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Abstract

We present a phrase-based extension to memory-based machine translation. This form of
example-based machine translation employs lazy-learning classifiers to translate fragments
of the source sentence to fragments of the target sentence. Source-side fragments consist of
variable-length phrases in a local context of neighboring words, translated by the classifier
to a target-language phrase. We compare three methods of phrase extraction, and present
a new decoder that reassembles the translated fragments into one final translation. Results
show that one of the proposed phrase-extraction methods—the one used in Moses—leads
to a translation system that outperforms context-sensitive word-based approaches. The dif-
ferences, however, are small, arguably because the word-based approaches already capture
phrasal context implicitly due to their source-side and target-side context sensitivity.

1 Introduction

Memory-based machine translation (van den Bosch and Berck 2009, van den
Bosch et al. 2007, Canisius and van den Bosch 2009) (MBMT for short) is a variant
of example-based machine translation. A key characteristic of MBMT is the use of
memory-based classifiers (Daelemans et al. 1997, Daelemans et al. 2007) for the
translation step. Memory-based classifiers do not only look up stored translation
fragment pairs, but are also able to generate translations when the input does not
offer an exact match in memory. A parallel corpus serves as the training material.
All sentences in this parallel corpus are tokenised and paired up with their counter-
parts, and between the words of each sentence pair, an alignment is computed. This
alignment serves as the basis from which small source-language fragments in their
context can be extracted that are subsequently passed to a classifier for training.
Whereas prior research in MBMT composed these fragments from single words in
context (van den Bosch and Berck 2009, Canisius and van den Bosch 2009), the
approach proposed in this study takes a phrase–one or more words—as the focal
element of each fragment.

We thus start from a mapping of fragments in the source language to fragments
in the target language extracted from a training corpus. Subsequently, memory-
based learning is applied to convert these paired fragments into a memory-based
classifier (Daelemans et al. 1997). This classifier can then be used to translate new
sentences. Given a sentence to translate, we segment it into various phrase-based
fragments; for each fragment, a distribution of possible output fragment transla-
tions is predicted by the memory-based classifier. As a final step, all translations
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of these fragments are recombined by a new decoder that searches for a globally
optimal translation of the given sentence.

The study builds upon previous research on MBMT (van den Bosch and
Berck 2009, van den Bosch et al. 2007, Canisius and van den Bosch 2009). The
question addressed here is whether a phrase-based approach improves MBMT. An
extension to phrases introduces non-trivial issues; one is how to detect phrases in
a parallel training corpus. In the study described in this paper, three methods of
phrase extraction are tested and compared. Second, there is the issue of choos-
ing a representation of variable-length phrases in the fixed-length feature vector
representation assumed by memory-based classification.

In Section 2 we present our approaches to phrase-based MBMT in detail. In
Section 3 the results of a comparative series of experiments are presented and
discussed. We formulate our conclusions and starting points for future research in
Section 4. The system presented in this paper is available as open source software
from http://ilk.uvt.nl/mbmt/pbmbmt.

2 Phrase-based memory-based machine translation

An MBMT system divides into a training subsystem, producing a translation model,
and a translation subsystem. Figure 1 illustrates the setup of the system. A parallel
corpus is used for phrase extraction and example generation, i.e. the generation of
translations of source fragments to target fragments. These fragments, with as their
main constituent an aligned pair of phrases, are stored into a compressed tree struc-
ture during the training phase, this in order to facilitate fast retrieval, but as a side
effect memory needs are minimized as well. In testing, unseen source-language
sentences in a test corpus are also divided into fragments, which the memory-
based classifier maps onto a distribution of target-language fragment translations.
A decoder then reassembles all translated fragments together into one sentence,
searching through and choosing among alternative solutions.

