ANTWERP PAPERS IN LINGUISTICS

nr. 5. 1976

ON THE FORMAL PROPERTIES OF COMPLETION

GRAMMARS AND THELIR RELATED AUTOMATA .

Luc Steels & Dirk Vermeir

UNIVERSITEIT ANTWERPEN

Universitalre Instelling Antwerpen

Departementen Ger. en Rom. Afdeling Lingulstiek

Univefsiteitsplein, 1 -B-2610 Wilrijk{Antwerpen) -TEL 031/28.25.28

Abstract

Completicn grammars are a new class of rewriting systems deéigned to model case
systems. In this paper we investigate some formal properties of these grammars

and introduce a related class of automata. Also 1t will be shown that by an extension
of the systems, it is possible to deal with weaker orecedence relations. In this
context an effectively computable measure for the degree of grammaticality is intro-
duced. The paper concludes with & short discussion on the way in which the grammars

are applied to (natural) language anslysis(and synthesis].

CONTENTS

§ 1. Basic definitions
§ 2. Some formal properties

2.1. Weak generative capacity
2.2. 3trong generative capacity

'$ 3. Recognizers
§ 4. The precedence relation reconsidersd,

§ 5. Applications

PREFACE

The model of completion.grammars arose from research on the formulation of
exact grammars for natural languages. Completion grammars are rewriting systems,
but differ from phrase structure grammars in that functional information , in

particular which case relations hold, forms the underlying linguistic viewpoint.

In a first section we glve the basic definitions of completion grammars‘and

the languages they generate. These definitlons differ formally (but not substantially!
from earlier literature on completlon grammer. (E.g. Steels (1975a).-

In a second section we investigate some of the formal properties, in pafticular the
relation to the Chomsky hierarchy, as regards the weak generstive capacity. Then the
strong generative capacity will be discussed by defining the structure assigned to

the grammare and by conaidariﬁg some intefasting consequenﬁes of the splitting up

of the final alphabet.

In the third section we introduce completion automata and proof their eguivalence
with completion grammars. Completion automata bave two stacks and a finite control.
In a fourth section we extend the notipn of grammars and automafa such that the
strict precedence order imposed by the generaticn relations is weakened to such an
extent that all possible combinations of a strict grammatical string are accepted
(or generated) as well. In thls context a degree of ungrammaticality and a degree

of complexity is being introduced.

A fipal chapter deals with the linguistic intuitions about natural language functioning
that formed the basis of the furmal models. The lipguistically orlented reader

should perhaps first read this.

Most proofs use standard technigues of formal language theory and are as is
usual in the field not produced in full. This is done to keep the-main flow of

thought clear.

Acknowledgement

We thank the members of the reading committee of the'Antwerp papers in linguistics'

who accepted the paper for publication in the series.

§ 1 BASIC DEFINITICNS

Definiticon 1.
A complfetion ghammar is & B-tuple G = (Va, Vp, P, AX, Vta, K) where

1) Va, Vp are two finite sets called the set of aiguments and the =et
of procedute names oh predicates

2}y van Vp =@ ; V= Va YUyp

3) P is e finite subset of Va X \;‘|:|\/a"r » the set of productions
4) AX € Va is ths axiomiet |

5) vta £ VYa is the set QF Teminal arguments

6) Ky P {d{epending] . n[ondepending],i(ndif-Ferent} is a mapping

A production in P is denoted as p: a 2+ p o where a € Va, AE Vp,o € Va¥ ,

x € K{p) . It 1= customary to omit K(p) if Kip) = i.

CG denotes the set of all completion grammars.

Definition 2.

1) The relation wey , i.e. ditect closed derdivation is defined as

(v X'y]\l“ (x wlly] iff (anVa (fff\]vp:
[x=x,[ax2.a£r—'-i—>' Ao P.y=x1A0x2]

21 The relation =% ,i.e. direct open derivation is defined as

OV Xyl alx =py) irf (3 ely, tamvp
dor i
[x-x,laxz, 5§ ———= P\a_,lﬁ' F‘., y-x,la,lAﬂ‘xz]

(Remark: it may happen that a, = g =x)

If & = a, » then =% 15 a stricet direct open derivation
, , * . .

3) Let wmp (called closed detivation) and —=% (called open derivation)

denote the reflexive and transitive closure of ey and zb‘-/a respectively.

*
Let = = emmp U = and let ==» be the reflexive and transitive
closure of =» .

