russian English Rank

Торунь Toruń 34 Бештау Beshtau 770
Спика Spica 2 Ицпапалотль Itzpapalotl 2
Бюзум Büsum 2 Вайльтинген Weiltingen 4

Фанагория Phanagoria 5 Кураш Kurash 2
Млынары Młynary 2 Бернтайленд Burntisland 2

Биттерфельд Bitterfeld 12 Иккермюнде Ueckermünde 2
Раштатт Rastatt 2 Пролетариат Proletariat 2

Эльстерауэ Elsteraue 3 Файтсбронн Veitsbronn 2
Трапштадт Trappstadt 2 Валлетта Valletta 2
Давидсон Davidson 2 Плеоназм Pleonasm 7
Куйбышев Kuybyshev 596 Секстант Sextant 2
Эгвекинот Egvekinot 294 Радельфинген Radelfingen 4

Тепейоллотль Tepeyollotl 2 Арзамас Arzamas 2

Table 7.3: Examples of where two models associated with the two edit distance based meth-
ods lead to identification of correct transliterations at ranks other than first rank. For these
two models the table shows that they fail on completely different observation sequences and
if combined could significantly complement each other.

In Table 7.3, we also observe some level of consistency in failing to identify
strings at the first rank. For example we see that in most cases, where the Russian
soft sign “ь” appears after one of the Russian characters (for example л ‘l’), the
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correct match is in most cases returned beyond the 2nd rank.

5 Conclusion and Future Work

We have evaluated Pair HMMs and DBN models on an experimental setup of a
transliteration identification task. We have shown that in their status as reported
in this paper, models from the two frameworks lead to high transliteration iden-
tification accuracy. But also by looking at the identification results for each of
the models, we propose that designing language dependent post-processing proce-
dures after applying the edit distance based models could improve transliteration
identification accuracy. Results from applying models in both frameworks also
suggest that a combination of models would also lead to improved transliteration
identification accuracy.

As future work, based on the results, we propose an investigation into ways of
combining models from the two edit distance based methods methods for translit-
eration mining and transliteration generation. We also plan to investigate how
models from the two edit distance based methods could be applied to other writing
systems (for example Chinese) so as to result in improved transliteration identifi-
cation.
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