2.1 Example generation

We assume a word alignment between all sentence pairs in the parallel corpus.
Figure 2 (left) illustrates such a word-aligned sentence pair, serving as an exam-
ple throughout this section. On the basis of this, we create example fragment
translations that serve as training examples. On the input side, an example con-
sists of a feature vector representing a source-language fragment; on the output
side, the example is labeled with a class, representing a fragment of the target
sentence aligning to the source fragment. In prior research (van den Bosch and
Berck 2009, Canisius and van den Bosch 2009), the feature vector consisted of
one focus word, one context word to the left, and one context word to the right;
the class was composed of the target-language word aligned to the focus word,
and again one context word to the left, and one to the right. Suppose we translate
French to English and look at the word est in Figure 2 (left), then the feature vector
would be (inconnu, est, condamné), and the class would be (man,is,wrongly). Note that
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Figure 1: Setup of the phrase-based memory-based machine translation system. The left-
hand side corresponds to the training phase; the right-hand side corresponds to the testing
phase. Rounded nodes denote data, and square nodes denote processes that manipulate the
data.

the class is considered by the classifier as an atomic symbol, but it is decomposed
later into its constituents by the decoder. By moving a sliding window over the
source sentence, fragments can be generated for all words save for zero-fertility
words.

The phrase-based approach we present here is similar. Examples are composed
as follows: The feature vector consists of a phrase from the source sentence, with
one context word on the left side, and one context word on the right side. The class
consists of the target-language phrase that aligns to the source-language phrase,
and can optionally also take left and right context words. However, in our study,
as detailed below, we found that taking no target-side context produced markedly
better results. In representing the source-language side of the example as a feature
vector, the variable-width focus phrase can be coded into multiple features. Since
phrases can be of arbitrary length and the classifier expects a feature vector of fixed
size, this poses a problem. Section 2.3 addresses this issue further.

Suppose that the alignment links the source-language phrase “l’homme in-
connu” to the target-language phrase “the unknown man” in the target language.
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Figure 2: Left: A word alignment between a French and English sentence, Right: A phrase-based
training example in context

Figure 2 (right) illustrates the phrase-based training example generated for this
aligned pair of phrases.

2.2 Phrase extraction

A first task in this study is how to determine phrases in the source- and target-
language sentences in the parallel corpus available for training. One solution is
to employ the same type of method as used in phrase-based statistical machine
translation, making use of a phrase-translation table (Koehn 2004). Such a ta-
ble lists aligned phrases in both source and target language, assigning conditional
probabilities to each. These aligned phrase pairs are computed statistically over
the entire parallel corpus by taking the intersection of source-to-target and target-
to-source word alignments (Koehn 2004), and this can subsequently be extended
by using an algorithm that incrementally adds certain points from the union of the
two alignments (Och and Ney 2003). We use the implementation in Moses (Koehn
et al. 2007) to this end.

In addition to this first method, we include two other approaches to phrase
extraction for comparison. The second method of phrase extraction, henceforth
named the phrase-list approach, is a straightforward method that extracts frequent
n-grams only from the source-language side of the training corpus, and stores this
in what we call a phrase list. The approach needs a frequency threshold above
which an n-gram is included in the phrase list. After exploratory experimentation
on test material this threshold was set at 25, but more extensive optimisation can be
conducted. Unlike in the phrase-table method, the aligned counterpart of a source-
side phrase is computed on the fly. Each source sentence is matched against the
phrase list, and whenever a phrase is found, we follow the word-alignments from
the phrase and assume that the sequence of words it points to is the aligned target
phrase, possibly with intervening fertility words.

Using phrases from either a phrase-translation table or phrase-list, we can never
expect to obtain full coverage of test sentences. To decrease problems of low
coverage and data sparsity, we defined a phrase to consist of one or more words.
In addition to phrase extraction, we always generate word-based fragments using
the same word-oriented approach as used in prior research. This makes the phrase-
based approach an extension of the word-based approach. Given the same parallel
corpus and input sentences, the training and test examples in phrase-based MBMT
are a superset of those in word-based MBMT.

Due to the phrase-based character of our approach, a word in the source sen-
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tence can be part of the focus of a feature vector multiple times. A single word
always generates its word-based example, but there may also be one or more ex-
tracted phrases that the word is a part of. This occurs in both training and test
examples. The latter has an important side effect that has an impact on the decod-
ing process we describe below: if there are multiple examples covering the same
words, then there will be multiple possible fragmentations of the input sentence
(see also Figure 4).