Definition 3.
Let G = (va, Vp, P, AX, Vta, K} €CG

1) The language of G, denoted as L(G) is defined. by
LIG} = {x b Ba),y ¢ a¥ x, x € (Vta U Vp]*g

'we.cé;i. cﬂf%5.=~{LtGJ.[6 ecs}

2) We say that G is a closed complétion grammar iff

(v p]P (K(p) = nordepending)

CCG denotes the glass of all closed cnmpletiun”grammars and

L, - {Ley jBeccs]

CCG

3) We say that § is an open completion grammar iff
(¥ p)p (K(p) = depending]
OCG denotes the class of -all open completion grammars

L. (L) |se ooy

0CcG

'Example 1.

Let G = (Va, Vp, P, AX, Vta, K} be & closed completion grammar with
va = fa,b} . vp =AY -, vta = [b], ax = {a} and P:
1, a L anp:
2.a Larab

Some derivations (the index is the applied production)

(i) aiL; A b
(i1) a iLy Aab % AAabb 4;- AAABDD

Note that G generates the. famous context-free language {A b" i n p-> 15

Examgle 2.

Let G (Ua. Vp, P, AX, Vta, K} be an open completlnn grammar W1th

Va = {a b} . ve ={a), vta = {b{, { Y ancP:
1.a Lan

2.a S aab

Some derivations :
(i) a=p b A
(11) aZpa AbzEpaAbAb =IHh AA DA b

Now the language is {(b Al (A)" o 2 D}

Example 3.
et c=<faf, (A}, Diasn,2.0-ne0).{a}, mecs

Some derivations

(i) a:g;>a Aa :£=§> AAa :§:§> AAA

(11) & —= A

(131) o muabA 5 2 mmsd A A3 semmdeh A A
It is clear that L(G) = {AZ”” : ny o}
Exampla 4.

tet 6 = (fa,6] L{ak . {1.‘a—aAba.2. a——sAb,B.b-—_-)A}.{a&, 2)
€ CG

Some derivations:

1) 8 —pbAa memdAAa memd AAAD —3AAAA
(11) 2 mumph b =234 A
Obviausly L(6) = [a%" . ny, 1}

Intuitively nondepending productions define predicates In prefix-position

whereas depending productions define predicates 1in infix-position.

This becomes clear by the following example:

Example 5.

Let G = {Va, ¥p, P, AX, Vta, K } Dbe a completion grammar with Va = {logs
Vp = [AND, OR, IMPLIES, NOT} . AX ={1og} . Vta = [.*mg} and P:
1. log —~ AND log log
2. log =+ 0OR lcg log
IMPLIES log log
NOT log

3, log -
n,

4. log
Where 'log® stands for 'being a logical variable'.

Some derivations:

{a) closed:

log sy AND log log wamp AND OR log 1og 10f wmmshp AND OR log NOT log log
(expressions in prefix-notation)

(h) cpen:

log £» log AND laog -i—»lug OR 1log AND log _4—_$}og OR log AND NOT
(expressions in infix-notation)

log

Note that with an open derivation for production 4, 'not' would be standing
after the variable 1t is negating. It seems therefore that NOT is always occurring

in a ncndepending production.

Example B.
Let 6 =({numbl_| s [*- s X 5 T, /7], P .. {numh} ,{numb'& . K>ett

P:
numb = + numb numb
numb — x numb numb
aumb —= = numb numb

Aumb ——w / pumb numb
Some derivations:

(1) prefix
nurh galy + numb numb mmdp + numb / numb nunb

(11) infix

numb :» numb + numb :>nurnb + pumb - numb

§ 2. SOME FORMAL PROPERTIES

2.1, Weak generative capacity

Lemma 1. cﬁe/ c

CG CF

Proof:

Let G = (Va, Vp, P, AX, Vta, K} €CG . Define T = {Vn vt, P, 9 € CF

where

1) Vn = [E- | a€ Vé} U {SE where S is a new symbol
21 vVt = Vta U vp
3) P = {E‘—np,l(a][a &2l 0 ep} U
[Fr a1 ac Vta U
[s -7 « seax} L

ai]

{—_, 6,004 a dori eepl
where ¢4+ ¢, 5T€ mappings de%ined by

¢, ¢ (vnu ve (v L owe V*

a - a Ya € Va
b =+ b vb f va

-
—
-

Example 7.

