
ANTWERP PAPERS IN LINGUISTICS

1975, nr. 3

COMPLETION GRAMMARS AND THEIR APPLICATIONS

Luc Steels

UNIVERSITEIT ANTWERPEN

Universitaire Instelling Antwerpen

Departementen Ger. en Rom •• Afdeling Linguistiek

Universiteitsplein 1 - 2610 Wilrijk - TEL 031/28.25.28

ABSTRACT

Three new types of grammars: open~ closed and complex comple~ion grammars, are

formally defined and their relative parsing systems are discussed.

Also it is shown how these systems together with interpretation mechanisms

make up complete language understanding systems. The applicability is illustrated

bY computer programmed experiments in natural and artificial language processing.

The basic novelties are a new approach towards the internal order of the elements

in a languqge expression, the introduction of structures, distinct from constituent

structure trees, for representing the informatio~ necessary far semantic

interpretation and a strong procedural attitude towards language theory, as well

an a syntactic as a semantic level.

Complet~pn grammers in general can serve as a model for functional or relational

grammars in that the emphasis on order, which is basic to the concept of constituent

structure grammars, is r~placsd by emphasis on internal relations due to semantic

properties. As a result the currently widely accepted distinction between deep

and surface structure~ becomes unnecessary. Indeed with the grammars defined it

is possible to map ths language input directly into structures which contain all

the information for a semantic interpretation.

CONTENTS

Introquction

o. Fundamentals of semantic interpretation

1. Closed completion grammars

1.1. Basic definitions

1.2. The parsing problem far closed completion grammars

1.3. Application to the PC-language

1.4. The interpretation problem

1,5. Application to natural language

1.6. Some remarks on the distinction betw~en closed completion grammars

and phrase: structure·.grammars

2. Open completion grammars

2.1. Basic definitions

2.2. The parsing problem for open completion grammars

2.3. Application to the Pc-language

2.4. Application to natural language

3. Complex completion grammars

3.1. Basic definitions

3.2. The parsing problem for complex completion grammars

3.3. Application to natural ~anguage.

4 Perspectives and Conclusions

4.1. Perspectives

4.2. Conclusions

5. References

- 1 -

Introduction

This paper is devoted to the study of ey~tem~ designed for the task of

language processing. The main theme is the investigation of one part of

such systems, namely the one by which analysis is be~ng done. Analysis

is the task of mapping the language input into a formal structure upon

which interpretation takes place.

In the following sections we will introduce three types of grammars designed

for the purpose of analysis: open completion grammar (! 1) , closed completion

grammars (§ 2) and complex completion grammars (§ 3) • We will also define

parsin~ systems for the three types of grammar~ and interpretation mechanisms.

This paper is a stat.emet"'t on :re;!search in progress. Therefore we· do not present

fully worked out discussions, but only giver·an indication of the way in which

research proceeds. The emphasis is on the definition of a fundamental framework,

applying it to the data is another matter.

This does not mean however that we do not give any explicit information at all.

The systems will be formally defined, the al-gorithms are all programmed and

we will present concrete experiments in natural and artificial language processing.

In particular we programmed and implemented experimental versions of language

processing systems based on the 3 types of grammars and do experiments with as

source languages the Propositional Calculus (in infix, prefix and postfix notation)

and (subsets of) a natural language.

We thank the members of the reading committee especially prof. De Schutter,

prof, Goossens, prof. Tasmowski because they accepted the paper for publication

and made some very helpful remarks to improve the text. We also thank prof. Rozenberg

D. Vermeir and H. Daman for discussing the matter and providing new insights

into _.it, Of course rasponsibili ty for all remaining errors and deficiencies

remains by the author.

- 2 -

0. FUNDAMENTALS OF SEMANTIC INTERPRETATION

Basically we assume that a predicate is a procedure or function name. The meaning

of a predicate is equal to a procedural definition of its corresponding function

and the interpretation of a predicate is equal to the execution of the procedure.

Consider e.g. 'SUM'. The procedure 'sum', familiar from simple arithmetics, takes

two numbers as input and returns another appropriate number (sometimes called the

'value' of the procedure) as output. Understanding what'sum'means is considered

to be the same as knowing what the procedure is and being able to execute the

procedure on a given input.

A procedure calls for certain arguments (also called operands or cases) as

input. These arguments are either resulting as values from other procedures (then

the arguments will be called hidden) either directly present in the language

expression {then the arguments will be called occurred).

Consider 'the sum of 1 and 1'. The procedure here is qgain 'sum', arguments are

'1' and '1'. Similarly consider '2 times the sum of 6 and 2'. 'Sum' takes now

'6' and '2' as arguments, the result is B. This result together with '2' is

input to the procedure 'tim~s'. Note that '8' is an hidden argument, '6', '2' and

'2' are occurred ones.

In a text -one does of course not meet expressions as 'a,b and c are input to

the procedure A and f is output'i this would be a tedious way of communicating

Instead we find simply 'A a b c ' or ' a A b c ', i.e. input arguments and procedures

are written after each other and finding the exact input and outputrelations is

left to the person trying to understand. So~ a language expression will be considered

as a series of procedure names and arguments.

The task of understanding consists in:

(i) finding out how the procedures denoted by these procedure names are inter~

related with the arguments (this phase is called analysis) and

(ii) executing the procedures (this phase is called interpretation).

The problem of analysis or in ather words the problem of extracting from a natural

or artificial language input the corresponding semantic structure, will be

solved by the definition of grammars (in particular completion grammars) and parsers,

being systems computing the structures assigned by the grammar to an arbitrary

combination in the language. The solution to the problem of interpretation

involves a definition of all the procedures for a given language and a description

of the way in which the procedures appearing in a given structure are executed.

A system that is able to perform the task of understanding will be called a language

understanding system (for short L.U.system)

- 3 -

Definition 0.1. A tanguag~ u~d~tandi~g 4y4tem S is defined by a

quadruple S = (G, IT , P, r) where G is a grammar, IT is a parsing system

accepting G, P is a set of procedures and r is a function relat~ng procedure

names to procedures.

An L.U.system is such that ll is depending on the type of grammar being used

while once the tips is fixed G is variable to the system.

Definition 0.2. The 40~C~ tang~g~ for a given L.U.system is the language

being accepted bY the system.

This involves the fact that the parser is capable of analysing by means of the

grammar all combinations of the source language and thatP contains procedural

definitions for all procedure nam~s in the lexicon of the language.

- 4 -

l. CLOSED COMPLETION GRAMMARS

1. 1. BM.i.c. de6-&Ullow..

Definition 1.1. A c.to~ed c.omp£e.tio11 gJtammaJt is a quadruple G = (Voa, Vha, Vp, 8 >

where

Voa is a finite nonernpVy· set of arguments called the set of occurred arguments,

Vha is a finite nonempty set of arguments called the set of hidden arguments,

Voa U Vha = Va and Va is called the set of arguments,

Vp is a finite nonempty set of procedure names and Vp (\ Va = 0 ,

S is a finite set each element of which is a finite ternary relation included

* in Va X Vp X Vha ~ relating arguments to procedures.

If ('Y, A, E1) E 8 * where 'Y EVa , A E Vp and a E Vha , then we write 'Y -Jo A -.. a ,

'Y ~ A --jo- a is called a rule. The arguments appearing on the left of a rule

are called the input arguments and the arguments appearing on the right of the rule

the output arguments.

Example l.l. Let

Voa = { a,b,c,d)

G = (Voa, Vha, Vp,

Vha = [e,f ,g) and

l.ab~A-+e

2. e f c ~ B ~ g

3. d -+ c -+ f

tl) be a closed completion grammar where

Vp = {A, 8, C l and 8 :

A closed completion grammar G describes a language (called L(G)) in the following

way. Starting with an arbitrary hidden argument, replace it by a procedure name

of which this argument is output and add all the input arguments to the combination.

If there is a hidden argument among these arguments, again replace it by a procedure

of which these argument is output and add all the input arguments to the combination.

If after a finite number of steps all elements are either procedure names or

occurred arguments, the combination is complete.

More formal:

Definition 1. 2.

* (il If there is a combination xu y (x,y possibly empty) where x,y E[VaUVpl and

u EVha and if there is a rule in the grammar a
1

.• , an-+ A -+ u (n ~ l) where

and A E Vp, then we say that x u y Plleoeltentia.Uy dhtecJ:ty cte!Uvu al' ' a E Va
n

X A al ... a y
n

*~ (ii) Let

denoted as x u y =='t X A a
1

.. , a y
. n

be the transitive reflexive closure of the relation ~ If

X y then we say that x p!te6e~te11tiatty delt.i.vu y.

(iii) The

* X~ y where

language of

X E Vha ! ,
G, denoted as L.(G) is defined by L(G) = j y 1 y E[VoaUVpl* and

- 5 -

Example 1.2. Let G be the closed completion grammar of example 1.1. then the

following derivations are possible. (The index on =t is the applied rule

of the grammar)

(i)f~Cd
(ii) e 4 A a b

(iiil g ~ B s f c ~ 3 B A a b f c ~ B A a b C d c

Example 1.3. Let G = (Voa, Vha, Vp, 5) be a closed completion grammar and

Voa = (a,b,c,d} , Vha ={e,f\ Vp ={A. B, C. 0 f and 5 :

l.abe -+A-+e

2. c e f -+ B -+ f

3. d -+ c _,. e

4. d _,. 0 _,. f

some derivations:

(i) f ;:;, B c e f l,. B c A a b e f ~ B

l.. BcAabCdBcAabef

(ii) f 4 0 d

c A a bCdf~ BcAabCdBcef

(iii) f ~ B c e f ~ B c A a b e

(note that L(G) is infinite)

~ B c A a b C d B c A a b C d f

itscAabCdBcAabCd Dd

f~ BcAabCdf~ BcAabCd D d

In our definition of a direct derivation there is something that needs a bit more

explanation, namely the word preferential,

It is well known that the formal theory of languages,dealing in particular with the

so called Chomsky or phrase structure grammars, their related automata and their

possible qugmentations, has been exclusively based on strings formed by the operation

of concatenation. Indeed the essence of these systems is that they define ·a strict linear

order on the elements of a language and 'grammatical' means that a particular order is

present.

What we propose here is to consider language utterances not as strictly ordered as it

is usually done~ rather we will introduce the concept of preferential order, being

en ader which is most likely to occur. In this respect the occurrence itSelf of an

element is more important than the moment when it oqcurs.

We hope to gain by this approach not only a greater flexibility, a possible cure for

the britleness of current natural language processing systems~ but also a means of

dealing with other levels of language than syntax and morphology, notably those where

order is not as relevant as occurrence.

In linguistic theory strings are defined as objects consisting of an ordered set of

occurrences of the elements of an alphabet. Now we introduce a 'weaker' object, called

a combination, where the order is not so relevant anymore.

- 6 -

Definition 1.3. Let D be a finite alphabet then a combin~on over D is a set

of occurrences or tokens of the elements of ~ .

Notation: As the distinction between combinations and strings is relative to the

point of view# combinations will be written as strings.

Example 1.4. Let ~ = { a,b,c \ then examples of combinations are a b c , a b ,

a a b c , etc ..•

From the definitions it follows that if a combination is canside~ to have

a particular ordering (e.g. the precedence order) then the combination will

be called a string. E.g. if o = a b c is considered to be a combination then

a a b c

a b c t b a

L:St us now

we defined

* y =')X

b a c cab, etc .•• , whereas if

c t cab

a is considered as a string

study the implication for our definition of the language . Recan that

the language of a completion grammar G as L(G) = [x ~ .x E lVoa Vpl*and

where y E Vha J . This language we will call the preferential language of G.

To have a mathematical way of talking about nanpreferentially obtained strings, .,.._..
we introduce the concept of the associated language of G called L(GJ:and

'UGJ = { y l .x E L(Gl and y is a permutation of x ~ •

So what we mean by 'is preferentially derived from' is that the precedence order

imposed by this relation was preferential and in producing or generating this order

is the goal. However if this order is not present because of a failure in the production

or by influence of higher language levels (e.g. pragmatics), the analysis syStem

does not block, as would be the oase for phrase structure grammars. Also in

cases of ambiguity, the order most approaching the preferential order will be the

one chosen as the right analysis.

The problem in making these decisions is one of parsing and we will with this in

1.2 ••

Let us now discuss the format of the structures assigned by the grammar. These will

not be labelled plane rooted trees or constituent structure trees. but a formally

distinct structure to be introduced in this section. The significance of taking another

format for the structures assigned by the grammar should not be underestimated. The

validity will follow from its usage.

We reprent procedures as circles, called procedure circles, with the name of the

procedure in it~ and arguments as squares called argument squares. The input and

output relations will be represented by directed lines from the arguments to the

procedure circles. These lines can be labelled if there is any need to do so.