The third phrase-extraction method is marker-based chunking, which segments
a sentence into non-overlapping chunks, splitting whenever so-called marker
words occur. Marker words are typically defined as closed-class function words,
and overlap significantly with the most frequent words in most corpora. Marker-
based chunks are generated whenever a new marker word occurs at the beginning
of the sentence or after a non-marker (or content) word. Thus, each chunk contains
at least one non-marker word. When generating training instances, both the source
sentence and the target sentence are chunked independently. Figure 3 shows an
example of marker-based chunking, in which arrows point at the markers, each
at the head of a chunk. The idea behind marker-based chunking is rooted in the
Marker Hypothesis (Green 1979), an idea from psycholinguistics that posits that
all languages are marked for surface syntax by a specific closed set of lexemes
or morphemes (van den Bosch et al. 2007). Marker-based chunking is a phrase
extraction strategy that differs from the previous two in the sense that it does not
use word n-gram statistics. It has already been employed in a previous study of
MBMT (van den Bosch et al. 2007), inspired in turn by its earlier application in
EBMT (Gough and Way 2004, Way and Gough 2005).

Figure 3: Example of marker-based chunking.

The next step is to align the marker-based chunks in the source and target sen-
tences, on the basis of the word alignments already at our disposal. This procedure,
described in (van den Bosch et al. 2007), aims to find the target chunk that has the
highest probability of being aligned to the source chunk. We effectively estimate
P (Ct|Cs) for each source chunk—where Cs is a chunk in the source sentence and
Ct a chunk in the target sentence—and align the source chunk with the most prob-
able target chunk. For accurate results the alignment needs to be performed in the
other direction as well, estimating P (Cs|Ct) and aligning each target chunk with
the most probable source chunk. The intersection of both alignments is then taken
as the resulting most likely chunk alignment.
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2.3 Representing phrase-based examples

If we encode the focus phrase of the feature vector in terms of its words and their
position in the phrase, we end up with feature vectors of different sizes. However,
the memory-based classifier demands a fixed number of features in order to com-
pute its similarity function. There are at least three ways to resolve this problem.
First, we can consider the entire phrase as one atomic feature. Second, we can
reserve a fixed number n of features, and fill those with position-specific words
(such as the final word, the prefinal word, etc.), assigning dummy values to unused
feature slots. Third, we can assign separate classifiers to different phrase lengths,
assigning examples with a particular phrase-length to a separate classifier trained
only on examples of this length. In this setup a master process assigns examples to
different classifiers and reassembles their output again for the decoder. All three
methods of representation have been tried in our research.

2.4 Decoding

Due to the overlapping nature of extractable phrases, and the fact that we may end
up with multiple examples covering the same words in the source sentence, we
can speak of various possible fragmentations of the source sentence S. We define
a fragmentation to be a chain in which the fragments are non-overlapping; each
fragment covers a certain range of consecutive words of arbitrary length n in the
source sentence S, where 1 ≤ n ≤ |S|. In addition each fragment is associated
with a left context and right context of a length predetermined during example
generation. Figure 4 shows three example fragmentations.

Each test example is mapped by the classifier to a distribution of classes, which
are the various target-side translations for the fragment with an associated proba-
bility score. This probability score is derived from the class distributions produced
by the memory-based classifiers by normalizing the class votes. From the perspec-
tive of the decoder, the target-side translations with probability scores are referred
to as hypothesis fragments. Thus, each source-side fragment will be associated
with a collection of one or more hypothesis fragments. Figure 4 illustrates the re-
lation between the fragmentation of a sample sentence, the source-side fragments
that are extracted from it, and the target-side hypothesis fragments generated from
the source-side fragments.

Having gathered all matching fragments for a given source sentence, the task
is to search for “good” fragmentations, leading to the most likely translation. The
number of fragmentations tends to increase exponentially in the length of the
source sentence. Although we do classify all of them with the memory-based
classifier, it is infeasible to subsequently search in the space of all possible rear-
rangements in complete output sentences. Therefore, a local beam search is used
to select a number of good fragmentations. The beam size is rather arbitrarily fixed
at 20, so at most 20 fragmentations will be returned. The beam search incremen-
tally adds fragments, maximising a score function that sums the normalized scores
of the most likely hypothesis fragments predicted for each source-side fragment
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Figure 4: Fragmentations of the sample Dutch input sentence “Het boek ligt op de tafel” (The book is
on the table). The third fragmentation is expanded to list the target-side hypothesis fragments associated
with each of the three source-side fragments the fragmentation is composed of. Context information is
printed in small text.

in the current fragmentation. Only fragmentations covering the full sentence are
considered as possible solutions.

