
ANTWERP PAPERS IN LINGUISTICS

nr. 5. 1976

ON THE FORMAL PROPERTIES OF COMPLETION

GRAMMARS AND THEIR RELATED AUTOMATA ,

Luc Steels & Dirk Vermeir

UNIVERSITEIT ANTWERPEN

Universitaire Installing Antwerpen

Oepartementen Ger. en Rom. Afdeling Linguistiek

Universiteitsplein, 1 -B-2610 Wilrijk{Antwerpen) -TEL 031/28.25.28

Abstract

Completion grammars are a new class of rewriting systems designed to model case

systems. In this paper we investigate some formal properties of these grammars

and introduce a related class of automata. Also it will be shown that by an extension

of the systems, it is possible to deal with weaker precedence relations. In this

context an effectively computable measure for the degree of grammaticality is intro

duced. The paper concludes with a short discussion on the way in which the grammars

are applied. to (natural) language analysis(and synthesis).

- 1 -

CONTENTS

1. Basic definitions

2. Some formal properties

2.1. Weak generative capacity

2.2. Strong generative capacity

3. Recognizers

4. The precedence relation reconsidered.

5. Applications

- 2 -

PREFACE

The model of completion grammers arose from research on the formulation of

exac;:t grammars for natural languages. Completion grammars are rewriting systems,

but differ from phrase structure grammars in that functional information , in

particular which case relations hold, forms the underlying linguistic viewpoint.

In a first section we give the basic definitions of completion grammars and

the languages they generate. These definitions differ formally (but not substantially)

from earlier literature on completion grammar. (E.g. Steels (1975a).

In a second section we investigate some of the formal properties, in particular the

relation to the Chomsky hierarchy, as regards the weak generative capacity. Then the

strong generative capacity will be discussed by defining the struct~re assigned to

the grammars and by considering some interesting consequences of the splitting up

of the final alphabet.

In the third section we introduce completion automata and proof their equivalence

with completion grammars. Completion automata have two stacks and a finite control.

In a fourth section we extend the notion of grammars and automata such that the

strict precedence order imposed by the generation relations is weakened to such an

extent that all possible combinations of a strict grammatical string are accepted

(or generated) as well. In this context a degree of ungrammaticality and a degree

of complexity is being introduced.

A final chapter deals with the linguistic intuitions about nqtural language functioning

that formed the basis of the formal models. The linguistically oriented reader

should perhaps first read this.

Most proofs use standard techniques of formal language theory and are as is

usual in the field not produced in full. This is done to keep the main flow of

thought clear.

Acknowledgement

We thank the members of the reading committee of the'Antwerp papers in linguistics'

who accepted the paper for publication in the series.

- 3 -

§ 1 BASIC DEFINITIONS

Definition 1.

A c.ompletian. gJtammaJt is a 6-tuple G (Va, Vp, P. AX, Vta, K) where

1) Va, Vp are two finite sets called the set of M.gume~ and the set

of p!toeedWte namu olt p!tedieatu

2) Va n Vp • ~ ; V • Va U Vp

* 3) P is a finite subset of Va X VpVa , the set of p1toduction6

4) AX~ Va is the ax£om4et

5) Vta ~ Va is the set of {eJtrn-Lna.t o.Jtgwne.n.:U

6) K: P -l' {d£epending) , n(ondepending),i(ndifferentJ is a mapping

A production in P is denoted as p: a ~ A u where a E Va, A E Vp, a E Va* ,

x E K(p) • It is customary to omit K(p) if K(p) = i.

CG denotes the set of all completion grammars.

Definition 2.

1) The relation ~. i.e. ~ect clo~ed d~vatlon is defined as

2l The relation ~,i.e. dihe.ct open d~vation. is defined as

(Remark: it may happen that a
1

= 8 = A)

If a • a
1

, then ~ is a •:I:JUct di!tect open de.!Uvation

3) Let -4 (called ctooed de.!Uvatian) and ~(call-ed open de.!Uvation)

denote the reflexive and transitive closure of _, and ~ respectively.

Let ==} and let ~ be the reflexive and transitive

closure of ~

- 4 -

Definition 3.

Let G (Va, Vp, P, AX, Vta, K) E CG

1) The language of G, denoted as L[GJ is defined by

L[GJ • [X I (3a) AX * E (Vta U VpJ*J a ~ X, X

We call LeG ·[UGJ G E CG}

2) We say that G is a closed completion grammar iff

(V plp (K[p) • nondepending)

CCG denotes the class of all closed completion grammars and

~CG { L(G) I G E CCG i

3) We say that G is an open completion grammar iff

(V plp [K(p) • depending

OCG denotes the class of all open completion grammars

4cG • {UGl 1 G E ocG)

Example 1.

Let G = (Va, Vp, P, AX. Vta, K} be B closed completion grammar with

Va fa,b}, Vp •{A ~ , Vta • \tj, AX •{a\ and P:

1,a_n.Ab

2. a _a_. A a b

Some derivations (the index is the applied production)

(i) a~ A b

(ii) a 4 A a b .i+ A A a b b ... A A A b b b

Note that G generates the, famous context-free language (Anbn n _:r d

Example 2.

Let G = (Va, Vp. P. AX. Vta. K) be an open completion grammar with

Va {a,b\ Vp • {A], Vta • {t\ AX • {a~ and P:

1.a .d...Ab

2. a ~A a b

Some derivations :

(i) a~ b A

(ii) a* A b~ a A b A b ..l~b A A b A b

Now the language is {c b AJ (A bl n : n ~ o!

- 5 -

Example 3.

Let G = ({a~ ~1. a ~ A , 2. a ~ A a a l , {a 1 , ~) E CG

Same derivations

[il a~aAa 1 ~ AAa b} AAA

liil a~ A

[iii) a ~A a a ~ A A a ~A A A

It is clear that L(G) = { AZn+
1

: n ~ o}

Example 4.

Let G = <fa,b) .{A~
E CG

Some derivations:

[i) a ~bA
[iil a ~A b

a ~AAa~AAAb~AAA
~)A A

Obviously L[GJ = { A2
n ' n >, 1}

Intuitively nondepending productions define predicates in prefix-position

whereas depending prodWctions define predicates in infix-position.