- 7 -

Example 1.5. Let a,b,c be input arguments and d output argument for a given

procedure A, then this information is represented as fallows:

The whole graph is called a relation structure, b~cause it represents the functional

relations among the elements.

Definition 1.4. A JLei.ctUOI'l 4bw.c.tu1Le is a construct (;Vp,Va, R) where Vp is a set

of procedures, Va is a set of arguments, R C (Va x Vpl u lVp x Val is a set of

ordered pairs describing input relations (Va x Vpl and output relations (Vp x Val.

In this paper we will not investigate formally relation structures and for ease

of discussion alway use the graphic representation.

Let us now define relation structures in relation to combinations.

Definition 1 .• 5 The JLel.atioVt 4~U~U1Le 6oJL a givencombil'lcttioVt is a set sf procedure

circles representing the procedures in the combination ,a set of argument squares

representing the arguments occurring in the combination itself or as an output

argument of a procedure and a set of directed linSs between the squares representing

input and output relations.

Clearly a line leaving a circle is denoting an output relabt:on whereas a iine leaving

a square is denoting an input relations.

Example 1.6, Let a, b. c be input arguments and d output argument for a given procedure

A, and let d and e be input arguments for a given procedure B where f is the output

argument then the relation structure for the combination A a b c B e is:

- 8 -

It is easy to see how to obtain relation structures (as defined in definition 1.5.)

during the derivation process. Given an hidden argument as output, draw a square

for it, connect it with an arrow to the procedure circle and for all input arguments

draw squares and make connections to the procedure circle. For derivation (i) in

example 1.3.) this would result in the following structure:

Definition 1.6~ A completion grammar is detVUnU1iJ~Q if for each procedure in Vp there

is one and only one rule in the grammar.

A completion grammar is non..de:teJUn-i...J1...i..btic. if there is more than one rule for the

same procedure.

All examples up to now were examples of deterministic closed completion grammars.

Example 1.7. Let G = (Voa, Vha,

Vha = fa,b,c j, Voa =~e,d,f)
1. a d _,.A """' c

2. e f-+ A-+ b

3, b -+A~ a

Clearly G is nondeterministic.

Vp,6 be a closed completion grammar and

Vp = {A ~ and 6 :

- 9 -

PROBLEMS l.

(i) Are the combinations d 0, A a b e , B c C d 0 d in the language generated by

the grammar of example 1.3. ?

(ii) Construct other closed completion grammars and generate same combinations.

1 • 2. The. paMin.g piLO b.te.m 6oJt cxo~ e.d ccomp.te.tio n. gJtammaM

In linguistic science, a recognizer is a system that takes a grammar and an input

string and decides whether or not the string is in the language (supposed to bel

described by the grammar or not.

A parser on the other hand is a system that takes· a grammar and an input string and

produces the structural description assigned to this input string by the grammar.

Of course if the input is ungrammatical there ~an be no structural description,

so a parser implies a recognizer (but not vice-versa).

Let us now deal with the parsing problem for closed completion grammars by ·giving

an algorithm that solves the problem. Due to spacelimitati~s. we will only deal

with deterministic closed completion grammars here.

Algorithm l.l. Let there be a pushdown stack (for short pds.) T1 where all procedures

are stored and a pds. T2 for all arguments. Although in a concrete implementation

the (partial) relation structure is stored in a list structure or a table representation

of a list structure. for the ~ke of clarity in the exposition we will here use

a graphic representation. Let a be a given input combination and a. the· i-th element
. l

of the combination.

Scan the input from left to right:

A. if a. is a procedure:
l

1. create a procedure circle in the structure and put the procedure on T1.

2. (a) check whether there are any arguments on T2 which can be input to the

procedure according to the grammar, if so connect and take that particular

argument from the pds. T2.

[b) if all input arguments are found (we say that the procedure is complete)

remove the procedures from T1. put the output element as argument square in

the structure and connect it with an output relation to the procedure circle;

then execute the B.2. part of this algorithm.

B. if a. is an argument:
l

1. Create an argument square in the structure

2. Check for all procedures on T1 whether this argument can be input to it. If so

connect. else put it on T2. If the procedure is complete, do the same as was

specified under A.2. (b) of this algorithm.

To be grammatical there should be one and only one element on T2 and none on T1 after

scanning the whole input. The final element on T2 is the initial paint in the derivation.

- 10 -

Example 1.8.

Let the grammar be G =1Voa, Vha, Vp, ~

Vha =(e,fl Vp ={A, B, c, D\ and ~
l.abe-+A-+e

2. c e f -+ B -+ f

3. d -+ c -+ 8

4.d -+0 -+f

Derivation 1:

e 4 A a b e'4

a A a b c d

(i) a1 A

1. 8
T1: A

2. T2 is empty,

(ii) · a
2

a

1. 0
G

(iii) "3 b

1.

2.

A a b C d

no checking.

T1 : A

T2: -

T1 : A

TZ: -

T1 : A

T2: -

T1: A

T2: -

and Voa {a,b,c,dj,

(create a procedure circle in the structure

and put the procedUFe on T1)

(create a square in the structure)

(according to the grammar a is input to A, so

we connect a to Al

[create a square in the structure)

(according to the grammar b is input to A, so we

connect b to AJ

(iv) a
4

C

1.

2. T2 is empty: no checking

(vJ a = d
5

1.

2.

3.

- 11 -

(create a procedure circle- for C and put

Con T1)

T1 : C A

T2:

T1: C A

T2: -

(create an argumentsquare in the structure]

(As d is input for C according to the grammar, we

connect d to C. By this C is complete and we

add the output of C to the structure.

This output is according to the grammar

input to A, hence we make a connection to AJ

T1: A

T2: -

(By adding the output of C

also A is complete)

T1: -

T2: e

i.e. s~ to the structure

Note that the final element on T2 is the initial point of the derivation.

- 12 -

Derivation 2.

f~ Beef~ BcAabef~ BcAabCdf~ BcAabCdDd

At each step we now give only the partial structure and the contents of T1 and T2.

u = B c A a b C d D d

(i) 01 B

0
(iila

2
= c

~
(iii) 03 = A

~
8

(ivl a
4

= a

Cv) 05 b

T1: B

T2:

T1 : B

T2: -

T1: A

T2: -

B

T1: A B

T2: -

T1 : A B

T2: -

,(vil u6 c

~ 8
(vii) u7 d

(viii l
D

- 13 -

d

T1: c A B

T2: -

T1: B

T2: -

T1 : 0 B

T2: -

(C is complete by d and A is

complete by adding the output of C)

Derivation 3.

- 14 -

T1: -

T2 : f

(D is complsts and B is complete by output of

OJ

In the next example we show what happens with an input combination which is not in a

preferential order. Let us take the reverse of the combination obtained by derivation 1~

namely o = d C b a A

(i) 01 d

[iii) 03 b

~ T1 : -

T2: d

T1: -

T2: e

T1: -

T2: b s

(ivl a
4

= a

(v l A

- 15 -

T1: -

T2: e

T1: -

T2: a b e

The reader is advised to compare this parsing process with the one used far a

preferential order on this combination, and to parse other orderings over this combination.

He will see that the same result is obtained. Some combinations will lead to a very

clumsy parsing process. The easiest parsing will be the one with a preferential

precedence order'on.the input combinations.

PROBLEMS 2.

[i) Construct a program for algorithm 1.1. in an available programming language and

test the examples given.

[ii) Let G = <Voa,

Vha = fd, e \ , Vp

Vha, Vp, a
(A, B, C ~

be a closed completion grammar where Voa ={a,b,c~
and a

d ~ A -+ d

Describe the language generated by this grammar.

(iii) Let G =(Voa, Vha, Vp, 8 be a closed completion grammar where Voa fa,b,c~
Vha ~d. e\. Vp = {A, B, C \ and a

1. a b e ~ A ~ d

2. d b c ~ B ~ d

3. b ~ C 4 e

Parse the following examples with algorithm 1.1.: [1) A abC b

(iii) B A a b C b b c

[ii l b C b a A

- 16 -

Bef'ore we deal with the application of completion grammars two important remarks

should be made on the nature of the arguments:

1. Contrary to intuition, we think that the:r.-e are no real or 'occurred' arguments

appearing in any language input itself. Some examples will make this clear.

Take the sign '12', it may be thought that '12' is a simple argument for an

arithmetic procedure or sa, however

decimal number system:

understanding

1x10
1

+2x

'12' involves a computation

10° • So, although '12' does baseq on the

not take any input arguments, it implies a procedure to which it is input.

As 'another example take the sign 'p' as it is used in the propositional calculus,

i.e. a propositional variable. 1\Vw again understanding 1 -p 1 involves a procedure:

checking whether 'p' has already a value and if not store a new variable name of

yet unknown value.

Similarly a pronoun involves a procedure computing the reference of the pronoun

a proper name involves checking where the name appears in the memory (data basel. etc .••

So, what one normally thinks to be simple arguments are erguments for a procedure that

is supposed to be known by the understander. Far ease of discussion we will from now

on treat these objects as arguments appearing in the combination itself, and call

them occurred arguments as opposed to hidden arguments.

2. Although arguments were represented (in a formal treatment) by single letters,

they have in fact an internal structure, in particular an argument has an

argument value • an argument type and an argument name , that is a sign by which

a particular argument is denoted.

When an argument has not yet a value it is called a dummy argument.

When en argument has not yet a name, it is called an anonymous argurnent.

E.g. when talking about the variable I2, we could say that it is:

(il an integer

Ciil called I2

(argument type)

(argument name)

(iii) having e.g. the value 20 (argument value)

We have now another way of making the distinction between hidden and occurred arguments:

all hidden arguments are anonymous and all occurred arguments are not anonymous.

- 17 -

1.3. Apptication to the P.C.!anguage

We have now reached the point where we can put this formal framework to use.

We will do this by discussing a language which is certainly known to anyone

and which has such properties that one can deal with it by means of closed

completion grammars. The language we have in mind is the simple propositional

calculus (for short PC-languagel in Polish notation.

We hope that by giving a fully worked out example the reader will see the

relevance of our approach and is encouraged to read on.

(a] Current descriptions of the language.

A Log~~ would define the SYNTAX of the PC-language as follows.

Let there be a set of propositional operators: f NOT, AND, OR, IMPLIES, EQUIVAL l and

a set of propositional variables or elementary propositions {i.e. propositional

variables having a truth value), then

1. Every elementary proposition or propositional variable is a propositional

expression.

2. Every propositional expression preceeded by NOT is a propositional expression.

3. Every combination of two propositional expressions by means of one of the other

propositional operators is a propositional expression.

4. The PC-language consists solely of propositional expressions.

Examples: NOT p, AND p q, IMPLIES p q , etc •.•

A ting~t would define the syntax of the PC-language as follows. Let

G = (Vn, Vt, P, EXPR) be a context-free grammar where Vn ={EXPR, OPER ~,
Vt ={AND, OR, IMPLIES, NOT, EQUIVAL, p,q,r, ••. -~ and P:

1. EXPR ~ OPER EXPR EXPR

2. EXPR ~ NOT EXPR

3, EXPR -+ p , q 1 r 1

4. OPER ~ AND, OR, IMPLIES, EQUIVAL

This way of defining the language has the advantage that a structure can be recognized

in a propositional expression and this helps when calculating truth values.

(b) Closed completion grammars for the PC-language

How should we deal now with the PC-language from a completion grammars point of view.

First of all, we make a distinction between procedures and arguments. Procedures

are clearly NOT, AND, OR, IMPLIES, EQUIVAL. We add also the function SET by which

one can assign a truth value to a propositional variable (e.g.'SET P TBUE'Jand the

function '?' by which one can ask the truth value of a propositional variable or

expression (e.g. '? P', '?AND P Q'l •

- 18 -

"The grammar is the follow!rig one. Let G = (Voa~ Vha, Vp,6) be a closed

completion grammar where Voa ={LOG\, Vha =[LOG I Vp = fND, OR, NOT. IMPLIES,

EQUIVAL, SET , I ~
and s

l. LOG LOG _.. AND _.. LOG

2. LOG LOG -+ OR """"' LOG

3. LOG _.. NOT -> LOG

4. LOG LOG -> IMELIES -+ LOG

5. LOG LOG -> EQUIVAL _.. LOG

6. LOG LOG .. SET ... LOG

7. LOG ..) .. LOG

It is easy to see that one can abstract ·patterns and make the grammar simpler-. This

can be done by using more than one possible instantiation of the procedure name in

a rule. In this way classes of procedure names can be definied.

X
1

= {AND, OR, IMPLIES, EQUIVAL,\

X
2

= ~NOT, ? , SET }

The patterns:

l. LOG LOG-> X
1

-> LOG

2. LOG -> x
2

_..LOG

Warning: The symbols x
1

, x
2

should not be considered as a sort of nonterminals as

one, used to the p.s.grammars framework,might be tempted to do.