The fragmentation search described above returns a maximum of 20 fragmen-
tations. For each of these fragmentations of the source sentence, the sentence-
global decoding procedure is started. This procedure employs another local beam
search to search among alternative translation hypotheses for the given fragmenta-
tion. There are thus two search processes going on; one for good fragmentations,
and one to search translation hypotheses for each good fragmentation. This makes
the phrase-based approach computationally more expensive compared to the word-
based approach, as the latter only has one fragmentation of the source sentence.

The actual decoding procedure starts by generating an initial hypothesis: a
translation hypothesis in which we simply select for each fragment in the frag-
mentation the hypothesis fragment with the highest translation probability. We
order the hypothesis fragments for the initial hypothesis in the order we find the
fragments in the source-sentence fragmentation. The initial hypothesis in Figure 4
thus is “The book is on the table”. In this example, the initial hypothesis already
happens to generate the best translation, but in most cases there is more searching
to do. A hypothesis can be modified in two main ways: (1) the order in which
the hypothesis fragments are assembled can be changed, and (2) the choice of hy-
pothesis fragments can be changed, i.e. other hypothesis fragments with an equal
or lower translation probability could be tried. To this end, the decoder applies
two operations to the initial hypothesis. Each yields new hypotheses, and the best,
limited by a beam, are selected. To these hypotheses the operators are applied
again. This procedure repeats itself until no better scoring hypotheses can be gen-
erated. The first operator is substitution. It generates new hypotheses in which
a hypothesis fragment of a particular fragment is substituted by another hypothe-
sis fragment from the list. This is done exhaustively within the list of hypothesis
fragments (bounded by the first beam search). For each fragment, substitutions are
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made using all hypothesis fragments that have not undergone a substitution oper-
ation in a previous decoding round. The second operator is the swap operation,
in which we swap the location of two hypothesis fragments. This again is done in
an exhaustive fashion such that all possible swaps are made. Each fragment swaps
places with all neighboring fragments that are within a certain maximum swap
distance, each swap yielding a new hypothesis. An extra parameter specifies the
maximum range over which a swap can occur; we set this at two, but exploratory
optimisation showed changing this value had little to no effect, the reason is still
unknown and is a topic that will be addresses in future research.

In sum, the core decode process, implemented as a local beam search, is called
with the initial hypothesis, and then computes all possible substitutions and all
possible swaps, resulting in a high number of new hypotheses. This constitutes an
informed search problem that seeks to maximise the score of the solution hypothe-
ses. The k best hypotheses are selected, k being the width of the beam, with the
constraint that they must be better than the current hypothesis. For each of these
k hypotheses the procedure is again repeated, calculating all possible substitutions
and swaps, until the point that no better hypotheses can be found. The algorithm
can be formalised as in Algorithm 1:

Algorithm 1 Core-Decoder
Require: A set Xcurrent containing hypotheses, initially called with only the ini-

tial hypothesis as element, and a beam width k.
Ensure: The list containing the k best hypotheses found

1: Xnext ⇐ ∅
2: for all Hcurrent ∈ Xcurrent do
3: for all Hnext ∈ Substitutions(Hcurrent) ∪ Swaps(Hcurrent) do
4: if Score(Hnext) > Score(Hcurrent) then
5: Xnext ⇐ Xnext ∪ {Hcurrent})
6: end if
7: end for
8: end for
9: if Xnext == ∅ then

10: return Xcurrent

11: else
12: Xnext ⇐ Best k hypotheses in Xnext

13: return CoreDecoder(Xnext, k)
14: end if

The success of the decoding algorithm depends on the sentence-level score
function it maximises. For each hypothesis, a score is computed that expresses
the quality of the hypothesis. A good translation should preferably maximise both
fidelity and fluency. Quantified estimators for these two components are present
in the decoder developed for the present study. A quantification of fluency is pro-
vided by a trigram-based statistical language model with back-off smoothing and
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Good-Turing smoothing on the target language (Stolcke 2002), while fidelity is
expressed by the normalized pseudo-probabilities generated by the memory-based
translation model. More precisely, the score function for a hypothesis H is made
up of the product of the translation probability and the distortion score of the given
hypothesis, as shown in Equation 3.1:

TranslationModel(H) = ClassifierScore(H) ·DistScore(H) (3.1)

ClassifierScore(H) =

|H|∏
i=1

P (classificationweight
i ) (3.2)

DistScore(H) =

|H|∏
i=1

distortion_constantdistance(hfragmenti,hfragmenti−1) (3.3)

The sentence-level score ClassifierScore(H) (Equation 3.2) is the product of
the translation probabilities of all selected hypothesis fragments that make up the
hypothesis. Recall that these translation probabilities are derived from the classi-
fier output, which predicted a distribution of hypotheses fragments as illustrated in
Figure 4. The translation probabilities can be given an extra weight parameter by
raising them to a certain power.

In addition, a distortion score DistScore(H) (Equation 3.3) is computed by
raising a distortion constant to the power of a measure of distance between two
fragments in the original source sentence. The distortion score thus penalises the
reordering of fragments; the greater the distance over which an hypothesis frag-
ment is relocated, the lower the distortion score will be. The distortion constant
itself is a value between 0 and 1, where the former disallows any reordering of the
hypothesis fragments, and the latter does not impose any restrictions at all. This
is an admittedly crude factor that may fit the language pair, but will tend to favor
ungrammatical and undistorted target sequences over grammatical but reordered
target sequences.

One straightforward manner in which to select the final translation would be
to select the hypothesis that has the highest score. Yet, this foregoes the fact that
among the solutions considered by the decoder, there may be hypotheses represent-
ing the same output sentence, even though they are composed of different hypoth-
esis fragments. In the final solution search algorithm we therefore take the sum of
the scores of all hypotheses that produce the same output sequence of words in the
target language across all of the hypotheses considered.

The last remaining step is to select the target-language sentence for which the
sum of the scores of the hypotheses that generated this sentence is maximal. This
is the translation generated by the system.

3 Results

Experiments were performed on two parallel corpora, in which we focused only
on Dutch to English translation. The first is OpenSubtitles (Tiedemann and
Nygaard 2004) consisting of user-contributed subtitles for movies. We generated
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a training set split consisting of 286, 160 sentence pairs. The second corpus is
EMEA (Tiedemann and Nygaard 2004), a medical and largely formulaic text cor-
pus from which we split a training set of 871, 180 sentence pairs. From both
corpora we also extracted non-overlapping development and test sets of 1, 000
sentences each.

Several exploratory parameter optimisation experiments were carried out on
development data in order to assess the effect of the decoder and some of the pa-
rameters. One outcome of these explorations is that omitting target-side context,
as used in prior research where target-side fragments constituted trigrams of words
(van den Bosch and Berck 2009, Canisius and van den Bosch 2009), greatly im-
proves results. In an experiment on the OpenSubtitles corpus, the BLEU score on
development data increased from 0.1211 with target-side context to 0.2184 when
target-side context is removed and only target-side phrases are predicted. We at-
tribute this effect mainly to the increase in sparsity of classes when adding context,
adding to the sparsity of the phrases themselves.

The main question addressed in this study is whether a phrase-based approach
to MBMT (PBMBMT) improves upon the previous word-based approaches (MBMT
(van den Bosch and Berck 2009), CSIMT (Canisius and van den Bosch 2009)). In
both these methods, the feature vector as well as the class consist of a trigram: one
focus word, one left-context word, and one right-context word. CSIMT employs
a decoder based on Constraint Satisfaction Inference, and searches through the
space of possible target-level translations on the basis of a hill-climbing search
(Germann 2003). As our decoder performs a similar search, we compare against
this variant. For completeness, we also compare to the MBMT variant described in
(van den Bosch and Berck 2009) that maps source trigrams to output trigrams, and
uses a decoder that is purely based on target trigram overlap. This overlap-based
decoder was introduced in (van den Bosch et al. 2007), where it was shown to
outperform a marker-based variant of MBMT.

Other subquestions addressed in this study are: How do the three phrase-
extraction methods perform and compare? What example format is best? Indi-
cations for answering these questions can be found in Table 3.1. Note that in
this table we also list results produced by the PBMBMT decoder when run without
using any phrase-extraction method (named wb-PBMBMT), making it operate on
a word-based level similar to word-oriented CSIMT, with the notable difference
that target-side context is excluded in all PBMBMT experiments. This word-based
system offers a baseline for assessing the effectiveness of the phrase-extraction
methods, and it can be compared to the word-based decoders reported in earlier
work (van den Bosch and Berck 2009, Canisius and van den Bosch 2009).