Let G =¢ {é,b} s {P\B ,{a—n—',AaI:I , aL)AbB, ta]}'{_bﬁ-‘)e CG
By applying the construction of the lemma we obtain T ={ ¥m,Vt, P, 3} where
vn ={_E , B, sd
vt ={a , b}
P {G—>ATT.8—AT,F—sb ,5—2%}

Some derivations:
(1) 5 =) @ = Ah = Ab
(1) S =33 =5 AEb —) AAEED = AAADDD —3 AAADLDD

—>AAAbDD — AAADDD

Example B.

et 6 =¢faby . {a} L fadsnan, abanl.fal. Y
By applying the construction of the lemma we cbtain G = (Vn, Vi, F, 59

1.

where
vn = {3,5, s
ve =fa . b)Y
P ={a9&AB,3 3FA ., Fab , 5—3}
Some derivatilons:

(1) S=3 =DbA =pbA _
(i1) S=>8 =2 FAD —= 8ADAD —3TFAATFTAE

S bAABEAD =2 bAABAT ——bAADbAD

The reader should compare example 7 and 8 with 1 and 2 respectively.

Lemma 2. ,ti c ,ﬁi

CF CCG

Proof:

Let G =¢Vn, Vt, P, §)y & CF . We may assume [(see Salomaa, 1973) that G is in

Greibach normal form, i.e. every production in P is of the form:

A - av where ¢ € Vnk and a € Vt.

To construct an eguivalent CCG, we proceed as follows:

1) Vta = B
2) Va = Vn
3] vp = vt

4) (¥ p €P) [(Klp) = n)

Let H = {Va, Vp, P , {53 @) € CCG, then clearly L(G) = LIH) . The proof by

induction on the number of steps in a derivation is left to the reader,

O

Examele 9.

Let 5 =¢fs, 8y ,lap} s - ese.s saB . BobY.s)
(note that G is alreagy in Greilbach normal form)
By applying the construction of the lemma we obtain:

11 vta = @
2) va ~{s,8}

4] P s ™ asB
5 % aan
B> &b

H=(va, vp, P, {S}, @, K} and ciearly L(H) = L(G) ={a”b“[n > 1}

. c
Lemma 3 ’£|:F 4%

Progf:

For this lemma we need a somewhat different version of Greibach normal form,

in order tc obtein this normal form we first proof a sublemma.

Sublemma: (¥G ={(vn, Vt, P, S?’ECF) 3G' =(vn, vt ,F , © E€CF

such that every production in P is of the form:
1 A —~ a bo where 0 € Ynpx , a,b €& Vt
2) A > a

Proof of the sublemma:

We may assume G to be in Greibach normal form, i.e. every production is of the
form

11 A =+ a Bro where a € Vt, AL,B € Vn ,¢ € yp*

2 A 7 &

Define P as follows! ¢ e
A-sxeF 1 iff (A = vy =2x) or (x = aand A— agP)

(the index € denotes the leftmost direct derivation.

Clearly L(G') = L{G) and the sublemma holds.

Next ds?iné

P'=[A—>><bvr ,X > a \ A> abs€ P} U
{A”’a /-\-*aEF}

where for each A—» a bfl € P , X is a new symbaol.

Mow, given an arbitrary grammar G, we use the preceeding con-
structionto obtain G' = {vn', ¥t, P', 8) where LIG) = LIG']) and every production
in G' is of one of the following forms:
(i) A »Xb e , AE Vn, X € VYn, b EVL, 0 € Vnn
or
(i1) A —a , a €Vt

Define H = {Va, Vp, P_, AX, Vta, K3 & BCGC es follows:

i’
1) Vp = Vt

2) Va = Vn'

3) AX = [5Y

4) vta = @

S P-fa> o I A-X%Xba€ P where b€ Vi, g & Vnk} U

A+ al asae P}

6) (¥ pE P) [K(p) = d)
Frum.the definitions it now follows that L(H) = L(G') = L(G)
Example 10.
Let G = (fs} , {a.b} J{s—sasb,s-sab} . S) €cF .

First we construct a grammar in Greilbach normal form
6 = {s, 8y .[a.by ,{5>asB ,SweE .B—xb} .S)
then we construct a new grammar G" according to the comstruction of the sublemma:
G" = ({S,B,AS .gg,b‘} , F" , 5) ‘where P contains the following productions:

S - aaSBB

S - aaBhib

S = ahb

B =+ b
from this we construct P":
+ AaSBs
- AaBB

Ab
-+ b

T m o W ot
¥

-

1) vp = {a.b}

2) va = {5, B, A}
3) ax = [}

4) Vta = @

5) Ph={s-d—-> aASBB,si)aABB.s-E—»bA,Bf_’;b,A—%a}

Let H = {Va, Vp, Ph.AX. Vta, K}, then clearly L(G) = L(G') = L(G") = L[H) =

{?nbn [l\}ﬂi

Some derivations:

(1) S=3A b =pab
(1) S=PAaSBRE—pPaaSBB —PaaAbBB —PHoabBbb

=PaazabbB =—paaabbhb

Theorem 1. 'Ozf - C%fi - ;if - aéi/

ocG CCG CG CF
Proof:

This 1s an immediate consequence cof lemma 1, lemma 2, lemma 3.