Note also that LOG is the argument type , The argument name can be anything,

e.g. TRUC FALSE, P, Q, R, ••• or even no name (for anonymous arguments). and the

argument value is either assigned by means of the set-function or fixed as for

TRUE whic.h is always true, The value is of course either true, false or unknown.

Some derivations:

(i l LOG =='> AND LOG LOG ==> AND NOT LOG LOG ~ AND NOT LOG OR LOG LOG

(iil LOG =9 IM~LIES LOG LOG

(iii l LOG =9 SET LOG LOG =9 SET LOG NOT LOG

The relation structure for derivation (1) is:

LOG LOG

LOG

Example 1 o 9 o

(il SET P TRUE

(type) LOG

(name) p

(value)

(ii) ? AND OR AND R S S R

LOG LOG

-·--
R s

true true

LOG (type)

TRUE lname)

true (value)

(wHere R and S are true)

LOG

R

true

- 20 -

7. 4. The bt.tVtpJtet<LUon pJtobtem.

Recall definition 0.1. where an L.U.system was defined as a quadruple

S = (G, IT , P, r) . In previeus sections we specified G, in particular

a closed completion grammar.and IT the parser, in particular algorithm 1.1 .•

In this section we briefly discuss P and r Briefly, because this paper

concentrates an analysis rather than interpretation. Indeed, interpretation

should be more sophisticated then we will present it here.

(a) The set of procedure P.

A tog-i.cA.a.n would deal with ths SEMANTICS in the following way:

If p and q are propositional expressions, AND p q is true just in case both

p.add q are true, otherwise false.

If p and q are propositional expressions OR p q is true just in case p is true

or q is true of both~ otherwise it is false.

If p is a propositional expression, then NOT p is true just in case p is false,

otherwise it is true.

If p and q are propositional expressions, then IMPLIES p q is false when p is true

and q is false, otherwise it is true.

If p and q are propositional expressions then EQUIVAL p q istrue when p is true

and q is true, or p is false and q is false, otherwise it is false.

LinguAh.t-i.C6 semantics is currently still a matter of debate and the procedural

view which is basic to the approach presented in the following paragraph is nat yet

accepted by the whole linguistic community.

Let us give some procedures for the predicates of the propositional calculus. Let

true be denoted by 0 and false by l.

(There are other solutions possible)

(i) AND: if the sum of the values of the input arguments is 0 the value of the output

argument is 0, else it is 1.

(ii) OR: if the sum of the input values is smaller or equal to 1, the output value is

0, else 1.

(iii) IMPLIES: if the value of the second input argument minus the value of the first

one is equal to 1, the output is 1, else 0.

(ivl EQUIVAL: if the input values are equal, the output is 0, else it is l.

(v) NOT: the output value is 1 minus the input value.

(vi) SET: store the value of the first input argument in the value place of the second

argument and set the output equal to this value.

(vii) ?: print the value of the input argument.

(b) The interpretation mechanism.

There are in general two ways of doing semantic interpretation or in other words

organizing the subroutine calling the procedural definitions of the predicates and

connecting them to the input arguments according to the relation structure.

- 21 -

Definition 1.7.- An interpretation process is said to be ~nhtant if procedures

are executed as soon as this is possible during the parsing process.

An interpretation process is said to be delayed if procedur~are executed when

the complete structure is available~ or in other words after the parsing process.

The distinction between instant and delayed mode is very important. Nat so much

far closed completion grammars, but we will see that with open completion

grammars, to be introduced in next sections, different structures (and thus

interpretations) are obtained depending on whether the mode is instant or delayed.

Clearly the difference between instant and delayed interpretation is related to

the compiler/interpreter distoiriction known from translators of programming languages.

Definition 1.8. A procedure is said to be ~tant if it must be executed as soon

as all its arguments are found in the input.

A procedure is said to be delayed if it is executed after the parsing process

is completed.

When interpreting in instant resp. delayed mode~ all procedures must be instant

resp. delayed. Also it is possible to organize a mixed interpretation process~

where instant and delayed procedures occur ,

Let us now give algorithms for interpretations. As the instant mode is the easiest

one, we deal with it first.

Algorithm 1.2. r in instant mode.

As soon as a procedure is complete, i.e. if the parser has discovered all the

input arguments~ execute it.

Algorithm 1.3. r in delayed mode.

We start by the argument left on T2 ~i.e. the initial argument in the derivation,

then we go to the procedure circle for which this argument was the output. For

all input arguments of this procedure~ check whether they are hidden or occurred.

If hidden apply recursively r , else goto the next argument. If all arguments are

worked out in this way, execute the procedure.

Example 1 .10.

' AND NOT P Q '

the structure:

LOG

p

true

(where P is true and Q is false)

false

- 22 -

We start with the uppermost LOG-square, go to the AND-procedure circle and

check far every argument whether it is hidden or occurred. Th9 first argument

is hidden,so we start again with this one, go to the NOT-procedure circle

and check its input arguments. This time the only input argument is an occurred

argument; hence we execute the function NOT; Now we know the value of the

first input argument of the AND-procedure and because the second input argument

is an occurred argument we execute the AND-function.

For example 1.10. the final result would be false.

There ~s a lot more to say about techniques for carrying out semantic interpretation

but this will do for the moment.

It is a good custom of scientists to do experiments. In this spirit we programmed

algorithm 1.1. and 1.2. in FORTRAN IV and realised an implementation on the PDP 11/45

The performance of the system is illustrated by the following output.

In general for all experiments we use the following conventions for communicating

with the system.

When the sign '?' appears, an input expression is being typed. The system will

first return this input. preceeded by 'input ' and then start processing the expression.

For ease of reference, the system automatically numbers the input according to their

occurrence, Systems output is preceeded by 'aut:'.

Example:

1

SET P TRUE

INPUT 1: SET P TRUE

1

1 p

INPUT 2: 1 P

OUT: TRUE

(request for input)

(input expression of user)

(system returns the input)

(no output produced)

(request for input)

(input expression of user)

(system returns the input)

(result of processing)

The following additional commands are accepted: +GRAMMAR (returns the grammar),

+LEXICON (returns the lexicon) +END INPUT (means end of input stream).

There is a switch to ask for additional parsing information +STRUCTURE is

for on and +NO STRUCTURE is to put it off.

Also all conventions for editing via teletype (e.g. RUBOUT) can be used.

_] ___ _ - 23 t;OMMENT

SET P TRUE
,l NPLIT , _1:, SET P ,TRUE
?

Here we start our. conversation with the
9Y§tem by the assignment of the value true
to' the propositional variable 'p'.

____ , _____ +JiBBt!Ji~Ji ______ ,, __ ,.
1. 3 10 10 10
2. 310~010
3. 3 10 10 10

By giving in +GRAMMAR we can ask far the
.grammar (coded of course)

4, 2 10 10
5. 3 10 10 10
6. 2 10 10 _,_, __ ? ___ 2.10 i!J
8, 3 10 10 10
9, 3 18 10 11

?

+LEXICON
·- J. __ R~_D __ _

2. OR
3. I 11PLI ES
4. NOT
5. EQUn'AL

- ,,:J, J.. _jl__ 0,,
2 2 0 0
3 3 e 0
4 4 o e
5 5 0 0

6. ? 6 6 a o
--------- _L XRM.L _____ ?.__ ? .. o. _p

8. SET 8 8 0 0
9, (9 9 0 0

10. LOG 10 0 10 2
li,' , TRUE 10 0 1,1 0
12, FALSE 10 a 12 1

By glVlng in +LEXICON we can ask for the
lexicon. Note that the variable • p • Which
is initially unknown to the system has been
added,

u.) 11 e 13_,.JL ____ _
·- ----- -14. - P" -To, -il -:c.r--e--· ------

?

SET Q FALSE
INPUT 2: SET Q FALSE
?

______________ ,s E T __ f__.!:!Q T_J ~_!,IE ___ .,
INPUT 3: SET R NOT TRUE
?

+LEXICON
1 AND
2. OR
l, .!!ifJJE5
4, NOT
5. EQ~I'IAL

6' ?

, , __ __ ?. PRO_QF
B. SET

~ ~~' - ~ -·-- - -~ >' -_,--~-· -· ,.!.; ·~---- A"

10, LOG
,_11 TRUJ,
12, FALSE

1_
2

?
8

______ L
10
Ul
10
11

1 0
0 0 <
3 ,@
4 e
5 0
6 0

0
0
E<

0
0
0

7 - 0 - 0
8 0 0
9 _____ 0 ,,, 0
0 10 2

- 1~.
14.

... _!p_.

0 11_ ' 0
0 12 1
o n o

p '10 0 14 0

16.
?
? p

q_ _j,_O _ ,0. ~~- J
R 10 0 16 1

INPUT 4:

By INPUT: 2 and INPUT 3 we introduce new
variable names and values for them.

When asked for the lexicon again, one can
_see that 'q' and 'r 1 have been 'learned' sa
to say by the system.

OUT: TRUE Input 4 and 5 illustrate how the truth value
. can be asked for a simple variable

? Q
II~PUT 5: ? Q
OUT. FALSE

? AIW P Q
HIPUT 6:? ANt' P Q

OUT: FALSE

From input 6 onwards we give in some more
complex expressions.

?
o RIW P HIH> Q R
INPUT .. ? ? AND P AND Q R
OUT: FALSE

? AND P AND A AND -u
• AND P RND Q AND Q R
INPUT 8 • AND P. AND Q AND Q R
OUT: FALSE

o OR Q R
INPUT 9: ·;· OR Q R
OUT: FALSE

Here a typing mistake was made and corrected
by means of the telet'ype conventions.

- 24 -

?
? IMPLIES Q R

... INPUT 10: i -I/1PLIES Q R

. - -·..-~"-

JHIT_: TK~L __
?
? IMPLIES p Q

INPUT 11: ? IMPLIES p Q

OUT: FALSE
?

? Il'!f..!-1 1;:2. _Q L
INPUT 12: ? IMPLIES Q p
OUT: TRUE
?
• EQUIVAL IMPLIES P P IMPLIES Q Q
INPUT 13: ? EQUIVAL IMPLIES P P IMPLIES Q Q
OUT TRU!O
?

SET S NOT IMPLIES P Q
INPUT 14: SET S NOT IMPLIES P Q
?
? 5

.INPUT 15 .. £ ... ~
OUT: TRUE
?
? IIOT P
INPUT 16: ? NOT P
OUT: FALSE

?
• AND or.: fMPLIES ErWIVAL P P a R s
INPUT 17: • AND OR IMPLIES EQUIVAL P P Q R 5
OUT: FALSE

+STRUCTURES
?
• AND OR AND R S 5 R
INPUT 18: ,. AND OR AND
OUT: FALSE
STRUCTURES

NODES
1. 6 6
2. 1 1
1. 2 2
4. 1 1
5. 10 4
6. 1B 4
7. 18 J
B. 10 3
9. 10 2

10. 10 2
11. 18 1
12. 10 0
RELATIONS

1. 2 0
2. 3 8
3. 3 B
4. 3 [i

T2 12

1
2
3
4
4

-~-
4
5
4
5
4
(1

12
11

9
?

0 6
0 1
0 " ~;

a 1
1 16
0 17
1 14
a 1?
0 1'" 0

1 16
1 16
1 0

11
9 10
7 8
5 6

R 5 5 R

Now we illustrate the structures switch~
+STRUCTURES puts it on, and for all input
expressions from now on the relation structure

· (in a coded form) is produced.
For a graphic representation of this structure
we refer to example 1.9.

+IW STRUCTURES By +NO STRUCTURES we put the switch off again.

p ?
I l·lf'UT 19. P ''
OUT: TRUE

F' AIID Q '"
IIIPUT 20: P AND Q o
DUT: FALSE
?

P l11PLIE5 Q ·;
IIIPUT 21: P IMPLIES Q '
DUT: FALSE

P AND P IMPLIES P OR A ?

From input 19 we start to experiment a little with
ather orderings aver the input. Recall that the
input expression is considered as a combination not
a string. In this spirit also not preferentially
ordered inputs must be· processed, This is clearly
the case. as one can see from the examples.

INPUT 22: P AND P IMPLIES P OR A ?
OUT. FALSE

As there are no sophisticated error mechanisms.
unknown variables will not necessarily block the
interpretation process.

?
_____]_ ___ B____ -------- -·-

HIPUT 2>: ? A
OUT: _ _I,'_ALUE UNKNO~_H
?

- 25 -
That the system knows very well that A is of un
known valus is illustrated by input 23. Note that
A has been introduced in the middle of an expression
and not elsewhere.