This becomes clear by the following example:

Example 5.

Let G = (Va, Vp. P, AX. Vta, K

Vp = tAND, OR, IMPLIES, NOTj

be a completion grammar with Va {log)

1. log

2. log

3. log

"'""'" AND log log

-'~- OR log log

AX

"'""'" IMPLIES log log

4. log ~ NOT log

= {log j , Vta = [iog}

Where 'log' stands far 'being a logical variable'.

Some derivations:

(a) closed:

and P:

1 2 4
log AND log log AND OR log log log, AND OR log NOT log log

(expressions in prefix-notation)

[b) open:
1 2

log ==.» log AND log ~)log OR log AND
4

log ~og OR log AND NOT

(expressions in infix-notation)

log

- 6 -

NOte that with an open derivation for production 4. 'not' would be standing

after the variable it is negating. It seems therefore that NOT is always occurring

in a nondepending production.

Example 6.

Let G •({numb) z. . X ' - . 11. p • {numb} , {numb) • K> ~ CG

P:

numb__..... + numb numb

numb _....,. x numb numb

numb- numb numb

numb ___.. I numb numb

Some derivations:

(1) prefix

numb ~ + numb numb -+- + numb I numb nurnb

(ii) infix

numb ~ numb + numb ~numb + numb - numb

- 7 -

§ 2 , SCME FORMAL PROPERTIES

2. 1. Weak genenat{ve Qapacity

Lemma 1. c L
CF

Proof:

Let G = (Va, Vp, P, AX, Vta, K) E CG Define G"' (Vn Vt, P, s> E CF

where

1) Vn [a 1 a E va) u ~s'J where S is a new symbol

2) Vt Vta u Vp

3) p {a~ .p
1

(a)
n or i a E pI u a

(a~ a a E Vta} u

{s ~ a I a E Ad' u
d or i aE p \ a

where ¢1 • ¢2 are mappings defined by

u v.t

a -+ a lrJ a E Va

b ~ b V b ~ Va

rp
2

VpVa* -+ Vn*

Aa
1

a -+ ~ A ¢
1

(u)

It follows then that LCG (GJ UGJ

D

Example 7.

Let G =((a,bJ

By applying the construction of the lemma we obtain G =< Vn,Vt, Fl. S) where

Vn = {a , b , S l
Vt ={A , b)

Some derivations:

(i) S ~ a ==;> A b =:::;> A b

(ii l S ~·a =';> A a jj =;> A A a 1i 1i ==} A A A 6 b b ~ A A A b b b

=}AAAbbb ~ AAAbbb

- 8 -

Example 8.

Let G = <(a,b), {A) , ta~A a b,

By applying the construction of the lemma we obtain G = (Vn, Vt. P, S)

where

Vn = {a:,ti, s)
Vt=[A,b~
P = £a____,. a A b a_., b A

Some derivations:

(1) S ==>a => o A ~ b A

(ii) S=>a~ aAo=> aAbAb ==?1lAAoAb

~ bAA b A lJ ===} b.A A b A o ===1 b A A b A b

The reader should compare example 7 and 8 with 1 and 2 respectively .

Lemma 2. .LCF c ~CG

Proof:

Let G = (Vn. Vt, P, S} E CF • We may assume (see Salomaa, 1973) that G is in

Greibach normal form, i.e. every production in P is of the form:

A -+ a u where o E Vn* and a E Vt.

To construct an equivalent CCG, we proceed as follows:

1) Vta = 0

2) Va Vn

3) Vp Vt

4) (~ p EPJ [K(p) = nl

Let H = (Va, Vp, P , { s). 0 } E CCG, then clearly UG) = UH) • The proof by

induction on the number of steps in a derivation is left to the reader.

Example 9.

Let G = <{s. a) , {a.b) . ~s -+ a s B _, s -+ a B

(note that G is already in Greibach normal form)

By applying the construction of the lemma we obtain:

1l Vta = 0

2l va ·{s.a}

0

- 9 -

31' Vp =~a ,b)

4) p : s .. a S B

s .. a B

B ~ b

H (Va, Vp, P, t s}, ~ , K) and clearly L(H)

Lemma 3, ~F c~CG

Proof:

For this lemma we need a somewhat different version of Greibach normal form,

in order to obtain this normal form we first proof a sublemma.

Sub lemma: (V G " (Vn, Vt, P, S) E CF) 3 G' (Vn, Vt , P , S) E CF

such that every production in P is of the form:

1) A,. a ba where a E Vn* , a,b E Vt

2) A,. a

Proof of the sublemma:

We may assume G to be in Greibach normal form, i.e. every production is of the

form

1) A -+ a Ba where a E Vt, A,B E Vn ,a E Vn*

2) A,. a

Define P e e
A~x «P : iff (A :=} y ::::)> x)

as follows:

or (x "' a and A_., afP)

(the index ! denotes the leftmost direct derivation.

Clearly L{G') L(G) and the sublemma holds.

Next define

P' [A ~X b1J X ~ a A~ a ba E P) u

{A ~ a A ~ a E "P}

where for sac h A_., a b{J e P X is a new symbo 1.

- 10-

·NOw, given an arbitrary grammar G, '...re use the preceeding con-

struction to obtain G' ; (Vn', Vt. P', S) where L(G) = L(G') and every production

in G' is df one of the following forms:

(i) A -+X b u: , A E Vn, X E Vn, b E Vt, u E Vn*

or

(iil A-+ a , a E Vt

Define H = <.va, Vp, Ph' AX, Vta, K) E.. OCG as follows:

1) Vp Vt

2) Va Vn'

3) AX lS~
4) Vta • 0

a l A -+ X- b u E P' where b E Vt, u E Vn•}, U

rA -+ a I A ~a E P' ~

6) (V pEP) (K(p) • d)

From the definitions it now follows that L(HJ UG') UG)
D

Example 10.