With respect to the three phrase extraction methods, the Moses (Koehn
et al. 2007) phrase-table method performs best overall. The other two methods,
especially marker-based chunking, perform below the word-based PBMBMT base-
line. This may be attributed to the fact that the phrase-translation table is computed
using the two-way alignment statistics of the parallel corpus, whilst the other two
methods only rely on source-side statistics, and the aligned counterparts of the
phrases are sought in an ad-hoc and per-sentence fashion. The two predecessor
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OpenSubtitles
Extraction Single/multi Translation performance metrics

Decoder Method classifier BLEU NIST METEOR WER PER
MBMT - - 0.1631 4.243 0.3835 68.39 61.33
CSIMT - - 0.2002 4.750 0.4431 68.42 55.18
wb-PBMBMT - - 0.2163 5.136 0.4644 55.23 48.22
PBMBMT phrase table single 0.2300 5.055 0.4623 54.47 49.18
PBMBMT phrase table multi 0.2256 5.004 0.4583 55.28 49.74
PBMBMT phrase table atomic 0.1142 3.026 0.3201 72.81 68.28
PBMBMT phrase list single 0.2190 4.980 0.4543 54.09 48.77
PBMBMT phrase list multi 0.2184 4.975 0.4529 54.09 48.79
PBMBMT marker-based single 0.1003 2.935 0.3057 76.79 71.16
PBMBMT marker-based multi 0.1394 3.360 0.3437 66.40 62.38

EMEA
Extraction Single/multi Translation performance metrics

Decoder method classifier BLEU NIST METEOR WER PER
MBMT - - 0.2533 5.115 0.4801 72.78 63.66
CSIMT - - 0.3013 5.938 0.5333 63.00 50.85
wb-PBMBMT - - 0.2715 5.600 0.5381 65.99 57.25
PBMBMT phrase table single 0.3075 6.011 0.5455 59.00 52.02
PBMBMT phrase table multi 0.3078 6.019 0.5449 58.76 51.63
PBMBMT phrase list single 0.2440 5.352 0.4946 62.74 56.67
PBMBMT phrase list multi 0.2440 5.378 0.4967 62.82 56.86
PBMBMT marker-based multi 0.2370 4.612 0.4513 74.37 66.78

Table 3.1: Main results on the OpenSubtitles and EMEA corpora, Dutch to English. Selected pa-
rameters were a distortion constant of 0.25, a translation weight of 3, and a maximum swap distance
of 5, and a beam width of 1. Note however that in later experiments, slightly higher results have been
reported with a beam width of five.

systems, MBMT (van den Bosch and Berck 2009) and CSIMT (Canisius and van
den Bosch 2009), are both outperformed by the Moses phrase-table method, and
as reported earlier in (Canisius and van den Bosch 2009), the CSIMT method in turn
tends to outperform the MBMT method with the trigram overlap-based decoder on
all metrics. On the EMEA corpus, CSIMT outperforms the word-based PBMBMT,
and performs relatively close to PBMBMT with the Moses phrase-table approach.

We thus observe that the advantage of phrase-based MBMT compared to ear-
lier word-oriented approaches, including the closest comparable system, the word-
based PBMBMT baseline (wb-PBMBMT in the table) that restricts itself to words
and uses the same decoder as PBMBMT, turns out to be limited. This is a surpris-
ing outcome. We may posit that sparsity plays a role here; phrases are by definition
less prevalent than single words. The omission of context in classes (in contrast
to CSIMT, which maps to trigrams of words) attempts to compensate for this to
a certain extent. Another reason for the lack of a clear difference between word-
based and phrase-based MBMT may be sought in the fact that even in word-oriented
CSIMT there is already a significant but implicit presence of phrasal context. Es-
sentially we are comparing phrasal context inherent to the phrases themselves in
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PBMBMT, against phrasal context implicit in the input and output word trigrams in
CSIMT. Often, and most clearly with phrases of three words, the two approaches
are mapping about the same input to the same output. The limited gain of the
phrase-based approach may stem from the added value of the fact that PBMBMT is
not restricted to trigrams, and can vary between whatever is the strongest n-gram,
including unigrams. We found that in an experiment on the OpenSubtitles corpus,
using the phrase-table method and multi-classifier format, on average 78% of the
hypothesis fragments of the predicted translations is in fact a unigram.