_______ P __ jlND_ P _ _jJ:JPL_tg_S. __ f_ OR Q ? From input 24 it is clearly to be seen that the mode
INPUT 24: p ANc' p TMP"i.:iE_S __ p ___ OR-Q·-;, "of intsrpretation is instant, in fact the following
OUT: TRUE - expression is processed: (((p and p J implies p J or
?

J _fiND f;l_ AND P AND (;! AND P JIIW R ?
INPUT 25: P AND Q AND P AND Q AND P AND R ?

___ o_wr : ___ .F:A.b.2_1;.___ __ _____ _ ______ _
?

_ E_ AN_D _Q Q_R P ?
INPUT 26: P AND Q OR P ?
DUT: TR~_E
?

_____ ~S_lRJLr:;__TURE~------ ----- -----------Another illustration of ths +STRUCTURES iiWitch
?
P AND Q DR P ? r r-iP liT -2 7: --P-AN 1)--g--oR P ?

_ o_~T~ I_R u_~ __
STRUCTURES :

-----~------- .. ~--------- ····-·-- . .---~-~ .. -.. ------·· ~--"-·--·--·

NODES :
1. ~~ ___ 2_ 4 0 14
2. 1 1 1 0 1

1, - 10- 2 _5 1 15
4. 10 5 4 1 1

________ iL ---~--2_ __ 2 ____ e ____ 2 __
6. 16 5 5 0 14
7_ 10 8_ 4 a 14
8. 6 6] 0 6
9._10 0 0115

RELATIONS :
-------.. -·- -~- i,;_ ___ --~;; -~ .. ---~!1: __ 1_~ -~~ __ ,_, __ _

2. 3 0 7 4 6
3- _2 __ 0 7 - 7_

T2 : 9

+flO STRUCTURES
?
P Q H1F'LI ES ?
IIJp_UT 28;_ PG!_jMfL,I{oS?
OUT: FALSE

-- ?._ __ - . ----
Q F' 111PLIES ?
INPUT 29: Q P I11J:JJJ;S?
OUT: TRUE
?

P Q R AI-W OR ?
__ INPUT .1B: P Q R ANC• DR ?

OUT: TRUE
?
'-~·- -·-· ---- , ..
P P EQUIVAL ?
INPUT 31: P P EQUIVAL ?
OUT: TRUE
?

p

Now we give in some expressions in postfix notation. They
are all processed. Note that postfix is considered as
the exact reverse of prefix as is illustrated by input
28 and 29

.. l.tlP~.L.d>~.- P
~

Input 32 is a combination, nothing is as·ked nothing is
being returned, the system only compute~ the value of p.

_ SET SET
!!<PUT 33: SET
Uf!_GRAMI1AT I CAL
?

?
+EfW INPUT

SET
HI PUT

The only point were ungrammaticality is .noticed is with

incomplete procedures.

q))

[

- 26 -

1. 5. AppUeatiovt.6 :to na:twr.al. language.

Now we show that closed completion grammars can also be used as-a model for (subsets)

of natural languages. In particular we will investigate nominal phrases from this

point of view. We do not present a fully worked out discussion here~ only an

indication of the direction in which more detailed research shou1lproceed.

The examples will all be taken from Dutch, but an ,'literal' English translation is

provided. The universe of discourse for the experiments is ths language of simple

arithmetics. This is so because there are no complicated memory procedures (as

storing or retrieving information) necessary. As the problem of memory organization

is another (almost blank) page in the study of natural language behaviour~ this universe

of discourse is avoiding the problem, such that experimentation remains possible.

The basic ·hypothesis is of course that all elements in a noun phrase {nouns, determiners,

adjectives, adverbs) are either procedures or arguments. Let us discuss very briefly

how this would go.

(i) Nouns are either procedure names, either ·arguments.

(a) Arguments are such things as proper names, numbers, names for variables (e.g. the

word 'number' , 'person') , pronouns, etc •••

[b) If a noun is a procedure than it takes other arguments as input. What arguments

are input to the procedure denoted by a given noun depends on the argument

type (as was the case for artificial languages) but also on additional information

of a syntactic and morphological nature, i.e. prepositions or case endings.

These will act upon the type of an argument.

Convention Whenever mare than one specification concerning the type of the arguments

that can be input appears in the grammar, we use square brackets and write all

specifications in it separated by comma's.

Now we can given an example of a noun being a procedure name{

'De deling van 1 door 1'

['The division of 1 by 1')

The procedure is here 'deling' [division) it takes two arguments both of a

number type, however the first argument has the indication with preposition

'van' [of), and the second with preposition 'door' [by).

Rules in the grammar would look as follows:

(NUM, prep:VAN [NUM,prep:DOOR) -->; DELING -';NUM

[[NUM, prep: OF l [NUM, prep: by l --'> DIVISION --+ NUM

(ii) Prepositions seem to be procedures that add only a characteristic feature

to the type of the output but do not change the value.

e.g.: 'VAN 1'

[of 1 J

NUM
prep:
van

(type)

NUM Ctypsl

(name)

{value)

An important observation is that the proposition of a noun which is itself a procedure

(rather than an argument as in the previous example) goes over to the output argument

of that procedure.

E.g.: 'De deling van het verschil van 4 en 2 door 2'

(the division of the substraction of 4 and 2 by 2'

The relation structure:

NUM

prep:van

(of)

(of)

4

4

(division)

NUM

prep:daor

(substraction)

NUM

prep:EN

(and)

NUM

2

2

(by)

NUM (type l

2 (name)

z Cvaluel

- 28 -

After execution of all functions:

NUM

2

4

NUM

prep:VAN

2

(of)

(of)

NUM

4

4

NUM

1

(substraction)

NUM

prep:EN

2

Clearly the final result is 1.

(type J

(value)

NUM

prep: ODOR

2

(by)

(type)

(value)

NUM (type)

2

2

(name)

(value)

(and)

NUM

2

2

(iii) Plural endings of nouns seem to indicate the size of the output for a given

procedure. Singular denotes one single element (as was the case in all examples up

to now) or a set [seen as a whole) whereas plu 1 is an indication that more than

one element is to be expected in the place of the output argument.

- 29 -

In this way singular/plural information acts as a sort of mechanism py which

stor~ge is provided for one or more elements (cf. dimension statement familiar

from some programming languages).

We indicate this by adding plural or singular to the argument type of the

output argument.

(iv) Determiners seem to organize 'loops' (in the programming sense) upon

the execution of the noun phrase, or otherwise a final mechanism of selection

acting upon the elements in the output argument.

E.g. 'an,a' : takes one arbitrary number of the set, if the set contains only one

element than the choice is no more arbitrary.

'sam~': returns more than one arbitrary element of the set, ~ ..

E.g; 'Een deler van 16'

(A divisor of 16)

'Osler' (divisor) is a function computing all numbers by which another number

can be divided. The divisors of 16 eg. are 1,2,8,4,16.

After execution of the procedures for the expression 'Een deler' van 16' we get:

(a)

(divisor)

NUM

NUM

NUM

prep:VAN

16

(of)

NUM

16

16

- 3U -

(ivl Finally adject':J.v~s ~11cl' adve~bs seem t5 b~ prdc~dures that take'th~ oiJtpdt

of the noun as- inp·u·t·'aAd'- perfotm'"·a furt'her 'bam6ctatiorl·---·on this.

E.g. 'De gro6tsts even deler van 16'

(the greates'i: evi!n divisor· of 16l.

After exect.:Jtion of the functions the structure looks as follows:

NUM

sing

16

(greatest)

NUM

2,4,8,16

(even)

NUM

16

(divisor)

NUM
prep:VAN

16

(of)

NUM (type)

16 (name)

16 lvaluel

: .l'_i

- 31 -

We stress that all our remarks on the nature of the procedures are very tentative.

It is not a subject of this paper and we only want to show how the underlying·

framework works. Let Us now construct a full grammar for arithmetic expressions:

Let G =(Vt:h3, Vha, Vp, ~) be a closed completion grammar where Voa = {NUM, Hoeveel, Wat \

Vha ={NUM, (NUM,prep:VANJ. (NUM,prep:DOOR), (NUM,prep:ENJ \

and Vp ={DE, HET, EEN, SOM, VERSCHIL, PRODUCT, DELING, OELER(S), GRDDTSTE, KLEINSTE,

EVEN , ONEVEN, ENKELE, VIERKANTSWORTEL, TWEEDEMACHTSWORTEL, ? }

and 6 contains the following patterns:

1 • NUM ... x1 -+ NUM

2. (NUM,prep:VANJ (NUM,prep: EN) -+ xz _. NUM

3, (NUM,prep:VAN) (NUM,prep:OOORJ -+ X -+ NUM 3
4. (NUM,prep:VANJ ... x4 ... NUM

s. NUM ... VAN ... NUM,prep:VAN

6, NUM ... EN ... NUM,prep:EN

7. NUM ... DOOR -> NUM,prep:OOOR

where

x
1

= {oE, HET, EEN, GRODTSTE, KLEINSTE, EVEN, ONEVEN, ENKELE, ?~
X

2
fSDM, VERSCHIL, PRODUCT\

x3 = (DE LING t
x

4
(DELER(S), VIERKANTSWORTEL, TWEEDEMACHT ~

(Note that the grammar is clearly not meant for production. A refinement of t.he

argument types should be introduced to rule out certain possibilities, For analysis

however the grammar is all right;)

An example of a derivation:

NUM ~ DE NUM ~ .DE GRODTSTE NUM ~ DE GRDDTSTE EVEN NUM

~ DE GROOTSTE EVEN DELER (NUM,prep:VAN) ~ DE GROOTSTE EVEN DELER VAN NUM

The corresponding relation structure:

(the) (greatest J (even)

(of J

- 32 -

The procedures for the predicates are rather obvious. They simply

correspond to their arithmetic equivalents and we won't discuss

them in full length.

We did some _experiments with an L.U.system based on the above mentionned

grammar~ the arithmetic procedures and the algorithms 1.1. and 1.2 ••

The procedures are only defined for integers. Real numbers~ if they

arise during computation are truncated to integ·ers.

Results of our implementations are illustrated by the following computer

output. The same conventions hold _as for our experiments with the PC- language

in prefix notation. We give a 'literal' English translation of the expressions

after wards.

11CR>RUN STEEI.S
? -'
[>E SOM
IN P U.T
OUT:
?

'IAN 1 EN 1 ?
1: DE 5011. VAN 1 EN 1 "
2

HET VERSCHIL VAN ~ E~ 4 ''
INPUT 2: HET VERSCHIL 'IAN 5 EN 4 >
OUT· 1
?

HET PRODUCT 'IAN 9 EN 3 ?
INPUT J: HET PRODUCT VAN 9 EN 3 ?
OUT: 2?
?

DE DELING VAN 27 DODil J ?
INPUT 4: DE DEL[NG VAN 27 DOOR 3 •
QUT: 9
?

'''AN H ·,· [:•ELERS
INPUT
OUT·

5: [)ELE,:S I,.'Rfl 16 ?
i 2 4 8 15

EVEN [•ELERS VAN 16 ?

... INPUT 6 EVEN D.~LERS '··'Afl .
OUT: 2 4 8 16
?
ONEVEN DELERS 'IAN l6 •

16 '::•

INPUT 7· ONEVEN DELERS IJRN 16 ?
0 U T: 1

ONE'.IEN
INPUT
OUT·

C•ELERS VAN 15 .,
8: ON EVEN C•ELERS
1 3 5 15

VA~J 15 ?

ENKELE ONEVCN DELER~ 'IAN 15 ?
INPUT 9· ENKELE ONEVEN DELERS 'IAN 15 '
OUT: 1 5

EEN ONEIJEN DELER 'IAN 15 >
INPUT 10: EEN ONEIJEN vELER 'IAN 15 ?
0 U T : ,;;. ,,
r:·E kLEHISTE DNEilEN 6"E L E R VAN 4· :, '?
INPUT 11: DE !(LEINSTE ONEVEN C•ELER \'AN
OUT: 1
.,
C· E GROD1STE 011 E VEri DEl,ER 1/AN 4.5 ?
UlPUT 12 [' E GPOOTSTE ON EllEN .C•ELEF: \'RN
OUT: 4:•
?
Ul.k:ELE OIIH'i':N ,,ELERS \'AN 45 ?
INPUT 13: ENKELE ONEIJEN DELERS VAN 45 °
OUT: 1 5 15

45 ·-::·

45 ?

- 33 -

DE VIERKAHTSWORTEL VAN 16 ?
INPUT 14: DE VIERKANTSWDRTEL VAN 16? -------- --"-- - ----- --- ·--

OUT: 4

. ---[iCti~E-EciEf1FiCHTSTWRTELVAN r?
__ _ U l:!_K_l(O W J:LJ:!QB D , IJif.U.I __ f-lO _T __ ~_!;U P U I! __ .