Let G <[s~, [a,b~ , ~ S--+ a S b , S--. a b l , S) E CF

First we construct a grammar in Greibach normal form

G' •([S, B 1 ,[a, b~ ,{s~a s B • S-..a B B-.. b ~ • s
then we construct a new grammar G" according to the construction of the sublemma:

G" = ({s,B,A) ._a,b 1 , P" , S) where p contains the following productions:

S -+ a a S B B

S -+ a a 8 B

S -+ a b

B -+ b

from this we construct P":

1 l Vp

2) Va

3) AX

S -+ A a S B B

S -+ A a B B

S -+ A b

B -+ b

A -+ a

{a.b l
{s. B, AJ

ls)
4) Vta • 0

5) Ph • {s~ a AS B B, s___:l__,a A B B. S_ct__, b A. B .4b. A~a~

- 1 1 -

Let H (Va, Vp, Ph,AX. Vta, K) , then clearly L(G)

tenbn f n?1)
L(G') L(G"J L[HJ

Some derivations:

(i) S~A b =*a b

(iil S ~>A a S B B ~a a S B B ~a a A b B B ~ a a b B B

=;paaabbB ~aaabbb

Theorem 1. L
OCG ~CG ~F

Proof:

This is an immediate consequence of lemma 1, lemma 2, lemma 3,

D

For strict open completion grammars (SOCG) the situation is somewhat different.

Lemma 4.

Let G "(Va, Vp, P, AX, Vta, K) E SOCG then

\:f w E L(G) : w = a W E Vta V+ and

Proof:

Suppose w ~ L(G) • This implies that pref
1

Cwl E AX~ Vta since

a) (1)

is easily seen to be true.

From \1) it also follows that, if pref
1

(w) a, then a~) aW w for

some derivation and thus

aW ~ aWW ~
_3

~ ~
_n
~ a w ... a w
T D

Lemma 5, and consequently .,e,,e
CF SDCG

- 12 -

Proof:

This is an easy consequence of lenma 4.
0

Lemma 6.

{ a
2
"b I n e; IN j <f ~CG and consequently ~EG '- ~CG f- 0

Proof:

Again this follows from lemma 4.

0

Lemma 7. 3 L ~CG\, ~EG
Proof:

Let G o({aj .{s}, [a-+B a a a),~) .{a~, K(pl d) E SOCG

It should be clear that

w E L[G) 1) pref
1

[wJ o a

2) 1Fa [wJ o 2 #a[wJ + 1

And also that

[\1 n E!l\J) C.3w w
1

am w
2

E UG) where m ;y nj

Suppose UG) ~ ;t:REG then:

3 dfa Cf.._ o(Q, { a,B) &', q,, F) such that L[<l>-) L[G)

Let w E L(G) : w

Then clearly becuase by our assumption that L(~) : L(G}

[JqlQ: (3v
1

o w
1
ar J : and

[.'!m/tJ} b [q,aml o q)

such that v
1

ar+m,z;;.Pref(w)

But this would imply that w1aT•km w2 E I-(&)('<f,;:)N.,Ii.>G. Since

this leads to a contradiction. Conclusion: L(G) E~EG

Theor.sm 2. ~ SOCG

..t'socG

7~
and ~EG are incomparable

Proof: This follows from the previous lemmas.
0

0

UGl (because of 2)

- 13 -

The results of theorem 1 and 2 are symbolized in the following diagram.

- 14 -

2.2. StAong gen~ve capacity

The fact that the same type of language is generated by completion grammars

and context-free grammars is an important and interesting result, this does not

mean however that the way in which these grammars deal with language is the

same.

In this section we define the structures assigned by completion grammars and

discuss some consequences of the subdivision of the terminal alphabet.

2.2.1. Relation structures

Definition 4.

Let G (Va, Vp, P, AX, Vta, K}E CG then there corresponds with each

derivation a unique graph called the nelation ~~uct~e R, where a relation

structure is a labe:l:led plane rooted graph to be constructed as follows:

(i) if holds, i.e. if
n or i

Ao. E P and x~y X = x
1

a x
2

, a

y = x 1 A~x2 with a :. a1 ... a
n ' then nodes for A, a1' a are added

n
to the structure and a directed line from A to a and from a1' a to A.

n

(iil Similarly, if x ==})Y

y ; x
1
a

1
A ~ x

2
, with u = a

2
added to the structure and a

. d or i holds, i.e. 1f x = x1ax2 , a A a1ae P

••• an, then nodes for a 1, A , a2, ..• , an are

directed line from A to a and from a 1, .•. ,an to A.

(iii) This construction process is easily extended to the reflexive and

transitive closure of__. and respectively.

Clearly for an arbitrary x ~ L(G) there corresponds a relation structure Rx

with a the root of Rx for a ~ x

Notation: For the sake of clarity we draw circles around each label denoting

an element of Vp and squares around each label denoting an element of Va.

Example 11.

Let G = (Va, Vp, P, AX, Vta, ~ E CG with Va {a,b\ , Vp

AX = (a 1
P: a -+ A b

a -+ A a b

then with the derivation

a~Aab-+AAabb AAAbbb

corresponds the following relation structure:

- 1 5 -

A

and with the derivation

a ~a A b ~ A b A b ~b A A b A b corresponds the relation structure·

Remark:

Relation structures differ clearly from constituent structure trees in that

(i) they are graphs and not trees

(ii) lines can enter terminal elements

(iii) a functional relation among the elements is expressed and not a dominance

relation. (More about this in the final section)

In other words completion grammars express other structural information than context

free grammars but they deal with the same sort of languages.

The most important deviation from phrase structure grammars is the splitting up of

the alphabet in arguments and procedures. The consequences of having two disjoint

sets as terminal alphabet can however not be studied in relation to phrase structure

grammars (because the distinction does not exist in this system). The reader will

remember from lemma 2 and 3 that in our construction process we defined each time

Vta to be empty. That this distinction has however deep consequences will be cleur

- 1 6 -

from the following lemma's.

First we extend the notion of a CF grammar to such an extent that

discussion on the relation of CF grammars and CG grammars becomes meaningful.

2.2.2. Consequences of dividing the alphabet

Definition 5.

A pa grammar (denoted as PACF) is a

G = (Vn, VtaUVp , P, S)E CF and

5-tuple G = (Vn~ Vta, Vtp, P, S)

Vta n Vtp = 0

The pa-cf language of a PACF grammar is defined by:

L (GJ = (L(GJ , Vta, Vtp)
pa

where

In the sequel symbols in Vtp will be denoted by capital letters A, B, •.•

symbols in Vta by small letters a,b, .•..