Concerning the example format, reserving space for a fixed number of position-
specific features (i.e. words) in a single classifier versus distributing different
phrase-lengths over multiple classifiers perform more or less on a par. A third
format, in which we took a phrase to be an atomic entity, rather than splitting the
word over different features, proves to be a poor method of representation, as it
yields significantly lower scores (see the entry marked “atomic” in Table 3.1).

In addition to these comparisons, we compared the phrase-based memory-
based machine translation approach to state-of-the-art machine translation ap-
proaches. Table 3.2 compares PBMBMT with three other systems. The first two,
Moses (Koehn et al. 2007) and Google Translate1, are phrase-based statistical ma-
chine translation systems, while Systran is a largely rule-based system. Phrase-
based memory-based translation does not approach the performance of the statis-
tical systems. On the other hand, PBMBMT outperforms Systran on all metrics.

No Corpus System BLEU NIST METEOR WER PER
1 OpenSub Moses 0.3289 5.903 0.5408 53.29 46.96
2 OpenSub Google 0.3056 5.790 0.5224 50.1 45.08
3 OpenSub PBMBMT 0.2300 5.055 0.4623 54.47 49.18
4 OpenSub Systran 0.1749 4.583 0.4500 60.77 54.61
1 EMEA Moses 0.4701 7.059 0.6501 46.55 39.36
2 EMEA Google 0.3918 6.377 0.5830 57.57 50.44
3 EMEA PBMBMT 0.3075 6.011 0.5455 59.00 52.02
4 EMEA Systran 0.2895 5.472 0.5366 63.24 55.14

Table 3.2: A comparison with state-of-the-art systems

We do not yet have a clear insight into why exactly PBMBMT underperforms
in relation to state-of-the-art Phrase-based Statical Machine Translation systems
such as as Moses. One cause may be the extensive usage of minimal error training
(MERT) on development material, for hyperparameter tuning in Moses, which we
have not explored.

1http://translate.google.com

http://translate.google.com
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4 Conclusions and future research

The study described in this paper has demonstrated how memory-based machine
translation can be extended from translating fixed-length word trigrams to translat-
ing phrases of arbitrary length. We compared three methods of phrase extraction,
of which the Moses phrase-translation table approach emerges as the best solution,
in fact the only solution scoring above baseline.

Prior research in MBMT such as the recent CSIMT approach (Canisius and van
den Bosch 2009) relied partly on target-side context, making use of the overlap
between predicted target-side hypothesis fragments (word trigrams) in decoding.
The current study shows that ignoring target-side context produces significantly
better results in a phrase-based approach, and even performs well in a word-based
mode. This can be credited to the decrease in sparsity in the output class space.
Moreover, removing this context can be justified by the fact that context becomes
less relevant in phrase-based approaches, as target-side phrases capture enough
internal context themselves.

Nevertheless, the impact of phrases in comparison to word-based MBMT has
been shown to be limited. A potential explanation for this limited effect is that
earlier word-based MBMT approaches can be seen as implicitly phrase-based al-
ready. The approach followed in (van den Bosch and Berck 2009, Canisius and
van den Bosch 2009) maps trigrams of source-side words to trigrams of target-
side words, implicitly capturing all phrases up to length three. In this perspective,
our current approach changes this only slightly by turning the source-side trigrams
into variable-width phrases surrounded by their left and right neighboring words,
and predicting variable-width target-side phrases, including single words. In one
of our experiments, we found that 78% of fragments in the predicted translation,
consists of such single words.

With respect to decoding, we observed in preliminary experiments that starting
with an initial hypothesis that follows the order of the source-side fragments as a
starting point is a better heuristic than starting with an empty hypothesis and in-
crementally adding hypothesis fragments. Moreover, subsequently applying sub-
stitution and swap operations appears a viable strategy for improving upon this
initial hypothesis, even though the resulting gain is modest. Phrase-based decod-
ing differs from word-based decoding in that it needs to take into consideration
alternative fragmentations of the input sentence. A strategy has been employed
that starts the decoding process with a beam-constrained number of best fragmen-
tations (where goodness is estimated from the pseudo-probabilities generated by
the memory-based classifier), and in the end combines the results to select the
highest scoring candidate. There are thus essentially two inter-dependent search
problems to be solved. Despite the fact that this increases the complexity of de-
coding, the strategy of applying substitutions and swaps in a hill-climbing search
until convergence, results in performing the decoding task in a limited time-span.