?
DE TWEEDEMACHT VAN 4 ?
iNPUT 15 ,-[..f ff.lE-Ef>Ef1RCHT VFiN 4 -?
OUT: 16

-"?
DE SOM VAN DE KLEINSTE EVEN DELER VAN 16 EN 2 ?
INPUT 16: DE SOM VAN DE KLEINSTE EVEN DELER VAN

___ QUT: 4
?

16 EN 2 ?

______ DJ;; .GRO!HSTE L•HH lf_flN_QE VLERKfiNT~·NDRIEL VAN _8~ ? ______ _
INPUT 17: DE GROOTSTE DELER VAN DE VIERKANTSWORTEL VAN 81 ?

- _____ o l.!J ; ___ ;;____ --- -- . -- . - --- -- - .
?
DE SDM VAN HET VERSCHIL VAN HET PRODUCT VAN] EN 4 EN l EN 1 ?
INPUT 18: C•E SDI1 i·'RN HET VERSCH!L VAN HET PRODUCT. VAN l EN 4

EN 1 EN 3 ?
OUT: 12

·-·------ -- ------- ·-- -----.-- --------------------------- ---
?
DE V!ERKA-NTSI.ORTEL VAfl DE SOM 'IAN 2 EN 2 ?
INPUT 19: DE VIERKRNTSWORTEL VAN DE SOM VAN 2 EN 2 ?
OUT: 2

_ --~ T F; UCTU8 E_2 _

NODES
1. 1 1
2 18 7 ,

4 ?
~- "
4. 1 ___ L
5. 7 5

1
2
3
4
5

1 1
13 1B

1 4
1 1

6. 4 2 6 1 4
?. 28 6 4 2 33
B. ~ 0__ 5 4 2 9
9. 6 4 7 1 6

" ·--·--·1 0_:.. --~-ll--~-· ,.-i,- 3 14
11. 41 5 s ~3'-:f:C
12. 20 4 4 2 6
13. 20 l 4 2]4
14. 4B 2 4 2 B
15. 20 1 4 2 0

_______ tL __2_~_, __ _o e 2 21
1?. 21 1 8 15 21
RELATIONS - -

-· -···-· _, __ _

1. 2 [1 16 15
0 1~· 14
0 14

4.
5.
6.
7 '.
8.

2
13

_?~-·--Q__,.,!} . . ! ~
3 €1 12 8
2 [\ 8 7
2 0 11 10
2 0 16 16

T2 16
__ ,1.. ····- ... _ -- .. , ,, --- - -·~.

+NO STRUCTURES

+ EfW IflPUT

11

- 34 -

Translation:

1 • The sum of 1 and 1 ?

2. The substraction of 5 anol ,4 l

3. The product of 9 and 3 ?

4. The division of 27 by 3 ?

5. Divisors of 16 ?

6, Even divisors of 16 ?

7. un•even divisors of 16 ?

8. Some uneven divisors of 15?

9. An uneven di~isor of 15 ?

10. The smallest uneven divisor of 45 ?

11 . The greatest uneven divisor of 45 ?

12. Some uneven divisors of 45 ?

13. The square root of 45 ?

14. The powersquare root of 4 ?

15. The second power of 4 ?

16. The sum of the smallest even divisor of 16 and 2 ?

17. The greatest even divisor of the square root of 81 ?

18. The sum of the difference of the product of 3 and 4 and 3 and 3 1

19. The square root of the sum of 2 and 2 ?

[+ illustration of the structures switch)

- 35 -

1. 6. Some JtemMIM on. the futin.won. be-tween. ci.Med c.omp!etion. g!tamma/l.6 an.d

pivuu> e ot!tu.c.tuJte gJtamma/l.6

Intuitively there is a relation between context-free grammars and closed

completion grammars. Indeed~ if we have a closed completion grammar

G =(Voa, Vha, Vp, !>) then we can turn it into a cfg. by considering

all hidden arguments as nanterminals and all procedure names and occurred

arguments as terminals.

If we have a rule a
1

••• an -l> A ~a then the equivalent one in

a cfg. would be a ~A a 1 ••• an

And clearly it is not too difficult to prove that the languages generated

by closed completion grammars are contained in the class of context-free languages.

However the following distinctions can be recognized:

(i) In a cfg. framework we deal with strings, not combinationsf

(ii) The theoretical status of the hidden arguments is distinct from the one of nonterminals

' . (iii} In a phrase structure we can express a precedence relation

and a dominance relation. In a 'relation structure' we can express

a (preferential) precedence relation and a functional relation.

To conclude the distinction between closed camp grammars and cf.grammars

lies in the strong generative capacity rather than the weak generative capacity.

There remain of course a lot of theoretical problems and we hope to investigate

them in the near future.

- 36 -

2. OPEN COMPLETION GRAMMARS

Z. 1 • BM-ic. de.6-<J1.Lt1o n6

Now we turn to another type of· system generating combinations and assigning

relation structures to these combinations, namely an open completion grammar.

Definition 2.1. An ope.n c.omple.ti.ort gJtammaJt is a construct G = (Voa, Vp,b)

where Voa is a finite nanempty set of arguments called the set of occurred

arguments, and Vp is a finite nonempty set of procedure nam~s where Vp n Voa = 0.

8 is a finite set each element of which is a finite ternary relation included

* in Voa X Vp X Voa relating arguments to procedures.

* If (a,A

If (o,A

a) E li where a EVa , A. EVp and a E Vaa then we write o -+ A -+ a ,

* a EVa and o =

the argument appearing on the right of the

a
1

, •.• an and

rule (the output

A E Vp then

argument) a
1

is

equal to the first argument appearing on the left of the rule. For this

reason we also write ~ an -+ ~,

So the difference between closed and open completion grammars is that the output

argument in the second type of systems has already appeared (or is to appear)

in the structure, whereas in the first type the output is always an element that

must be added to the structure.

Example 2.1.

Let G = (Voa, Vp,li

Vp = {A. 8, C \ and li

be an open completion grammar and Voe =(a,b,c,d \

1. abc ~ A ~a

2. d c b ~ 8 ~ d

3. b a -+ C -+ b

An open completion grammar G describes a language called L(GJ in the following way.

Let R be the set of arguments that appear as output of a procedure (R~Voal

then starting with an arbitrary element of R. put the procedure name of w~ch t~is

argument is output after this element and add all other input arguments to the combination.

If there is an argument in the combination that is in R, either the combination is

considered complete, or the same method is applied. Mare formal:

Defintion 2.2. Let ~ denote the relation is 'pJce.6e!le.l'l..t1a-Uy dAJte.c.ily deJUve.d 6"-om'
If there is a combination x a 1 y (x,y possibly empty) where x,y E(Voa Vp" *
and a1
(n ;:,. 1 J

x a
1

y

E R and if there is a rule in the grammar

and A E Vp

(Note: when n 1, with a rule of the form A

* Also ? is the reflexive transitive closure of ~

a1 . • •

, then

a ~
n

we say

, then

*

A

and ')o will be called

The

as

language generated by

LlGJ = fx I xE Voa*

Example 2. 2.

- 37 -

an open completion grammar G, called

and ry * x where y ER !
L[GJ is defined

Let G be the completion grammar of example 2.1. then the following derivations

are possible:

(i) a 4 a A b c i4 aAbCac 4aAbCaAbcc
;L, 3'" (iil d =, d B c b -, d B c b C a

During the derivation process relation structures are obtained in the folloWing

way:

Given an occurred argument as outpUt , draw a square for it, connect it with an

input AND output relation to the procedure circle and for all input arguments

draw squares and make a connection to the procedure circle. For the derivation (i)

in example 2.2. this would result in the following structure:

Note that from this example it is very clear that relation structures are

graphs and not 1rees.

To ease our discussion we introduce the following additional terms:

Defirtition 2.3. Procedures ef which the output is an hidden argument will be

called nondepe~ding procedures. Procedures which are not nondepending will be

called depending.

- 38 -

i-h8 procedures far closed completion grammars are clearly all nondepending

while in open completion grammars all procedures are depending.

The remarks we made about preferentiality for closed completion grammars

also hold here. The definition of the assmciated language of an open completion

grammar is left to the reader.

Now we turn to the parsing problem for open completion grammars. Again we only

treat deterministic open completion grammars due to space limitations.

Algorithm 2.1. Let there be a pds. T1 where procedures are stored, a pds.T2

where arguments found in the input but not yet connected in the graph are stored

and a pds T3 for all arguments found in the input and connected in tbe graph.

A graphic representation is used for the relation structure.

Let a be a input combination and u
1

the i-th element in the combination.

Scan the input from left to right.

(a) if a. is a procedure
j.

(b) if

1. create a procedure circle in the structure and put the procedure on T1.

2. check whether there are eny arguments on T2 (or on T3 for the first

input argument) which can be input to the procedure. If so connect

with input relations and (for the first argument) also with an output

relation~ and put the argument on T3.

If all arguments are found, that is if the procedure is complete~

remove the procedure from T1~ and if the output of the procedure

is not yet connected to another procedure, put it on T2 and execute

the (b) 2 part of this algorithm.

is an argument:

1. Create a point in the structure

2. Check for all procedures on T1 whether this argument can be input to it.

If so, connect and put it on T3, else put the argument on T2.If

the procedure is comp1ete~ do the same as under (a) 2. for complete

procedures.

To have a grammatical input expression, T1 should be empty, T2 should contain

one and only one element (the starting point in the derivation) and the rest should

be on T3.

Example 2.3.

Let us take the grammar G of example 2.1. and parse same combinations of L(GJ.

derivation 1.:

a~ aAbc~ aAbCac

t:r aAbCac

(i) 01 = a

8
(ii) 02 = A

GJ 8

~
(iii) a

3
b

(iv) c

T2: a

T1: A

T2: a

T1 : A

T2: -

T3: a

(argument on T2» create point in structure)

{create procedure circle and put the element on T1

(output was on T2~ so connect and put on T3)

T1 : A

T2: -

T3: b a

T1: C A

T2: -

T3: b a

T1: C A

T2: -

T3: b a

(new input element is argument of procedure

(C as new procedure on T1 and in the

structure)

b is the output/input of C

C is complete therefore:

(vi) a = c
6

derivation 2:

d ~dBcb4dBcbCa
a d B c b C a

(i) a = d
1

EJ T2: d

(iil a = B
2

~

- 40 -

T1: A

T2: -

T3: a b a

T1: -

T2: a

T3: c a b

T1: B

T2: -
T3: d

T1: C A

T2: -

T3: a b a (a is input for Cl

(c is input for A, hence A is complete)

- 41 -

(iii) a3 c

(iv) a
4

b

(vi) a
6

= a

T1: B

TZ: -

T3: c d

T1: -

T2: d

T3: b c

T1: C

TZ: d

T3: b c

T1: -

T2: d

T3: a b c

The same remarks on preferentiality of order should be made here as for algorithm 1 .1 ••

Also non preferentially ordered input combinations are to be accepted by the system.

As an illustration of this we parse the reverse of derivation 1: recall that

a a A b C a c now a = c a C b A

~ TZ: c

(ii) a
2

= a

GG TZ: a c

(iii) u , c
3

GJ ~
(ivl u4 = b

~

(vJ u 5 A

(vi) a = a
6

PROBLEMS 3

- 42 -

T1: c
T2: c

T3: a

',·'·

T1:

T2:

T3:

T1: A

T2: -

-
b c

a

T3: c b a

T1: -

T2: a

T3: c b a

til Construct a program for algorithm 2.1. in an available programming language

and test the examples given.

(ii) Let G ~<voa, Vp. 5 be an open completion grammar where Voa =[a,b,c,d\ ,

Vp = [A, B, C \ and 6

1. a b ~ A ~a

2. b c d ~a ~ b

3, d ~ c ... d

Parse the following examples with algorithm 2.1'

(i) a A b B c d C (iil c d c 8 b A a (iii) A a

- 43-

Now we discuss the way in which instant or delayed interpretation

influences the parsing process.

Recall from section 1. 4. where we discussed the interpretation problem

for closed completion grammars that it is possible to define (at least) two

interpretation modes: instant or delayed. Suppose now that all procedures in

an open completion grammar are considered as instant, then we obtain a situation

where it is not possible anymore to use arguments that have been input to some

procedure again in another procedure, because if an argument is used, it should

be removed from T2 or T3.

Consider e.g. the expression '1 + 1 x 2'. If we leave out all priority rules

among the arithmetic procedures, rules wh.ich do nat count in natural language

anyway, then we can have two ways of interpreting '1 + 1 x 2'.:

(a) (1 + 1 J x 2 and (b) 1 + (1 x 2 J

The first interpretation is obtained by an instant interpretation mechanism:

step 1 :

step 2:

NUM

2

2

NUM

1

2

1

NUM

1

1

NUM

1

1

after execution:

of +

and after execution

2

2

1

2

1

1

- 44 -

The second interpretation is obtained by a delayed interpretation mechanism.