For strict open completion grammars (30CG) the situation is somewhat different.

Lemma 4.

Lst G ={va, Vp, P, AX, Vtz, K) € SOCG then

VWwE L) : w=aw €viaV' and (v nly, a W' € LG

Q

Proof:

Suppose w &€ LIG) . This implies that pref1[w] € AX 0 Vta since

v oa)y, : (a2 (prer,(x) = a) b

is easily seen to be true.

. . * _— .
From (1) it alsc follows that, if pref,(w) = a, then a ?ﬁ» aw = w far

some derivation and thus

a2y aww S aw’ =y . f:} aw" ::>>

Lemma 5. {anbﬁ In elNB ?aﬁ and conseguently -Z \f’ £l

S0CG CF S0CG

Proof:]
This 1s an easy consegquence of lemma 4.
: d
Lemma G. .
2n .
\
{a b | ne,‘[N} ¢°%CG and cansequently-%EG Soce

Proof:

Again this follows from lemma 4.

Lemma 7. ’
3L %écs\ afﬁEG

Proo+:
o tete (o} {8}, {a—sBoaal, by .{al . kip) = ay € soco
It should be clear that '

w € LBl "> 1) praf1[wJ = a

2145, W) = 2 Frplw) + 1

And also that

[yn€ N (Jw = wqam w, € LIG) where m 3 n}

Suppose LIG) & iREE then:

Jdra & =« Q, {a,BS , &, gos F) =uch that L&) = L(G)
_ n
Let w € LG} :w =waw, with n ;ﬁ#&tu)
Then clearly becuase by our assumption that L(®&) = L(G} ,
[3:1)'3: E3v,| =wal) 8 (gosvy) = g and

(3m) (5(q.a™ = q) m & 30
< N

such that anr+%3Pref(w]

~But this would imply that W,
this leads to & contradiction. Canclusion: L(G]) € FEG

Thepesm 2. aénl:l; g 4 | .
sz; and VZf’ are inéumparable

S0CG REG

O

Proof: This follows from the previous lemmas.

P

R

N

CH o GL(&)(“!“EK)o.Since w,[a'r ' kr"w2 # -L(G] (because of 2)

The results of thecrem 1 and 2 are symbolized in the following diagram.

7.2. Sthcng generative capacily

The fact that the same tyﬁe of language is generated by completion grammars

and coptext-free grammars is an important and interesting result, this does not
mean however that the way in which these grammars deal with language is the
same.

In this section we define the structures assigned by completion grammars and

discuss some consequences of the subdivisien of the terminal alphabet.
2.2.1. Relation structures

Oefinition 4.
Let G = {(Va, Vp, P, AX, Vta, K¥&€ LG then there corresponds with each
derivation a unigque graph called the telation straucture R, whare a relation

structure is a labelled plane rooted graph to be constructed as follows:

(1) if xempy holds, i.e. if x = X48 X5u @ DO 2 pe€F and
y = x,Adx, with a = a, ... a_ » then nodes for A, a,, ... , @ are added
1 2 1 n 1 n

a_ to A.

to the structure and a directed line from & to a and from 51, AR

_ . d .
(i1) Stmilarly, if x =y helds, i.e. if x = xax, , @ gor in a,0€ P

y = x161A d.xz, with a = 8, e @, then nodes for a4, A, Bps.re » @ are

added to the structure and a directed line from A to a and from a1, ...,an to A,

(iii) This construction process 1s easily extended to the reflexive and

transitive closure of smh and =9 respectively.

Clearly for an arbitrary x & L(G) there corresponds & relation structure Rx

with a the roct of Rx for a :§:>x

Notation: For the sake of clarity we draw circles arcund each label denoting

an element of Vp and squares around eacn label denoting an element of Va.

Example 11.