Besides hyperparameter optimisation of both the memory-based classifier and
the decoder through minimal error training, other options for future research are
testing the system on different, more distantly related, language pairs, and the in-
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clusion of richer (e.g. linguistic) features such as part-of-speech tags and lemmas.
We believe that considerable improvement can be obtained by improving the de-
coder. In future work it could be extended with more operations, such as a delete
operation powered by a null model; moreover, an alternative should be sought for
its current crude distortion factor. The findings with regard to omission of target-
side context could be tested and incorporated into the strategy proposed in CSIMT
(Canisius and van den Bosch 2009).

Acknowledgement

This research was funded by NWO, the Netherlands Organisation for Scientific
Research, as part of the Vici project “Implicit Linguistics”.

References

Canisius, S. and A. van den Bosch (2009), A constraint satisfaction approach to
machine translation, Proceedings of the 13th Annual Conference of the Eu-
ropean Association for Machine Translation (EAMT-2009), pp. 182–189.

Daelemans, W., A. van den Bosch, and T. Weijters (1997), Igtree: Using
trees for compression and classification in lazy learning algorithms.,
Artificial Intelligence Review 11 (1-5), pp. 407–423. http://dblp.uni-
trier.de/db/journals/air/air11.html#DaelemansBW97.

Daelemans, W., J. Zavrel, K. van der Sloot, and A. van den Bosch (2007), Timbl:
Tilburg memory based learner, version 6.1, reference guide, Technical Re-
port ILK-07-07, Tilburg University, Tilburg, The Netherlands.

Germann, U. (2003), Greedy decoding for statistical machine translation in al-
most linear time, NAACL ’03: Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics
on Human Language Technology, Association for Computational Linguis-
tics, Morristown, NJ, USA, pp. 1–8.

Gough, N. and A. Way (2004), Robust large-scale EBMT with marker-based
segmentation, Proceedings of the Tenth Conference on Theoretical and
Methodological Issues in Machine Translation (TMI 2004), Baltimore,
Maryland, pp. 95–104.

Green, T. (1979), The necessity of syntax markers. two experiments with artificial
languages, Journal of Verbal Learning and Behavior 18, pp. 481–496.

Koehn, P. (2004), Pharaoh: A beam search decoder for phrase-based statistical
machine translation models., in Frederking, R.E. and K. Taylor, editors,
Proceedings of the American Machine Translation Association, Vol. 3265
of Lecture Notes in Computer Science, Springer, pp. 115–124.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,
B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst (2007), Moses: Open source toolkit for statistical machine
translation., ACL, The Association for Computer Linguistics.



Extending Memory-Based Machine Translation to Phrases 57

Och, F.J. and H. Ney (2003), A systematic comparison of various statistical align-
ment models., Computational Linguistics 29 (1), pp. 19–51. http://dblp.uni-
trier.de/db/journals/coling/coling29.html#OchN03.

Stolcke, A. (2002), Srilm – an extensible language modeling toolkit.
http://citeseer.ist.psu.edu/stolcke02srilm.html.

Tiedemann, J. and L. Nygaard (2004), The OPUS corpus - parallel and free, Pro-
ceedings of the Fourth International Conference on Language Resources
and Evaluation (LREC04), pp. 26–28.

van den Bosch, A. and P. Berck (2009), Memory-based machine translation
and language modeling, The Prague Bulletin of Mathematical Linguistics
91, pp. 17–26.

van den Bosch, A., N. Stroppa, and A. Way (2007), A memory-based classification
approach to marker-based EBMT, Proceedings of the METIS-II Workshop
on New Approaches to Machine Translation, pp. 63–72.

Way, A. and N. Gough (2005), Comparing example-based and statistical machine
translation, Natural Language Engineering 11 (3), pp. 295–309.




	Extending Memory-Based Machine Translation to Phrases