The second argument remains on T3 and is thus open fur further connections.

Step:1:

NUM

1

1

step 2:

After execution of x

NUM NUM -1 ro-...,r,..,-....~ 1 r---"'

After execution of +

NUM

1

3

final 11'
result

2

NUM

2

2

NUM

2

2

This is a very nice illustration of haw the way in Which interpretation is organized

does influeoce the result of interpretation. Instead of saying this sxpression is

ambiguous, so the grammar must assign more than one structure to it, we say there

are different ways of organizing the understanding process and according to the process,

we obtain different structures, with the same rule of the grammar.

- 45 -

An interesting point is also that we can define a more economical parsing

algorithm if we consider all procedures in an open completion grammar as instant.

The algorithm is the following one:

Algorithm 2.2.

Let there be a pds. T1 where all procedures are stored and a pds. T2 for the arguments.

We use again a graphic representation for the(partial) relation structure.

Let a be a given input combination and a i the i-th element in the combination

Scan the input from left to right.

A. If o
1

is a procedure:

1. Create a procedure circle in the structure and put the procedure on T1

2. a. Check whether there are any arguments on T2 which can be input to the

procedure according to the grammar. if so. connect and take that particular

argument from the pds. T2.

b. if all arguments are found, that is if the procedure is complete, remove

the procedures from T1, and execute the 8.2. part of this algorithm with as

argument the output argument of the procedure.

B. if o1 is an argument:

1. Create an argument square in the structure

2. Check for all procedures on T1 whether this argument can be input to it.

If so connect, else put it on T2. If the procedure is complete, do the same as

was specified under A.2.b part of this algorithm.

Just as for closed completion grammars we will now apply the concept of an open

completion grammar to the PC-language, this time however preferentially in

infix-notation.

2.3. ApptiQation ~o ~he PC-language

In section 1.3. we showed that the PC-language in prefix notation could be treated

with closed completion grammars. What we do now is simply change all procedures from

nondepending into depending procedures and what we obtain is an open completion

grammar generating expressions in infix notation.

Let G = (Voa, Vp,6)

and Vp = {NOT, AND, OR,

patterns:

1 •

2.

LOG LOG .,.. X -+
1

LOG

be an open completion grammar where Voa {LOG\

IMPLIES, EQUIVAL, SET, ? 1 and r contains the foUowing

LOG

- 46 -

where X1 = [AND, DR, IMPLIES, EQUIVAL, SET l
X2 = {NOT, ? \

Note that again LOG is the argument type. The argument~ can be anything, e.g.

TRUE, FALSE, P, Q, and the argument value is assigned by the set-function or fixed

Same derivations

(i) LOG =% LOG AND LOG =? LOG

(ii) LOG =) LOG ?

AND LOG DR LOG

Depending on whether We consider the procedures as instant or delayed we obtain

the following structures for derivation (i):

li) delayed:

(iil instant:

(Note that NOT comes preferentially after the argument it is negating and not

in front of it. NOT seems therefore a procedure which is conside~ as nondepending

even if we have an j_nfix notation)

There are a number of features of an instant interpretation process that makes

it more interesting than a delayed one. One of them is that there is less storage

required, because once a piece is interpreted, it does not need to be remembered anymore.

Also intuitively humans tend to interpret as they go along and not when a whale

expression has been produced.

There is how~ver one deficiency~ namely that nesting to the right is not possible

There is a remedy for this namely the punctuation acting either as a means to turn

an instant procedure into a delayed one and vice-versa, either as a means to prevent

an argument from being connected to a procedure.

This last solution seems to be present in the case of the PC-language with the use

of brackets. Take e.g. P AND [Q OR Pl • The first bracket prevents Q from being

connected to the AND-procedure. As a result Q remains on T2 and is ready to act as

input for the next procedure. The last bracket is breaking up this prevention and

the result of Q OR P (stored in the Q-placel is input to the AND-procedure.

- 47 -

Let us now do some experiments again. We programmed algorithm 2.2. in

FORTRAN IV and together with the interpretation mechanisms used earlier,

the 9pen completion grammar for infix notation and the same procedures

as for prefix notation we have a comPlete L.U. system.

Results of our implementation onthe POP 11/45 are illustrated by:.the

following output. The same conventions for communicating with the

system hold as for previous experiments.

?
P SET TRUE
INPUT 1: P SET TRUE
? ------ .. ---· --··------
Q SET FALSE

_____ IJIP!JJ ... 2: Q !:;J.L FAL_!'&···--·--·---·······
?
p ?
INPUT 3: P?
OUT: TRUE
?

_______ E A)"!~~-{;11.

INPUT 4: P AND Q?

OUT: FALSE

P AfW Q_()R P ~·
INPUT 5: P AND Q OR P ?

____ ou.r TX\i.L _
")

P AND (Q OR P) ?
INPUT 6: P AND .; Q .OR P. l ?
OUT: TRUE
?
R .. gT N_Q_T _FR.b-2_E
INPUT 7: R SET NOT FALSE
?
R ?

INPUT 8: R?
OUT: TRUE

-··-~-? -·-·· ----·
(P II1PL!ES
INPUT 9: (
OUT: FALSE

~.. --

Q l EQUIVAL C Q IM\MPLIES P l ?
P IMPLIES Q l EQUIVAL C Q IMPLIES P l ?

((P AND Q l OR (Q AND P l l IMPLIES P ?
INPUT 10: C (P AND Q l OR (Q AND P l l IMPLIES P ?
OUT: TRUE
?
+STRUCTURES
?
P EQUIVAL P

. ItiPLIT :1,1..:. P EOUI~'BL E
STRUCTURES

NODES
1 10 B
2. 5 5
3. 10 2

RELATIONS
1. , 0

T2 1

0 [1 14
1 0 5
5 B 14

1 1 3

+IW STRUCTURES
?

+GRAI111AR - 48 -
1. 3 10 10 10
2. 3 10 10 10
3:. 3 10 10 10
4. 2 10 10
5. 3" 1,0 .10. 10
6. 2 10 10 ,
'. 2 10 10
8. 3 10 10 10
9. 3 10 1[1 11

0

+LE.XICOH __
1. AN[' 1 1 1 0
0 <. OR 2 2 1 0
3. IMPLIES :; 3 1 0
4. flO T 4 4 1 0
5. EQUI'.IAL 5 5 1 0
6. ? 6 6 1 " 7 PROOF { 7 1 0
8. SET E: 8 1 0
9. (9 9 0 0

10. LOG 10 0 10 2
11 TRUE 10 0 11 [1

12. FHLSE ..1~ 0 .1_2 1
13:. > 11 0 13 0
14. p 1B 0 14 0
15. Q 10 0 15 1
16, R 10 0 16 0
?

5 SET f!OT Q
.

Ill PUT 1"'' ". 5 SET NOT Q

?

Q ?

INPUT 13: Q 0

OUT: FALSE
?

Q NOT ?
INPUT 14: Q NOT ?

OUT: TRUE
?

AflD P Q '
From input 15 we start to experiment

INPUT 15: AND P Q •
OUT: FALSE
?

with non preferential orders, in particular

prefix and postfix.

I!1PLIE5 P [.1 '?

INPUT 16· IMPLIES P Q '
OUT: FALSE

li'IF'LIES Q P .,
INPUT 1?: IMPLIES Q P ?
OUT: TRUE

P Q HIPLI ES .,.
INPUT 18: P Q IMPLIES '
OUT: FALSE

Q P HIPLIE5 ?
INPUT 19: Q P IMPLIES •
OUT: TRUE

AN~ OR AND P Q R 5 o
INPUT 20· AND OR AND P Q R 5 ?

OUT: HUE

P AND Q OR R AND S ?
INPUT 21· P .AND Q OP P AND 5 •
OUT: TRUE

5 R P Q AND OR AND '
INPUT 22: 5 R P Q AND OR AND'
OUT: FALSE

5 R Q P RND DR AND •
INPUT 2~: 5 ~: Q F' AI~[) OF: A~W ?
OUT: TRUE

SET HW: TRUE
UlF'UT 24: SET I 1-JF' I TRUE

Note that input 20 is equal to input 21 and

23, only the preferential order is different.

?
SET INP2 _FALSE __
INPUT 25: SET INP2 FALSE
?
IflP1\! -A-ND IHPT\2 ?
INPUT 26: IHP! AfW INP2_ ? -··----·ouT':- i=A'LSf- -- ~----·- .. - ·-·--
?

+LEXICON
1 AND 1 1 1 0
2. DR 2 2 1 0
3. !nPL_gs_ 3

------- <1:- NOT ·-4-3
4

1 B
1 0

5. EQUIVAL 5 5 1 0
b. ? 6 6 1 0
7. PROOF 7 7 1 0
8. SET 8 8 1 0
9. . 9_

-- --·····-iii. LOG 0
9

10
0 0

10 2
11. TRUE 0 10 11 0
12. FALSE 0 10 12 1
13. l B 11 13 B
14. P 10 B 0 14
15. Q ML_ a -~5__ 1
16. R 10 0 16 0
17. s 10 0 17 0
18. INP' 10 0 18 0
19. !NP2 10 B 19 1

+ EJH'- HlP LJT

11CR>PIP

- 49 -

INPJ en inp2 are two new variable names,.

this just to illustrate that anything new

-· is conside(9 as a propositional variable_

--- ----· --

- 50 -

2. 4. AppUea.Uon ;to MtU!l.at la.V19uage

In section 1.5, we showed that nominal groups can be treated with closed

completion grammars. In this section we will extend our discussion to

other parts of speech which appear outside the nominal phrases. We

stress that we do not present a fully worked out theory but only indicate

a direction of research. The universe df discourse is again qimple arithmetics,

and the language is Dutch.

(i) ~ are the only possible way of expressing arguments. For this purpose

we will use them but leave in this section all nouns out which are procedures.

(iil Prepositions. We have seen in section 1.5. some prepositions which were only

used as indicators of a certain relationship. Now we discuss some prepositions which

are more than this. E.g. PLUS (plus J MIN (minus J, MAAL (times, there is a dHference

here between English and Outch~'maal'is a preposition but 'times' isn't)

E.g.: 2 PLUS 2

2 plus 2)

the relation structure:

NUM

2

2

after execution:

NUM

2

4

2

NUM

2

2

To illustrate the ambiguity and distinction between delayed and instant procedures

consider the following example:

4 MAAL 2 PLUS 1

(4 times 2 plus 1)

NUM

NUM

2

2

(iil delayed:

NUM

4

4

- 51 -

NUM

(iii) Verbs: Although the matter needs further investigation verbs seem to be depending

procedures. The first input (also output) argument is what is traditionally called the

subject of the sentence. This is in accordance with the fact that the subject of

a sentence is standing preferentially in front of the sentence and also that subject

and main verb 3gree in number.

When verbs are used in the imperative (and interrogative) they are prefer~ntially

in front position. This seems to be because then the output is not present in the

input combination but is created as an hidden argument. In other words when verbs are

used in imperative or interrogative, they shift from depending,into nondepending

procedures

{iv) participles are used in the same way as verbs. Consider e.g.

VERMENIGVULDIGD (multiplied], VERMEERDERD (augmented], VERMINDERD (decreased],

GEDEELD (divided],etc,,

E.g.: HDEVEEL IS 6 GEDEELD DOOR 2

HOWMUCH IS 6 DIVIDED BY 2

structure:

N~M

HOEVEEL

?

(how much) (is

NUM

6

6

after execution of the functions:

NUM

HOEVEEL

3

NUM

6

3

(divided]

(Note that 'door' is a nondspending procedure)

NUM

prep:DOOR

2

(by)

NUM

2

2

(v) in an equivalent way adjectives when appearing after a noun (instead of in front

of it) are used,

E.g; EEN GETAL KLEINER DAN 7

(a number smaller than 7

NUM NUM

prep:DAM

NUM

7

7

- 52 -

There is a lot more to say (e.g. about relative clauses and conjunction)

but ~is will do as an illustration.

The reader may have felt the need for a system in which both depending

and nandepending procedures are appearing. We w~ll introduce such a system

called a complex completion grammar in the next section. Experiments

an.natural language processing for the parts of speech that were discussed

in this section will be postponed till then.

3. COMPLEX COMPLETION GRAMMARS

Now we define a 'mixed' type of grammar, which accepts the union of the

language accepted by open and closed completion grammars.

Definition 3 •. 1. A eomp.tex eomp-tetiol't gJu:tmmM is a quintuple G

where

(Voa, Vha, Vd, Vn,5)

Voa is a finite nonempty set of arguments called the set of occurred arguments

Vha is a finite nonempty set of arguments called the set of hidden arguments

Voa u Vha = Va , is the set of arguments

Vd is a finite set of procedure names called the set of depending procedures

Vn is a finite set of procedure names called the set of nondepending procedures.