Definition 6.

Let G, G't: PACF

also that L (G)
pa

3 ~a' ¢P

such that

Definition 7.

oL CF
pa

we say that G and G' are PA-equivalent (G
PA

G' l and

PA L (G' l iff the fallowing holds:
pa

isomorphisms: ¢a Vta -+ Vta'

¢p Vtp -+ Vtp'

o lUGll UG'J where tP

~ L lGJ I G E PAcd pa .

Now we are in a position to compare the generative power of PACF, OCG, CCG, CG

taking into account the difference between procedures and arguments.

We do this through the following sequence of lemma's:

,/!.. CG, L REG are defined in the obvious way)
pa pa

Lemma 8. L SOCG c ~ OCG cLeF
pa pa pa

~ CCG c LCF pa
pa

Proof:

Similar to the proof in lemma 1.
0

Lemma 9,

Proof:

Trivial from the definitions

Lemma 10,

Proof:

6,)!'_ CCG
pa

p
\ o'--'OCG pa

:'J L
2

E ,/._ OCG \ of- CCG
pa pa

3 L
3

E ,;!; OCG fl /_ CCG
pa pa

(1) L
1

=(Anbn In ;;,1). It

It should also be clear that ,2! G E

L
1

¢ oC OCG pa

1 n,? 1J

- 17 -

D

is obvious that L1
DCG: AbEL (Gl pa

ELccG
pa

and consequently

(ZJ L2 = {caBJ
0

It is trivial that L2 E LocG pa
\. J_, CCG (use lemma 9)

(3) L
3

= (cA 8) 0

Clearly L3 = L (G) pa

G = ({s. a)

and also L = L (G') 3 pa
where

pa

where

Lemma 11 • 3 L E L CG \ cL OCG u ,P CCG)
pa pa op-a,

Prodf:

d
a~A

, s_r>_,A b, b-"-7 B\. {s), 0)E CCG

D

The rest of the (easy) proof is left to the reader.

D

- 1 B -

Lemma 12.

0 L
1

E /_REG \ cf!_ CCG
pa pa

3L
2

E .L CCG
pa \. o(REG

pa

Proof:

(i) Take L
1

=\(aA)nJn 6~}
Clearly L1E ..t;;aREG

and by lemma 9, L
1

<j ~ CCG
pa

(from lemma 10)

Lemma 13.

3 L
1

E ~ OCG
pa ",;t' REG pa

d L2 E ,;[_REG \. ~OCG
pa pa

Proof:

(i) Take L
1

= L
3

(iil Take L
2

=
from lerrma 10

((Abln 1 n.:).-1~

Clearly L
2

E L REG
pa

D

(by a similar argument as in lemma 10. (ill

Lemma 14.

Proof:

3 L E~CF
pa

\. /_ CG
pa

Take L = {anbn \ n.;.11

by definition L ~ {
8

cG

Lemma 15.

3L E _.t DCG '.. ci'soCG
pa pa

Proof':

D

D

Take L L
2

from lemma 10 .. by lemma 4 it follows that L ¢ ~ SOCG

D

Lemma 16.

LsocG \.,eREG
pa pa.

e LREG ' .,£._ SOCG
pa pa

Proof:

- 1 9 -

Similar to the proof of lemma 6 and 7

The results from lemma 8 - 16 may be combined in the following diagram

Theorem 3,

/--REG
pa

~CCG pa

LeG pa

.,.eSOCG
pa

Where an arrow indicates strict inclusion and no arrow between two classes means

that the classes are incomparable but not disjoint.

- 20 -

§ 3. RECXXNIZERS

As a consequence of theorem 1~ the construction of the automaton which accepts

the language generated by an arbitrary completion grammar G is a straightforward

task: first we construct a context-free grammar G' where L(Gl UG') , then

we construct a pushdown automaton P. on the basis of the context-free grammar

G" with UPJ L(G') • This is well known to be possible.

P is the required automaton.

There are however reasons not to do so:

(i) to preserve the strong generative capacity of completion grammars, it is

necessary to develop recognizers which are structurally equivalent ~o their

related grammars.

(ii) when we extend the model with a more precise treatment of the imposed

order relations (see next chapter) it will prove to be necessary to have a way

of coping with non-preferentially ordered expressions by means of an automaton.

In this section we therefore define constructs called completion automata

and algorithms to translate completion grammars into completion automata and

vice-versa.

A completion automaton is essentially a finite automaton with a pushdown store

(also called the stack) upon which certain states are being stored in a mst

in first out manner, and with certain elements of the alphabet (called the

final elements) associated with each final state of the automaton.

We can describe the activities of such an automaton as follows:

(i) symbols are being read from the linear input tape in a sequential manner

from left to right

(ii) on top of the stack we find the current state of the automaton, if we

can make a transition from one state to another one, the current state is removed

from the stack and replaced by the new state.

If we cannot make such a transition the current state is pushed further on the

pds. and the initial state is put on top of the stack. If we can make a transition

the initial state is replaced by the new state, if we cannot make a tranSition.

the string is rejected.

(iii) if the state on top of the stack is a final state, this state is popped

up from the stack and the symbol that is being associated-·with the final state is

written in front of the remaining string. (so that it will be the first symbol

that is being read.)

Words are acceptediff the stack is empty and there is one final element left

on the input tape.

- 21 -

Note that the completion autcrnatcm is very similar to the basic

transition networks introduced t':l Woods (1970), except for the fact that

elements are associated with finc:1l states.

Let us now make this picture more exact.

Schematically:

INPUT TAPE

pushdown store

Definition. 8.

A eompl~n automaton R is a 9-tuple R =<Va, Vp. Vta, CL, A , AX> where

1) Va and Vp are two finite nonempty sets called the set of ~gume~ and the

set of p~oeedune name6 a~ p~edieate6 respectively.