Let G = (Va, Vp, P. AX, Vte, [0 € CG withva = fa.b) , vp = §A}
AX = {a}., Vta = gb} and

P a = Ab

a *Aab

then with the derivation

dwah Acb smp AADD wap AAADDD

corresponds the followlng relatlon structure:

and with the derivation

a—paAb —AbAD —pbAADbDAD corresponds the relation structure-

Remark:

Relation structures differ clearly from constituent structure trees in that
(i) they are graphs and not trees
(ii) lines can enter terminal elements
(ii1) a functionzl relation among the elements is expressed and not a dominance

relaticn. (More about this in the final ssction)

In other words completion grammars express other structural ipformation than context-

frees grammars but they deal with the same sort of languages.

The most important deviation from phrase structure grammars is the splitting up of
the alphabet in arguments and procedures. The conseguences of having two disjoint
sets as terminal alphabet can howevsr not be studied in relation to phrase structurs
grammars (because the distinction doss not exist in this system). The reader will
remember from lemma 2 and 3 that in nﬁr construction process we defined each time

Vta to be empty. That this distinction has however deep cocnseguences will be clear

from the following lemma’s.
First we extend the noticn of a CF grammar to such an extent that

discussion on the relation of CF grammars and CG grammars becumeé meaningful.
2.2.2, Consequences of dividing the alphabet
Definition 5.

pa grammar (denoted as PACF) 1s a 5-tuple G = (Vn, Vta, Vtp, P, S} where

A
G = {yn, VtaVVp , P, SYECF and Vta M Vtp =

The pa-cf language of a PACF grammar is defined by:
L__[GY = ¢ LIG) , vta, Vtp}
pa

In the sequel symbols in Vtp will be denoted by capital letters A,.B. -
symbols in Vta by small letters a,b.... .

Definition 6.

Let G, G'& PACF we say that G and G' are PA-eguivalent (G T G') and

also that L__(G) == L _(G') iff the following bolds:
pa [2;] ra
3 $ s ¢p isomerphisma: 9, + Vta~> vta'
¢ 1 Vtp - vtp'
p)
such that ¢ (LIBY) = LLG") where ¢ = ¢a U ¢ 5

Definitiaon 7.

L o - {Lpatm |6 € Pace)

pa

Now we are in a position to compare the generative power of PACF, 0CG, CCG, CG

taking into account the difference between procedurses and arguments.

We do this through the following seguence of lemma's:
(oéaaEG.a%;REG are defined in the obvious way)

Lenms 8. 2 2006 c L oce C°£CF
pa = pa = pa
Z cF

pa

0
0
[
1N

Prog+:

Similar to the proof in lemma 1.

Lemma 9.

(v L%CE (03w tPref,(We vts) = thaéccs]

Proof:

Trivial from the definitions

Lemma 10,

i
JL €aéfCCG \ &~0C6
1 pa pa

Ji, e afﬁaucs N of;aaccs
I e Aot o aéé £CG

Proof:
(0 L= (A" 0 2 1Y LIt ie obulous that L, Eécca
It should also be clear that ;é G € 0CG: Ab ELpa(GJ and conseguently

L ¢ ogaocs .

(2) L, - [taB)" | ny1l
It is trivial that L, € ‘,gzDCG AN a%% CCG (use lemma 9)

(3) Ly = (A" | npa}
Cleariy Ly = Lpa(GJ where
E=<{5.a‘3 ,{A.BB .{s-L)Bas .a—d-auf\ ,sd—»Ba}.
sy . o#>eoce :

and also L3= Lpa(G']

where
6 ={(s.b) . {nBY L {slenns Lsfuab, vl BYL {), pye oo

O

Lemma 11. L e,,é;cs N\ (aéocsu aéccs]

Prouf;
tet L={am" | np1Yufam” oyl

The rest of the (easy) proof is left to the reader.

Lemma 12,

L Go{REG CCG
1 pa

v,
3L2 € oﬁccs AN ‘aéaREG
Proof:

(1) Take L, = {(ea” | n' e J
Z
Clearly L1E paREG

and by lemma 9, L1 =4 ¢¥f;aCCG

(ii) Take L2 2 L1

Lemma 13.

3L1 € aﬁanEG '\aéREG
dL, € aipfaREG N G%DL‘.G

Proof:

(i) Take L,1 = L, from lemma 10

3
(i1) Take L, = {(am)" ¢ 1}

Clearly L

€ o REG
pﬂ

2

(by a similar argument as in lemma 10, (1))

Lemma 4.

aLeapéz:F N oi;acs

Proof: -
Take L = {a"b" | n31)

by definition L € 52CC

Lemma 15.

Ju fsaéucs \ésocs

Proof:

18

(from lemma 10)

and L, ¢ eégancs_

Take L = L2 from lemma 10, by lemma 4 it follows that L ¢‘9§;?SDCG

O

Lemma 16.