Vd UVn = Vp, is the set of procedures and Vp n Va = ~

* 5 c= Va x Vp x Va is a complex function relating arguments to procedure names.

If (a,A, a)E ~ then we write

a E Va •

where a E Vat A E Vp and

Definition 3,2. Let ~ denote the relation 'i& p~en~ent£a.e.ey ~ect.ey d~ved n~om'

-If there is a combination xu y (x,y possibly empty) where x,y E(Va u Vp)~
a

n
u E Vha and if there is a rule in the grammar of the form a 1
(n ~ 1 J where a

1
, an E Va and A E Vn, then we say that

x u y ~ x A a 1 .•• any

- Dr if there is combination x u y (x,y, possibly empty) where x,yE(Va UVpJ*",

u E Voa and if there is a rule in the grammar ->A u

a

and A E Vd, then we say that xu y =+xu A a
1

,,, any

~ is the reflexive transitive closure of 9 and we call ~ 'M plteo~ent£a.e.ey
d~ved nMm',

The language generated by a complex completion grammar G. denoted as L(G) is

defined as

L(G) = f X I X * (Voa u Vp) * and y ~ x where y E Va}

Example 3.1. Let G

where Vaa = {a.b,c,dJ

(Voa, Vha, Vd, Vn 5) be a complex

Vha = fa J, Vd =(A,B) Vn =~C,O)

1. d b-> A -> d

2. c

3. bd-+0-+a

4. c -+ B -+ c

completion grammar

and 5

Some derivations:

(i} a4 4
Cca""? C c B a ~ C c B 0 b d

(iil d 4 d A b

RElation structures are obtained in the same way as for open and closed completion

grammars. I.e. when there is a nondepending procedure, connect the output with

only one line, whereas if the procedure is depending, connect the o-utput with an

input and output relation.

The relation structure for derivation (i) is:

3.2. The p~~ng p~oblem uo~ complex camplet£an g~m~

The algorithm that solves the problem is basically a composition of algorithm 1.1

and algorithm 2.2 ••

Algorithm 3.1.

Let there be a pds. T1 for the ~rocedures and a pds. T2 for the arguments.

Let ~be a given input combination and ~. the i-th element in the combination.
l

Scan the input from left to right.

A, If 0'"; is a nondepending procedure.
l

1. create a procedure circle in the structure and put the- procedure on T1.

2. (a) Check whether there are any arguments an T2 which can be input to the

procedure according to the grammar, if so connect and take that particular

argument from the pds. T2.

(b) If all arguments are found, that is if the procedure is complete, remove

the procedures from T1, put the output slement as argument square in the

structure and connect it with an output relation to the procedure, then execute

the C.2. part of this algorithm.

- 55 -

B. If a
i

is a depending procedure:

1. create a procedure circle in the structure and put the procedure on T1.

2. (a) Check whether there are any arguments on T2 which can be input to the

procedure according to the grammar~ if so, connect and take that particular

argument from the pds.T2. Note that we connect with input and output relations

if it is the first input argument.

(b) If all arguments are found, that is if the procedure is complete, remove

the procedure from T1 and execute the C.2. part of this algorithm with as

argument the output argument of the procedure.

c. If ~~ is an argument:

1. Create an argument square in the structure

2. Check for all procedures on T1 whether this argument can be inpt.1t to it,

If so connect, else put it an T2. If the procedure is complete and depending,

execute the 8.2. part of this algorithm. If the procedure is complete and

nondepending, execute the A.2.b, part of this algorithm.

The reader is advised to work out some examples himself. He will see that the parsing

process is identical for depending procedures with the one introduced by algorithm 2.2.

and for nondepending with the one introduced by algorithm 1.1 ••

We promised in section 2.4. to do experiments with a grammar containing depending

as well as nondepending procedures in a natural language environment.

The grammar is the following one:

Let G =(Voa, Vha, Vd, _ Vn. 5) be a complex completion grammar and

0

Voa { HOEVEEL, WAT ~ and all natural numbers

Vha (NUM,(Num,prsp:VANI (Num, prep:METI, (NUM, prep:DOOR), (Num,PREP:enl}

Vd {rs, VERMENIGVULDIGO, GEDEELD, VERMINDERO, VERMEEROERO, PLUS, MAAL, MIN l
Vn {oE, HET, EEN; VAN, DOOR, EN, SOM, VERSCHIL, PRODUCT, OELING, OELER, DELERS,

GROOTSTE, KLEINSTE, EVEN, ONEVEN, ENKELE, VIERKAN$WORTEL, TWEEDEMACHT, MET J

contains the following patterns:

1 • NUM -> x1 -> NUM

2. NUM -> VAN -> (NUM, prep/VAN)

3. NUM -> EN -> (NUM,prsp:ENI

4. NUM -> DOOR -> (NUM,prep:DDOR)

5. NUM -> MET -> (NUM, prep: METl

6. (NUM,prep:VANI (MUM,prep:ENJ -> xz -> NUM

7. (NUM.prep:VAN7 (NUM,prsp:DDDR)-> DELING -> NUM

8, NUM NUM -> X4 -> NUM

8. NUM (NUM, prep: MET)-> x5 -> NUM

1 D. NUM [NUM, prep: DOOR)-> GEDEELD -> NUM

- 56 -

We made an implementation with this grammar, the interpretation

mechanism and alQorithm 1.2 •• The procedures should be rather obvious

·here • Note that e.g. VERMINOERD (diminished), VERSCHIL (substraction),

MIN (minus), make all use of the same procedurel definition.

Our usual conventions hold for comm~nicating with the system.

An ENglish translation will be given afterwards.

?

HOEYEEL IS 1 PLUS 1 7
_!fjPUT___L_HQ~gL_ IL.t EL~!S. 1 __ ?_

OUT: 2

HOEYEEL IS 3 MIN 2
INPUT 2: HDEYEEL
OUT: 1 - -

-------H-oEv£El.. Ts--:l -Mffi'iC
INPUT 3: HOEYEEL
OUT: 6
?

?

IS

2 ?
IS

3 11I N 2

3 11AAL 2

HOEYEEL IS 6 GEDEELD DOO~ 3 ~

7

7

INPUT 4: HCIEYEEL IS 6.JlEDEELL:_DOOF: 3 ? -------- --- ou·r-- --2 --- - -- --

HOEYEEL IS 7 VERMINDERD MET l >
UNKNOWN NOR[•, INP~T NOT ACCEPTED
?

____ H_DJ;'i~E~ __ Is ;'_v~,;;11IND~RC•_ 11p 3 L. __
INPUT 5: HOEVEEL IS 7 VERMINDERD MET 3 '
0 U T: 4

WAT IS DE SUM _YAN 4 _EN 5 GEDEELD DOOR l •
INPUT 6: NAT IS DE SOM VAN 4 EN 5 GEDEELD DOOR l ?

HOEYEEL IS 7 GEDEELD DOOR DE SDM VAN 4 EN ! ?
INPUT 7 HOEVEEL IS ? GEDEELD DOOR DE SOM VAN 4 EN 3 ?
0 U T: 1

HOEVEEL IS DE VIERKANTSWORTEL VAN 16 MARL 4 ?
IIH'Li"T "8:---HbEVE-EL -IS C•('lfERKANTSIWRTEL VAN 16 t1AAC4 ?.
OUT. 16
0

VAl-l 1 EN 1 [>E ~.OM IS HOEVEEL ?
INPUT 9: VAN 1 EN 1 DE SOM IS HOEVEEL o Note the non prefe rential input
OUT. 2 .. ,
7 MARL ; GEPEELD DOOR ? MIN 1 PLUS 7 IS HOEVEEL '
INPUT 10: 7 MARL 7 GEDEELD DOOR 7 MIN 1 PLUS 7 IS HO£VEEL ?

OUT: U
.. .,

DE GROOTSTE DNEVEN DELER VAN DE VIERKANTSWORTEL VAN 81 PLUS 1 °
INPUT 11: DE GROOTSTE ONEVEN DELER VAN DE V!ERKANTSWDRTEL VA

81 PLUS 1 "'
OUT: it~

10 J1RAL 10. --:·
INPUT 12: 10

ii:) t·1ARL 10 --:.

INput 12 is Hot accepted because the character '0'

was given instead of the number '0'.

INPUT 13: 10 MARL 10 ?
OUT: 100
?
100 GEDEELD DOOR DE TNEEDEMACHT VAN 10 ?
INPUT 14: 100 GEDEELD DOOR DE TWEEDEMACHT VAN 10 ?
DU T: 1

DE KLEINSTE ONEVEN DELER VAN 100 VERMENGl\~iGVULDIGD MET 15 ?
!flP.JT 15: [:oE KLE!t15TE DIIEVEN DELEF: 'iAN __ 100 VEF:/1~1-HGVLILC•!Gc• M
T 15 "
ri!IT ·

? - Sl -
HOEVEEL IS 17 GEDEELD DOOR 17 VE!l11ENIGVULDIGD MET 2 GEDEELD

-------I NP U r16-~---H-OEVEEL ls17GEDEETD'DiioRiTVER!1i:NTGVULDI ri"D -MET
GEDg_ELD _DOOR 2 _?

OUT: 1
~TRUO~BE~

_____________ NDJ'.E.B:~------------- ----
1. 20 0 0 2 22
2_. _ 2_4 B 1 16 2 4_
s. 20 2 5 2 3.3
4. 26 10 2 6 26
5. 5 3 3 - (5
6 20 5 4 3 34

-~· ~---·--- -- --··-;:,-... ---42 ____ 4 ___ 5---·3.--3:"4--

8. 2_5 __ 11 4 5 25
9. 29 9 5 1 29

10. _?Q 9 4 4 35
11. 43 B 5 4 37

------------ .U __ _?Ji_1JL _f ____ 6_?.6_
13. 5 ::.t 7 1 5
14. 20 13 4 5 36
is ---4i 12- 5 5 35
_16. _g_:t, 1 __ B_t~ 21
RELATIONS

____________ __L _____] ___ ~ --~ ___ 3 _____ --- -----------
2 3 0 1 1 7
_3. _? 0 7 6
4. 3 e 1 1 11
5 , _2 0 11 10
6. 3 a 1 1 15

. ----- __ .L-- _____;; __ a __ 15 __ .J.±
8. 2 0 1 1

T2 __ 1
?
+NO 5 TRUCTURES
'
DE VIERKRNTSNORTEL VAN DE SOM VAN 4 EN 4 EN 4 ?
INPUT 17: DE VIERKRNTSNORTEL VAN DE SOM VAN 4 EN 4 EN 4 7
D.U.T _: __ 4 __ __
UNGRAMMATICAL INPUT
? __ _
DE VIERKANTSWORTEL IS ?

________ Jl!f:JJ.L.1B_;_ _ _[>_f.:_..'11..ERKill!T5flORU.L. I~-_]

UNGRAMMATICAL INPUT
' . _,. -·· . - -
I 5 I~ AT DE EEN

_ _UIPUT__19: 1_5 I·IAT DE EEN
UNGRAMMATICAL INPUT

-·-·--.----·-··? ·--------·---·----- -. ·-
VAN 16 DE VIERKRNTSNORTEL GEDEELD DOOR 4 o

DOOR 2 ?

INPUT_2B: VAN 16 DE VIERKANTSWDRTEL GEDEELD DOOR 4 o
ouT : 1 From input 20 WS ___ start -f0.8Xpsrim8il-tsyst-9~~-tic~lly

' +STRUCTURES
with non prefsrentiaE~' orderings. They a.i-9 all being

--~-.:...-._
.. processed as one can sse.

1,/Rfl 16 [>E
INPUT _21:

VIERKANTSWORTEL DOOR 4 GtD~tLD ?
1,/RN 16 DE 'iii;RKRfiTSNORTEL C•OOR 4 GEDEELC• ?

OUT: 1
~TRLICTPRES

"" ~-- ·- N.DDf.:L.,. •-- -oc -··~-~-"·--

1. 4
2. 2[1
:s. 40
4. .1
-5 18

(, 20
8 5

2 1
1 4_
5 4
1 - 2
7 3
4 ,_ .. 4

8 4
3 4

1
2
2
1

iS
1
1
1

9. 42 11 5 3:
ill 20 0 B }
11. 26 10 5 6
1 __ 2. " .2A 1 -~- J,_:j
RELRTIO~l5

1. ,2 e 3 2
2
~-
4
5. --
6.

2
2
2

_}
2

£1 ?· 6'
B 3: 3
0 { {

j) . 9 ~0
0 10 10

4
D

1
1

iS
4

3 :~
5
5

34
26
21

9

-~
I

- - ,._, ___ "

--·-·---- ..