2) Va n Vp = 0 , V = Va U Vp

3) Vta £ Va is the set of t~na£ angumentA

4) ~ ={ K. V, !: q0 , ~ F) constitutes a finite automaton (called the

embedded automaton where

K is a finite nonempty set of states

!: is a finite input alphabet and !:

6_ is a mapping from K X V into K

q 0 E K is the initial state

F k K is the. set of final states

The following restrictions hold for LC~-l:

Vta i:J Vp

1) L(~) should be finite (this is known to be a decidable question)

2) Each word x E L[di) should be of one of the following forms:

1) either x = Aa with A E Vp and a E Va*

- 22 -

In this case the path of transitions leading to the acceptance of x is

called a nondepending path.

2) or x = a A a with a EVa (possibly"- l, AE Vp and a E vc:,* • In this

case the path -of transitions leading to the acceptance of x is callli:ld a

depending path.

5) A £ F X va is the ~~ociation ~elation.

6) AX ~ Va is the a.Uom!J e..t.

Definition 9,

1) A configuration s
1

is a pair (x,y) with xE V*and yE K*

(x represents the input tape and y the pushdownstore)

2) Let a1 , ••• , anEV ,·and q
1

configuratiOns where

s1 =: < a1a2 •• , an , q
1

q2 ••• qm) • We say that

s1 ~ectly denive& s2 denoted as s 1 ~ s2 if one of the following

holds:

(a) TRANSITION

• = 2

(bl PUSH

(c) POPUP

s
2

:: (a'a
1

••• an, q
2

••• qm) iff q
1

E F and .. (q
1
,a') E A

In all other cases s 2 is undefined

3) Furthermore let ~ denote the reflexive and transitive closure

of._._.

Definition 10.

Let R (Va, Vp~ Vta, ~. A, AX) be a completion automaton

1 J The language of R denoted as URJ is defined by

L(R) = (x\<x,q,)~(a,1< J with a E AX, x E (Vp u Vtal*~

2) We say that R = (Va, Vp, Vta, &. ' A, A>o is a closed completion automaton

iff

(V X E L(~)) (x = A o: A E Vp and aE va*)

3) We say that R = < Va, Vp, Vta, (fL , A. AX) is an open· completion automaton

iff

(V X E L(~) (x A E Vp and a.Eva*

- 23 -

4) CA, CCA, DCA denotes the class of completion automata~ closed and open respect,

5) J'cA = (UR) IRE CA) '~A = {URJ\ R E DCA~,

~CA = [uRJ IRE ccA)

Example 12.

Let R = (Va, Vp, Vta, &. , A, AX)

1) Va {a,b\

2) Vp {A)

3) Vta = (b\

4) ffi= (K. v. 6 • qo, E)

K f q,. q2, q3,

v = \A, a b\
6 (q,, AJ q2

i (q2. b) q3

5) A =~ q
3
,a) ,(q

5
,a' ~

B) AX = {a)

q4, q5 \

as a transition diagram:

be a closed completion automaton where

6 cq
2

, bJ q3

i
(qz,aJ q4

i (q4, b) q5

Clearly the language accepted is {Anbn : n ? 1)

We try some strings:

Let x = A A b b

- 24 -

Let x A b b

(A b b, q 0)t'-(b b ,q
2

) 1-- (b ,q
3

)f-(a b, ~)

The automaton halts but the word is not accepted

Let x A A b

The ward is not accepted

Example 13.

Let R = (Va, Vp, Vta, ~, A, AX)be an open completion automaton where~.

E, A, AX, Vta, Vp are exactly the same as in the previous example, except for

the transition function o·

~ (q.,bl

as a transition diagram:

a

Now L(RJ

We try some strings:

Let x b A A b A b

(b A A b A b ,q 0) f-- (A A B A b , q
1

) f--(A b A b ,q
2
) !---(a A b A b, A)

1- (A b A b ,q
3

) f-- (b A b , q
4

) f-- (A b ,q
5

) f-- (a A b,/.) f-(A b,q
3
)

the word is accepted

- 25 -

L-::mma 17.

Let G = <Va, Vp, P, Vta, AX. K)E CG, then we construct the automaton R

= ~Va, Vp .. Vta, ~ , A, AX} as follows:

1) Va, Vp, AX are as in G

2) d.. (K, 1:,6 , q 0 ,F) is defined as follows:

* Let I: = Va U Vp and for each r/J E V with p=(a,r:/>}EPand

K(p) = n or i we start a chain of transitions from q0 such that for each eleDenb

of ¢ we creat·e a transition with this element as condition for the transition

to taKe place·.

In addition ifp =(a, ;p E p and K[p) 0 d or i we start a chain of

transitions from q, such that for each element of ~ we create a transition

with this element as condition for the transition to take place and a

new state, where 1> 0 a A 1> and ~ = A a ~ f
' a E Va, ~~ E va•

The last element of ¢ will make a transition to a final state.

Note that we can always do so because L(~J is finite due to the fact that

P is finite.

Note also that as a consequence of this construction process there corresponds

a unique final state qf with each x EL("-J • We say that & accepts

x in the final state qf.

Let (qf.a') E A iff there is a production (a' .f> in P where rj; is accepted

by ~in the final state qf.

Clearly as a consequence of this construction L(G) URl

Example ·15.

,o-+Ab b ~ A} , {a j , 0J E CG

then by applying the construction of the lemma we obtain:

R = (Vo, Vp, Vta, &
and &- =(K , J; , o

A, AX) such that Va ={a, b) , Vp = {AS Vta

J; = [a,b,A)

q 01 F) with K ={q" q
1

, n
2

, q
3

, q
4

)

o [q,,Al = q
1

6[q1, b) q3

o [q3, al q4

0 [q.,bl

o [q
2

, A

- 26 -

i-\s a diagram

b A

AX =(a~
A={(q

1
,b) .(q

3
,a> ,(q4 ,a)}

Clearly URJ = L(G) = {A
2
", n)-1)

Let us giye an examplE;! of a derivation, as is usual with nondeterministic

processes we draw a tree to represent the parsing paths where a connection

between two nodes means that the 'I-- ' relation is present.

Let x A A A A

(A A A A ,qo)

< a,q q)
1 2

/
(A A A • q1)

I
(b A A A ,A)

~

""' (A A A 'q1 qo)

I

(a A A >.)