JL, € ozsucs \xREG
1 pa pa .

3L, € DZREG \ oﬁ SOCE
pa pa
Froof:

Similar to the proof of lemma 6 and 7
The results from lemma 8 - 16 may be combined in the following diagram

Theorem 3.

& fSDEG

pa

Where an arrow indicates strict inclusion and no arrow betwesen two classes means

that the classes are incomparable but not disjoint.

§ 3. RECOGNIZERS

As a consequence of theorem 1, the construction of the automaton which accepts
the language generated by an arbitrary completicn grammar G is a straightforward
task: first we construct & context-free grammar G' where L{G] = L[G') , then

we construct a pushdown automaton P, on the basis of the context-free grammar

G* with L(P] = L(G') . This is weil known to be possible.

P is the required automatan.

Thére are however reasons not to dolso:

[1) to preserve the strong generative capacity of completion grammars, it is
necessary to develop recognizers which are structurally equivalent to their
related grammars, -

(ii) when we extend the model with a more precise treatment of the imposed
order relations {see next chapter) it will prove to be necessary fo have a way

of coping wlth non-preferentially ordered expressicns by means of an automatcon.

In thls sectilon we tharefore define constructs called completion automata
and algorlthms to translate completion grammars into cbmpletion automata and

vice-versa.

A completion automaton is essentially a finite automaton with a pushdown stere
(alsp called the stack) upon which certain states are being stored in a last
in first out manner, and with certain slements of the alphabset (called the

final elements]) associated with each final state of the automaton.

We can describe the activities of scch an automaton as follows:

(1) symbols are being read from the linear input tape in a sequential manner
from left to right ‘

(ii) on top of the stack we find"the current state of the automaton, if we
can make a transition from one state to another one, the current state is removed
from the stack and replaced by the nmew state.

If we cannot make such a transition the current state is pushed further on the
pds. and the initial state is put on top of the stack. If we can mzke a transition
the initial state is replaced by the new state, if we cannct make & transitlon,
the string is rejected.

(1i1]) if the staté on top of the stack is a final state, this state is pecpped
up from the stack and the symbol that is being associated with the final state Is
written in front of the remaining string. (so that it will be the first symbol
that is being read.)

Words are accepted 1ff the stack is empty and there is one final element left

on the input tape.

Note that the completion autcmaton is very similar to the basic
transition networks introduced by Woods (1870), except for the fact that

glements are asscciated with final states.
Let us now make this picture more ekaét.

Schematically:

INPUT TAPE

- lelelelel]ea] -
fin

ite control

pushdown store

Definitian. 8.

A completion auwtomaton R is a 9-tuple R =(Va, Vp, Vta, (L, A , AX) where

4) Va and Vp are twe finite nonempty sets called the set of arguments and the
set of pﬂoceduﬁz names oh predicates respectively.
2YVa O Vp =@,V = VaU\p
3) vta & Va is the set of ferminal arguments .
4] & =K, V, Z , 0o.8 , F) oconstitutes a finite automaton (called the
embedded automaton where
K is a finite nonempty set of states
¥ is a finite input alphabet and I = Vta.b Vp
6 is & mapping from K X V into K

go.€ K is the initial state

FS Kis the set of final states

The fellowing restrictions hold for LIG):
1) LI&) should be finlte (this is known to be a decidable guestion)
Z2) Each word x € L{ &) should be of one of the following forms:
1) either x = Aa with A€ Vp and o« € Vak

In this case the path of transitions leading to the acceptance of % is

called a nondependirg path.

2 prx = a A« wifh a€Va (possiblya), A€ Vp and &« € V&, In this

case the path of transitions leading to the acceptance of x 1s called a

depending path.

58) A £ F X Va is the association redation.
) AX € Va ‘is the axiomset.

Definition 9,

1) A configuration 5; is a pair { x,y } with x€ V¥and y€ K*

(x reprgsents the input tape and y the pushdownstore)
2) Let 8y + r1ex » A€ vV, and Qg+ «+r 2 G € K, n,m30 and 84 and 55
configurations where

5, =;(a,|a2 s @p s G0y s qm) » We say that
s, directly denives s, denoted as s,— s, if one of the following
halds:
(a) TRANSITION
= L)
S5 (az ven Bp e 4y dp ++» Oy ¥} where q1’ E & (aq.q1)
(b] PUSH
= r]
5, (az... a, s 9'040,.-. Q- } q' € 6(31.qo)
(c) POPUP
=) . : ’
59 (a @y see @4 dy e qm) 1fF q1E F and (q1,a Yy € A

-In all other cases 5o is undefined

3) Furthermore let h:;- derote the reflexive and transitive closure

Of o,

Definition 10.