-

-- ~-- --·· - 58 -
DOOR 4 GEl)EELD DO\E -u
DOOR 4 GEDEELD_DE VE\IERKANTSWORTEL VAN 16 ?
INPUT 21: DOOR 4 GEDEELD DE VIERKANTSWORTEL VAN 16 ?
OUT: 1
STRUCTURES :

NODES
1. 5 l 1 t 6
0
"· 20 1 4 2 33
3. 42 4 5 2 1
4. 26 1~ 2 6 26

~- - _1_ .:I. _): 1. .. l
6. 18 ? 4 F 18
?. 4 2 5 1 4
8. 20 ? 4 3 34
9. 40 6 4 3· 5

10. 2B 5 4 3 34
20 a

-·- ~-----

.. _J1". 2C--i - .. ~ .. J g_§_ ·-~""~ ·~·"'' ··-- ··~-~-

12. 6 15 .21
RELATIONS

1. 2 0 3 2
2. 3 e 11 11 3
3:. 2 e 11 10

__ 4 .. -- _? 0 _10 9 .--- ____
5. 2 0 9 8
6. 2 6 11 11

T2 11
?

DOOR 4 DE VlERKANTSNORTEL VA~ 16 GEDEELD ?

__ IJif.liT .. !t<! .. DDDR 4 l':E. \1 IE_Rt;BNT~HORJE.L _II~~ 1..9. GEDEELD.?
our: 1
5TRUCTLI.H5

HOC>ES
1. 5 3 1 1 5

~----
2 .. - .Vt J. .. 4 2. 3:} __ .
3. 42 11 5 3 1
4. 1 J .. 2 1 1
5. 18 ? 3 p 18
6. 4 2 4 1 4
? 2£t 6 4 3 34
8. ··-· 11)._ . ?. 4 _3 3 .. 4. ·----- .. , __
9. 29 4 4 3 5

10. 20 a a -. 34 .::.
11. 26 10 5 6 2£,

12 21 1 6 15 21
RELATIONS

1 _£ ___ 0 .. J__ .? ..
0 2 0 10 9 <.

]. 2 a 9 8
4. 2 0 8 ?
5. 3 0 3 1(1 3
6. 2 0 10 10

. L2 1_0 . " ----
?
~OOR 4 VAN _16 DE VIERKANTSWORTEL GEDEELD ?

INPUT 25: DOOR 4 VAN 16 DE VIERKRNTSWORTEL GEDEELD ?
0 U T: 1
SH:UCTUF:ES

NOC•ES
L 5 :, L 1 5
2. 2@ 1 4 2 33
3. 4.2 11 5 ,S 1
4 4 2 2 1 4
5 ~B _4 4 .. ~ 14
6. 4ll 8 4 3 4
? 1 1 3 1 1
8. 18 7 4 u 1E:
9. 2ll ' 4 1 5

1!:.1. 2 [1 [1 [1 - 34 :._;

i·i 26 10 5 6 26
1 :~. 21 1 6 15 21
RELRTIO~JS

J..
,,
" B .;.> 2

2 2 0 6 5
:;, 2 [1 J. 0 9
4 2 B 6 6

... , - ...

- 59 -

5. 3 0 3 10 3
6. 2 0 10 1_0

T2 10
?
GEDEELD L'0-0R·4-·IIf1H- -16 DE VJERKANTSMORTEL-?- ------

··-. ___ JJ!.~ I,!_Lg_L .. M DE Eb.D .. .!i.P.o.L'L .'!..~1-t .. 1§.J!.~ __ y I ~_R.'5~JUS..~9B.Tg __ , ________ _
OUT: 1
STR~P.URES

~OQE5 __ :
1. 26 10 1 6 26
2 53 2._)~~-5. -------- •-'•- --~·~···2·0-----~::' 4 2 33

4, ____ 42 .. 1 5 2 4
5. 4 2 3 1 4
6. 20 5 4 3 34
? . 40 9 4 .. 3 1

- _____ jl_. 1 1 4 1 1
9. '18---,;- -5 "i:'i 18---

10. 20 8 4 3 34
11. 20 0 3 3 26
12. 21 1 6 15 21
IHLATIONS. ,-

1. 3 0 11 11 4

----~---

~-- ---.----2.·-·-··-2- · o-·---4--~ .. 3--------- --~-~- · ·-- · -- .. --------... ---o----- · ---- .. --~--- ---·- ·- ···--- ---·--·- ···

3. 2 0 7 6
4. 2 0 11 10
5. 2 B 7 7
6. 2 B 11 11

_ --'----. .±J..L'!ll!U:t ____ ----------· __ _
1. DE 1 1 0 1
2 .. HEL_ 2 1 0 __ 1
3. EEN :l 1 0 2

. _4. VAN .. _ 4 _ 2 _0 _1
5. DOOR 5 3 B 1
6. EN 6 4 0 1
7. 5011 7 5 0 3

.. ___________ L_I/ERS.Ptl 1. .. 8 __ ::L 0 __ 4
9. PRODUCT 9 5 0 5

________ iBc __ DELtN.!L ... 10. 6._0 .o
11. DELER 11 7 0 7

--~i~~"'•----!!~~~~~frTH--1 -~ ~ ·- - --- -----· --------- ·· ----- ------
1_L ~L_EINSTE 14 :1,_ 0 9
15. EVEfl 15 1 0 10
1§. OJIEVEfl 16 1 0 11
17. ENKELE 17 1 0 12

-------- 18. VIERKRNT 18 X 0. 1J
i"Tf' -THE·E-DE11 A 19' 7 0 14
20. ~WM 2E1 0 20 1
21. ? 21 1 1 15
22. HQEVEEL 20 0 22 i
23. WAT 2B B 23 1

------ --~-4_, __ !.L ______ ;~ ~ 1 1§ ------·-· ---------·------------ ____ ·-----------------
25. VERMENIG 25 11 1 5
26. GEDEELD 26 10 1 6
27. VERMINDE 2? 11 1 4
28. I'Efi1EER.C• 28 11 . l 3
29. 11ET 29 9 B 1
30 PLUS Jll 8 J, .. _L_. _ . --- ---~- ·::1~-i-ii"N----- ----31--8' 1 4

32. MRAL 32 8 1 5
?

?.
B.
9.

41)
20 20
20

10. 20 •}2
11. 3 20 2B 43

- 60 -

Translation:

1 • How much is 1 plus 1 ?

2. How much is 3 minus 2 ?

3. How much is 6 divided by 3 ?

4. How much is 7 diminished by 3

5. How much is 7 diminished by 3 1

6. What is the sum of 4 and 5 divided by 3 ?

7. How much is 7 divided by the sum of 4 and 3 ?

8. How much is the square root of 16 times 4 ?

9. Of 1 and 1 the sum is how much ?

1 o. 7 times 7 divided by 7 minus 1 plus 7 is how much ?

11. The greatest uneven divisor of the square root of 81 plus 1 ?

12. 10 times 10 ?

13. 10 times 10 ?

14. 10111 divided by the square root of 10 ?

15. The smallest uneven divisor of 10111 multiplied by 15 ?

16. HOw much is 17 divided by 17 multiplied by 2 divided by 2 ?

(with structures switch)

17. The square root of the sum of 4 and 4 and 4 1

18. The square root is ?

19. Is what the an

20. Of 16 the square root divided by 4 ?

21. Of 16 the square root by 4 divided ?

22. Of 16 the square root divided by 4 ?

23. By 4 divided the square roibt of 16 ?

24. By 4 the square root of 16 divided ?

25. By 4 of 16 the square root divided ?

26. Divided by 4 of 16 the square root ?

4. PERSPECTIVES AND CONCLUSIONS

4. 1. PeMpec.tivM

Although some insights may have been achieved, a lot of problems remain. In

particular how world knowledge should be represented and incorporated in the process

of parsing.

The following points should be investigatsd further:

(i) Refinement of the types within an argument. The type information that forms

the basis for a connection in the structure during parsing was here presented as

being a simple and straightforward matter. This is clearly not the case, also the-re

some preferentiality is involved, as was recognized and worked out by WilRs (1975),

(iil Lsxical ambiguity. The definition of nondeterministic parsing algorithms

should be undertaken for the three types of systems. Clearly nondeterminism (as

defined in definition 1.') is equal to a certain typs of lexical ambiguity,

(iii) Refinement of the interpretation mechanism. When an understander meets· the

expression 'Give ·me the names of some human beings', he cannot start to enumerate

all beings, then compute the subset of human bsings and finally return a subsst of

this, simply because the set -Of beings is an infinite set. What we need therefore

is a sort of intertwined interpretation mechanism , where each procedure is not

executed seperatiy.

In particular it should be partially executed till information can be passed

to the procedure from which the output of the current procedure is depending.

Then this procedure is partially executed and so on. Semantic interpretation in

this way runs up and down a structure, preventing excessive compute. tion.

(iv) Procedural definition of predicates. A lot of work remains in discovering

what procsdures are used for the different predicatss. The problem is a difficult

one b~cause it hangs together with the way in which the memory for data base)

is organized.

We refer in this context to recsnt work of Hewitt (1973,1975), Winograd (1975) and

others.

(v) Intermediate representations . Another way of solving the problem of

excessive computation is by introducing intermediate representations for sets.

It may be thought that the procedures can only be direct mappings, i.e. functions

themselves, however it is perfectly possible to let the procedures be such things

as 'set~builders'. E.g. 'Some numbers smaller than 6'. 'Number' can be considerd

as a procedure_ having as output {xI Number(x) \ 'smaller' takes this set and

turns it into a new form: { x I· NUM(.x) and x .(6\ ,etc, ..

Ws will deal with these mattsrs in forthcoming publications.

- 62 -

To conclude we state some of the insights we hope to have made clear.

1. The understanding mechanism is basically a set of processing systems that

bring about understanding by the manipulation of information structures. One

of them is a parser~ that is a system extracting structures according to a

given grammar for an arbitrary input. Another is an interpreter, a system

carrying out the interpretation of the meaning elements in the structure obtained

by the parser. So the parser and interpreter communicate via a structure

(called ths relation structure in this paper).

Contrary to structural (and in particular Chomskyanl linguists we do not

think that structures (structural descriptions on ths level of syntax and

unordered (or ordered) lists of semantic markers on the level of seman~ics)

are a final and sufficient explanation for understandiqg.

Instead of studying structures, we should study procedures. Structures are

only a by-product of ths functioning of ths proceosing procsQurss.

2. One of the main novelties introduced is the attitude towards order. Order

is hers not simply a feature of ths structure of a language, but is something

that can bs understood from ths way in which the parsing proceeds. In other

words, order is not an end in itself, but motivated by the understanding process.

It is no coincidence that ths subject of ths sentence is stand~ng preferentially

in front of the verb, that the adjectives and adverbs stand in front of the noun,

that prepositions come before every other word in the noun phrase ,etc •.

This can all bs explained from ths role they play ln ths parsing process.

A very strong result is also ths flexibility of ths parsing process, something

completej·y lacking from phrase structure parsing.

3. Another interesting point is that semantic interpretation is not taking

place w n syntactic processing is finished for the whole sentence. We showed that

there ars other ways of doing this and also that ths interpretation itself is

depending on the way in which the process of interpreting is conceived.

4. Other ways of extracting semantic structures without doing first phrase

structure parsing are Riesbeck's parser (Riesbeck,l974} producing Schank's

conceptual dependency graphs and Wilks' analyzer (Wilks,l975l • Our approach

differs from those mentionn~d above, especially the first one, in that we

tried to dsfins underlying systems, instead of just designing a program doing

the job.

The need for relationa-lly directed descriptions of language is something also felt

mars and more felt in structural linguistics (cf. Johnson,l974).

- D~ -

There remains a lot to be discovered and investigated. We personally feel that the

systems described have a great potentiality in them.

We hope that completion grammars will turn out to be an interesting tool enlarging

our capacity to deal with language.

5. REFERENCES

Hewitt, c. (1973) Procedural Semantics. In: Rustin, R. (edl: Natural language

Processing. Algorithmics Press, N.Y ••

Hewitt, C. (1975) Stereotypes. In: Schank, R. & B.L. Nash-Weber (ed) Theoretical

Issues in Natural language processing. Mimeo Cambr,idge Mass.

Johnson, D.E. (1974) Toward a theory of relationally based grammar. Ph.D. Thesis

Urbana, Illinois.

Riesbsck. C.K. (1974) Compuational understanding: analysis of sentences and context.

Institute for semantics and cognitive studies. Castagnola, microfiche.

Wilks, Y. (1975) An intelligent analyzer and understander of English. Comm. ACM. 1975

Winograd, T. (1975) Frame representations and the declarative procedural

controversy. In D. Bobrow & A, Collins (edsl: Representation and understanding.

N.Y. Academic Press;