- 27 -

Lemma 18. ~ c. .,:!'__
CA CG

Let R "' (Va, Vp, Vta, . &l.- , A, AX) E CA , then G (Va, Vp, P. Vta, I~ X, K)E CG

is constructed as follows:

1) Let Va, Vp, Vta, AX be as in R

2) Let M1 ={xELCC)..J : x is of the form .At/J . A E Vp,¢ E Va•J

and

x is of the form a Af with M2 = [x E LCQl-l

A E Vp, a E Va U {A) and rp E Vat)

Due to the restriction on L(~) M1, M2 are finite and M1 u M2 = L(~)

3) P ~a~¢ I r}>E M1 and (qf,a)E A and tP is accepted by &-.in the

final state qf J

{.a~~ \ ~E M2 and ""f =a A~' , ~=A a f. •t'~ Va*, a~ Va ut~<~,
(qf,a) E A and fiJ is aCcepted by {}_in the final state qf \

The obvious proof then· that UG) L(R) follows immediately.

Example 16.

Let R = (Va, Vp, Vta, CL , A. AX)E CA be the automaton of the previous

example. By applying the construction of the lemma we obtain:

M1 _A, Ab, Aba J
M2 [bA, bAa , A) and thus:

P = [b4A , a 4A b , a ~A b a , a ~A b

a _s!_.A b a, a~Aj

We can clearly shorten P as follows.

P (b--+A,a----+Ab,a__.....AbaJ.

The grammar obtained is:

G = <(a,b) .(A~ p K) and this is indeed the grammar we

started with in the previous example.

Theorem 4. ;:___
CG

Proof:

The proof follows immediately from the lemma's.

- 28 -

§ '4 • TilE PREX:EDENCE RElATION !1ECONSIDERED

In this section we extend completion automata such that they accept all

po~sible combinations of a word which is normally accepted by a completion

automaton after careful application of th8 rules. First we define the language

that is to be defined and then define the extended completion automaton.

Note that we do not change the definition of ttle components of the automaton,

only the way in .which he operates, in particular we introduce an additional

stack.

First we define the extended lang~age

Definition 11.

let G = {Va, Vp, P, Ax, Vta, K}E CG

Let 'f be the Parikh mapping, then def:Lne

c (L (G)]) = r-: 't' (L(GJJ

Definition 12.

An extended completion automatoniR , denoted as ECA , is aT-tuple

R = (Va, Vp, Vta, ~. A, AX) is as an ordinary CA.

A configuration is a triple:

(X, y, Z where X E v* , y E K~ Z E Vtlf

and

TRANSITION

iff

PUSH 1

PUSH 2

in c;my case

PUSH 3 (called the emergency push)

s =
2

POPUP J.

POPUP 2

Definition 14.

Example 17.

Let R E CCA with

V =[A,a , b , AJ

[j (qo,al "' q
2

0 (q2,b) = q3

We know already that L(R)

where

- 29 -

in any case

iff

BE AX}

if CCA is consider to be not extended.

- 30 -

Let R' EECA then LCR') = c(L(RJ J

same examples (we only give _the path leading to a final state)

Let x A A b b

1-- (a b , q
2

, X) ~ b ,q4 , X) f--- (a , X , X)

(note that we did not use the additional stack)

Let x b b A A

< b bAA q, X) 1-- (bAA. q,,b>t--<A A ,q, b b) f-'.<A, q
2

• b b)

Let x A b A b

(A b A b, q,,X>t-< b A b, q2,) f-- (A b ,q
3

,,\)l--(a A b ,X ,X)f-(A b ,X, a)

Example 16.

Let R be DCA with

R = < {a.b,c} .{A. sl {a,b,c~

&. =< K.V. 8. q, E i.e.

8 (qo ,a) = q1 8 (q, • b) q4

8
(q1,A) 8 (q4';>8) q2 q5

8 (q2. b) q3 8 (q5,c) = q6

8 (q6,a) = q7

E tq3,q7 \

- 3 i -

If R is considered to be ECA then:

x = b 8 c a A b 8 c a

(b B c a A b B c a , qo, ').) t---- (B c a A b B c a , q 4 ,)q t--

(c a A b B c a , q
5

, A f-- (a A b B c a , q
6

, A)

f- (A b B c a , q
7

, A) t-- (a A b B c a ,). ,).)

f-- (A b B c a , q
1

, A) f-- (b B c a , q
2

, '>-)

f--- (a,). •).)

The reader should now try the very nice example

for himself.

Theorem 5. ,e.,
ECA

of X = b b 8 c a A 8 c a

The standard proof of this theorem is left to the reader.

Given the above results one can introduce the following concepts:

Definition 15.

For a given R E CA the ungrammaticality of a word wE L[RJ denoted

as uR[wJ is defined by MIN (MAX !s1f3ll) 1 ~ i ~ n where a configuration

is a triple(. s
1

(1), s
1

(2J,s
1
(3]) and s

1
is the initial configuration and

is a derivation accepting w. i.e. w

Example 19.

for the system in example 17.

For

(i) w = A A B b then uR(w) = 0

(iil w = b b A A

(iii) w = A b A b

then uR(w)

then uR(w)

the system in example 18.

(i) w = b B c a A b B c a

then UR (w)

(ii) w a c B b a c B b A

then UR (w)

Definition 16.

- 32 -

2

= 0

7

For a given R E ECA the complexity of a word wE L(RJ denoted as

comR(w) is defined by

MIN (MAX () s. !2JI))
l

(Note that this definition does also apply to not extended completion automata)

Example 20

if w = A A b b

then comR (w1 2

ifw = b A A b A b

then comR(w)

if w = b A A

then comR (w)

Very l>nteresting results

of~CG and ~CG ·

are obtained by comparing the complexity degrees

These and other F.esults, with special reference to the application to natural

languages, can be found in Ste.els & Vermeir (1876},

.. 33 -

§ 5 APPLICATIONS

Although this paper concentrates on the formal properties of completion

grammars, in this final chapter we deal as briefly as possible with the view

on language that we wanted to model with completion grammars.

The information in tt1is section is essentially contained in Steels (1976a).

Ther0 exist several proposals for case systems. These proposals differ mostly

in the cases that are adopted and in the level of 'deepness' that is aimed at.