Let R = {va, vp, Vta, (&, A, AX) be a completion automaton

1) The language of R denoted es L(R) is defined by
LR) = {xlOx,q0®(an) 5 with & €AX, x € (Vp U vea)*y

2) We say that R = (Va, Vp, Vta, (& . A, AX is a closed completion automaton
i L ‘
(vx €ELI®)) (x=Aa , A€ VYD and ac Va¥)

3} We say that R = (Va, Vp, Vte, CE, . A, AX) iz an open-completion automaton
iff ‘

(¥ x € L(83) (x = aAa, a, €Va, A € vp and aeva®)

4) CA, CCA, OCA denotes the class of completion automata, closed and open respect,

5} d%p. = {L[Rl IR € DA'} .o@m = {L(R]l R e DCA"}.
aLOCEA = fLR)| R e ccal

Example 12.

Let R = {va, Vp, Vta, @ . A, AX? be a closed completion automaton where

1) va = {a.b}
2) vp = {A)
31 vta = {b}

4 ® =€ K, V, 8, Gos E

K = {Qol q'Z' q3' q4l QES

v="_a, a, b}
5(gy.A) = q, S(qz.b] = dg
5la,.b) = q Y(q e - g,
5(q,.b) = a,

5) A =%q3,a),(q5.d$

6) Ax = {a}

as a transition diagram:

n,_n
b

Clearly the language accepted iE{A
We try some strings:

let x = AADDB

{(AADb, gol—CA DD ,gy) F—Lb b.q2q2> — (b,qaqzh—(a b.q,

— (b,q4) — (X ugg Y —{C a, d)

Let x =Abb

(Abb, gedr—=(bh;§]2>|—-(b .Gy Ye—(a by A
The automafun halts but the word is not accepted
Let x = AAD

(A A b, G b— { A b,g,) F— (b,g,a—¢ R-.qaqu F— (8,0} ¢)\.qq)

The word is not accepted
Example 13.
Let R = (Va, Vp, Vta, Gi s A, AX Ybe an open completicn automaton wheres (2,

E, A, AX, Vta, VP are exactly the same as in the previous example, except for

the transition function &

5{go.b) = a, 5(go.a) = a5
6[q1,A] =4, : B[qS.AJ = g
8[q4.b1 = 0

as a transition -diagram:

Now L(R]

u

(oa o’ nya

We try some strings:
Let x =bAAbAD
{(bAADAD . ,qF—{(AABADbL, qq) —{AbADb .q2)r——(a AbAB, A)

F— (AbAb.Gy) — (BAB . g (Ab.g. (e AbX)i—(A by

I-——-(b.q4) — (7\.q5) —¢ a,h ¥

the word 1s accepted

Lemma 17. afa; C O?A—

Let G = (Va, Vp, P, Vta, AX, K Y& CG, then we construct the automaton R
= §Va, Vp, Via, @& , A, AX) as follows:

1) Va, Vp, AX are as in G
2) L = (K, 2,8, go ,F) is defined as follows:

*
Let Z = Va U Vp and for each #€V with p = a,¢}E P ‘and
KIp} = n or 1 we start a chain of transitions frocm qo such that for each element
“of ¢ we create a transition with this element as condition for the transition

to take place.

In aodition if p =(a, ¢} € P and K(p) = d or i we start a chain of
transitions from g. such that for each element of ¢ ws create e transition
with this element as condition for the transition to take place and a

new state, where ¢=a A ¢ ,and ¢ =Aa ¢’ ,a€va, ¢ € va¥.

The last element of ¢ will make a transition to a finzsl state.

Note that we can always do so because LI &) is finite due to the fact that

P is finite.