What they all seem to have in common are the following iqeas:

(i) A~ is a (binary) relation between a predicate and one of its

arguments. We call the name for the case the case indicator or simply

indicator. Examples of commonly found indicators are agent, object, instrument,

source, goal. range, etc .•..

(ii) Case relations affect in two ways language:

(a) They .are expressed (or recognized) by means of surface signals

such as prepositions, case affixes, word order, intonation, etc ..•. These

signals are called case markers.

(b) The system is further refined by the idea that semantic properties

of the unit under consideration act as selection restrictions.

(iii) A case struc:ture or case frame for a particular predicate is a set of

case relations that occur with that predicate, TOGETHER WITH information how

they ar-e expressed (or recognized) in language, i.e. the case markers and

selection restrictions involved.

(iv) Parsing a language expression with the guidance of a case system

(where a case system is just a set of case structures for a language) involves

the discovGry of the case structure, that means a decision on which units in

the sentence fill in which slots in the structures; this decision is being made

on the basis of the case markers and selection restrictions of the unit under

consideration.

Producing a language expression with the guidance of a case system involves

filling in the appropriate concepts in the places where the selection

restrictions permit this. and translating the case markers in their surface

structure equivalents.

Given the above statements on the nature of case systems, we will now try

to relate this to the formal model that was studied in this paper.

At the center of the case structure we find a predicate, the rest of the

structure contains arguments. So, a first step will be to make a basic

distinction between a set of predicates (Vp) and a set of arguments (V~).

- 34 -

In connection with a procedural semantics, predicates can be considered as

the names of procedures and Vp is therefore also called the set of

procedure names.

One of our basic insights is a fundamental distinction between predicates

in prefix-position, predic.;:~tes in infix-position and predicates which appear

in both. (There are languages where still other porJitions are possible, e.g.

postfix, it should be clear however how the model can be extended to cope

with these). The case frame, and thus a production in the grammar, should

reflect this basic opposition. We call rules which contain predicates which

should give rise to an expression where they stand in prefix position, infix

position, or both.- nondepending, pr~~!JP~~on_s, depending productions and

indifferent productions respectively.

In a generative viewpoint, the order of the expressions in a language is

defined by the derivation relation. Hence we will have a derivation mechanism

realizing prefix-position, this is called a closed derivation, and one

realizing infix notation, this is called an open derivation.

It may seem superfluous that both prefi~ and infix predicates appear in the

same language, it can be shown however on the basis of cognitive arguments

(in particular memory limitations) that it is necessary for humans to have

both types of predicates. It would lead us too far

point here.

to deal with this

To make the model more precise we now consider the status of the arguments.

An argument is said to have three levels:

(1) argument type, being the semantic restrictions and the case markers

(i1) argument ~· being the case indicator

(iii) argument value, being the particular objec-t involved (this can be a

pointer to a place in the data base for example).

It is easy to see that when study.ing the furrnal properties of case systems

only level (i) is important, indeed the argument names are nothing else but

mnemonic labels for relations which are positionally defined in the structure,

and argument values are only important for the· actual semantic interpretation.

nat for the parsing. So we are left with the argument type. And also here some

further reduction is still necessary.

The argument type contains as we said semantic properties of the argument that

act as selection restrictions, and case marker-s. Arbitrary arguments can however

contain a very large number of properties but there are of course only a certain

set of properties relevant as a selection restriction for a particular case

structure. Hence what we will actually find in our grammar rules is a set of

relevant properties and for a particular argument to match, the set of relevant

properties should be a subset of ttm 13et of all properties of that argument.

Va therefore contains sets- of relevant properties of arguments.

Also it is necessary to delimit a subset of Va, tt1e sa called nonterminal

arguments, being those arguments whic:h cannot appear in a language expression

itGelf but are to be realized further.

E.g. if a certain argument type contclins the indicator that a case affix should

be present, then the argument is terminal if and only if this case affix is

indeed added to the word form of tt1e argument. In the grammar definition we will

indicate the terminal arguments, and the nonterminal arguments are all the other

arguments.

In addition we will incorporate the result·of semantic interpretation , of

which at least the type information is known in advance, in our definition

of a case frame. This will guarantee among other things the recursiveness

which is necessary to cope with the infiniteness of language.

With the above explanations the reader should understand all the components

of a compl~tian grammar G = (Va.. Vp, P, AX, Vta, K > anc~ the derivation

processes ... • =:::}. and ==> .

5.2. Some examples

example (a) A subset of_ the FORTI~AN IV programming language

Although completion grammars were designeq to cope with natural languages, they

are equally well applicable to programming languages. These languages are (syntactically)

simpler than the natural languages, and therefore not all aspects of the model

can be illustrated. It is our hope that completion grammars will once form a

tool in the development of a more human oriented outlook of programming languages.

Let G = (Va, Vp, P, AX, Vta , K) be a completion grammar with

~statem , num , log , rightpar} Va

Vp

AX

Vta

onU

1 •

2.

~ • , + , - , I , x , [, GOTD, IF, AND, OR, NOT. END, GT, EQ, LE , LT \

tstatem)

{num , log} (i.e. numerical variable or constant and logical variable or

P:

d statem ~ ""' ~u num

num

constant)

num

num

3. num n - num rightpar

- 36 -

4. stat em ~IF log stat em

5. stat em ...!....,. GOTO num

6. log

~"I
num num

LT

LE

EQ

NE

7. log~ {~~D\ log log

8. log~ NOT log

9. stat em - END

10. rightpar ~ 11 . log~(rightpar

(Note that we always put arguments between square brackets)

Some derivations:

(i) stat em ~ _____,., num num E.g,, I= 1J

(iil statem ~ IF log statem ~ IF log rightpar stat em

10
~ IF [log stat em stat em

~)IF num EQ num OR log stat em

3,10
~IF num EQ num OR [log J J stat em

6
~IF num EQ num OR (num GT num) J stat em

4 IF num EQ num OR (num GT num J J GOTO num

[E.g.' If [I EQ 1 OR [I GT Jll GOTO 16)

As is usual with grammars. one can define structures assigned by the grammar to a

particular string of the language. The structures assigned by completion grammars

are called relation strucutres. They work as follows: for a procedure draw a

circle and for an argument a square. Argument squares can be divided into two

sublevels representing the level for the argument type and one for the argument

value. Input relations are represented by dtrected lines leaving a circle and

entering a square.

Example for derivation [i)

- 37 -

If there is any need to specify names or labels for the case relations

(i.e. case indicators)~ we write these on the directed lines:

Where '1' denotes 'first input argument' and '2' denotes the second input

argument' •

If we want to specify these indicators in the grammar we write the case

indicator as a subscript:

stat em num num
2

The relation structure for derivation (iil. (Note that in a strict open

derivation output and first input a;gument are identical. therefore

we get a symmetric relation in the structure)

El
Example:

Let us now give another grammar which contains case frames for some arithmetic

- 38 -

procedure names. (It is the smallest 'natural language' example we caul~

think of).

(va, Vp, P, AX, Vta, K) be a completion g~ammar with Va

num,pr_ep:of num,prep:by)

Let G •

~ num

Vp " t divided, division, is, of, by , the J A>: :::: { num~ and P contains

the following pre· ductions

1 •
n division num,prep:of num,prep:by num

2. num d divided num num,prep:by

3. num. prep: by n - by num

4. num .. prep:bf n
of num

5.
d

is num - num num

6.
n the num num

A derivation:

5
num ~ num is num ~the is num

~ the division num, prep: of num,prep:by is

........ the division of num is num

3
...... the division ·of num by num is num

~the division of num by num is num divided

3
~the division of num by num is num divided

num

A possible realization of which is 'the division of 4 by 2 is 4 divided by 2'.

The relation structure for this derivation:

num,prep:by

num,prep:by

num,prep:by

by num

38 -

This example shows clearly how prepositions are expressed and recognized in

their function as case markers: prepositions are considered as predicates which

add simply the marker that the prepositions is present to the list of properties

in the argument type of the result. (Note it can be that prepositions do more

than a mere syntactic functioning, this fact only makes the formalization even

more valid. l

Normally nouns, adjectives (in front position], prepositions, a.D. are defined

by nondepending productions, whereas verbs, adjectives (in post-noun positions)

participles, etc •.• are defined in depending productions.

Another aspect, namely the case affixes are treated in a similar fashion. Iil

particular. the case suffixes. which are added at the end of a word form. are

simply depending procedures whereas case prefixes, which are added i.n front of a

word form are nondepending procedures. Although the consequences for mcrphology

should be furthe~ investigated. this way of dealing with them guarantees

a more •semantically' oriented treatment of morphology and a unifying approach

to surface analysis. Let us now deal with a third aspect: order.

For phrase structure grammars and similar systems 'being grammatical' means that

elements of certain syntactic categories are present in a particular order, i.e.

these grammars define a dominance relation (x belongs to the category y) and a

precedence relation (x comes before y). With completion grammars we define first

of all functional relations among arguments and predicates. and hence we can

have a freeer attitude towards word order. The need to have systems which are

not so strict bound to a linear order has often been mentioned and various

attempts have been made to construct grammars which are free from word order

[see Levelt [1973,104)).

A completion grammar defines a weaker precedence relation. Weaker because order

CAN be an element in the decision about which relations exist and

therefore a completely free word order will not do. The notion of a weaker precedence

relation order is introduced by considering the order imposed by a strict

application of the grammar rules as a preferential order. If certain cases

i.e. arguments. are missing in an expression this. expression is said to be incomplete.

Between an incomplete expression and a preferentially ordered one. it is possible

to define a gradually increasing degree of grammaticality (see the section

on order in this pape1r). We have also seen that it is possible to increase the power

o·f completion automata by precise methods such that they accept not only preferentially

ordered expressions but also not preferentially ordered ones. and when order IS

a means of decision making. the prefersntial order has a higher priority.

The term completion grammar/automaton (which is due to M.A.M. Verreckt) is

reflecting the fact that patterns are being described, and during analysis the

parser looks for such patterns to be completed, When the elements that complete

the pattern will occur is of lesser importance than their occurrence.

- 40 -

A mar~ detailed treatment of applications for natural languages is given

in Steels (1975b). In this paper the reader can find implemented parsing

systems for completion grammars and some experiments in language understanding

systems.

We also started to apply the model on a large scale in a project for the

construction of an automatic translation system for notes used on catalog

cards in libraries from and into the different languages in the EEC.

We are also considering a possible extension of tho theory by the introduction

of rwle production mechanisms. These rules would construct completion grammar

type rules on the basis of (i) the information to be expressed and (ii)

information on how this information should be expressed. and (iii) information

on how this should be done in a given language.

- 41

References

Levelt, W.J.M. (1875) Formal grammars in linguistics.~nd psycholinguistics, II.

Mouton, Den Haag . .:

Salomaa, A. (1973) Formal languages, Academic Press, New York.

Steels, L. (1975€ll Recent research results in computational semantics. In:

Nickel, A. (ed) Proceedings of the fourth international congress of

applied linguistics. Forthcoming.

Steels, L. (1975b)Completion grammars and their applications. Antwerp papers

in Linguistics. Nr. 3, U.I.A.

Steels, L. (1976a) On formalizing case systems. Paper submitted to the

Artificial Inteliigence and simulation of behavior summer conference 1976

Edinburgh.

Steels, L. and D. Vermeir [1976) Some results on the relation of word order

to grammatical complexity. Forthcoming.

Woods, W.A. (1970) Transition network grammars for natural language analysis.

Communications of the ACM 13 [10), pp. 591 - 606.

ISSUES OF ANTWERP PAPERS IN LINGUISTICS

1 - 1975 Luc Steels Parsing ·Systems for Regular and

Context-free Languages.

2.- 1975 Johan Van dar Auwera Semantic and Pragmatic Presupposition.

3 - 1975 Luc Steels Completion Grammars and their Applications.

4 - 1976 Georges De Schutter & Eddy Kackx : Meervoudsvorming en

Vervo~ging in het. Nederlands. Een morfofonologische

Pro eve.

5 - 1976 Luc Steels & Dirk Vermeir: On the formal Properties of

Completion Grammars and their related Automata,