Note also that as a conseguence of this caonstruction process there corresponds
a unigue final state Ug with sach x EL(@&Y) . We say that (2 accepts

» in the final state Op-

Let (qf.a') € A iff there is a producticn {(a', ?) in P where ? 1s accepted
by éﬁ«im the fipal state Ugr

Clearly as a conseguence of this construction L{G) = LI(R)
Example 15.

tet G «[a,t} ,{a) .fa »aba La= ab b - a}.{a} .0e co

then by applying the censtruction of the lemma we obtain:

R = (Va, Vp, Via, G, A, AX) such that va = {5,035 , vp = {al vta = [a}
and @, =<K N z ’ 8 y Qoos F with K = {q::: Cl.]: ﬂzl qaa qu.s

X = [a.b.A%

8(gy,A) = a9, 6 (ge.b) = a5
6(q1. bl = Uq ’ § [qz. A) = 9,
6[q3, al = a,

b= {q1' 93° 9 y

As a diagram

Clearly Li{R]

<q4-a>}

>3

» {95287
- L6 = {a7"

Let us give an example of & derivation, as 1s usual with nondeterministic

processes we draw a tree to represent the parsing'paths where a connection

between two nodes means that the

'l_'

relation 1s prasent.

Let x = A A AA
(AAAA,go !
(A AA .G) (AAA ,q,80)
(bAAA,N (b AAA,G)
(A AA ,g)
(A A, 9,050 (AR, a)
/ A
(Aq,lq,lqz)(bAA,qz .q,,qa) (aAAl.)
{%.9,9,9,G,? \ '
1717172 (b A ,g? (X, qg,q.4
(b A.q1 2 (A A 2,9 \3\\ LA Il I
(b.q1q1q2) //// { . q2q { b,qqqa)
\ R (Aqq2q2)
A Laya,0) 3%z I ?\.qzq,lqa)
(A +950,6,8,) A 'qaqa
17342 (X 20,0050, (3,9,0,)
(as,q g ? .
172 \
hedgy? (brgya,9; <a‘q3)\\< o
A {aa r)
(A »050,0,° 5 \ ¢ N adyy .
27872 ¢ Aadg0509; 7 (X 20,0050, ?
(a,qzqz)
Cpashy

(accepted)

Lemma 18.

Let R = (Va, Vp, Vta,'éﬂ-. A, AX YECA , then G = {Va, Vp, P, Vta, AX, KE CG
is constructed as follows:
1) Let Va, Vp, Vta, AX be as in R

2) Let M = [x € LIQ) : x is of the form A , A € VUp,d € Vax{
and .
M2 = {x € LIQ) : x is of the form a Ad with
AEVD, a € Va {Rg and ¢ € Va* g

Due to the restriction on LI®) M1, MZ are finite and M1 U M2 = LI{R)

NP o= [La a6 | ¢€ M and (gp.2»€ A and ¢ is accepted by (& in the
’ final stste q; } ' '

A[a__d_w,.qj | ¢€M2 and §=ar¢’ .6 =Aap, ¢{6Va*.ae\!au{h'3,
(qf.a)e A and @ 1s acocepted by (R-in the final state e E

The obvious proof then that L(G) = L(R) follows immediately.
Example 16,

Ltet R = {Va, Vp, Vta, & , A, AXYE CA be the automaton of the previocus

example. By applying the constructicn of the lemma we obtain:

M1
M2

(A, Ab, Abal
{bA, bAa , A} and thus:
P=£b—D¥A,a—QPF\b, a~eaba, a-denn

a iihA ba, afibA.}

We can clearly shorten P as follows ,

P = {p___yﬂ. a—»Ab,a—»Aba }.

The grammar obtained is:
G = ¢ a,bh ,Q\E , P ,{ag » X)Y and this is indeed the grammar we

started with in the previous sxample.

CA CG

Proof:

The proof follows immediately from the lemma's.

- 28 -
§ 4. THE PRECEDENCE RELATION RECONSIDERED

In this section we extend completicn automata such that they accept all
pogsible combinations of a word which is normally accepted by a completion
automaton after careful applicaticon of the rules. First we define the language

that is to be defined and then define the extended completion automaton.

Note that we dq not change the definition of tha components of the automaton,
only the way in which he operates, in particular we introduce an additional

stack.

- First we define the extended language
Definition 11.
Let G = (Va, Vp, P, Ax, Vta, KY€ CG

Let \k be the Parikh mapping, then define
cwmn = YTY wen

Definition 12.

An extended completion automaton R, denoted as ECA , is a T-tuple

R = (va, vp, vta, &, A,-AX) 1s as an ordinary CA.

A configuration is a ~triple: .
{x,y,z) where x € ‘u’t ’ yEK?zE v

8y — 55 iff: 8 = (6152 SR N q1q2... qm, aiai+4 . ai+k)

w.,h m },O

and
TRANSITION

Sp = (8 »ee B g0y ene Gy 8y ""ai v k! iFF q," € Slag,ay)
PUSH 1

s, = (ay +ve 2, g’ q{ ...‘qm L FEETTN ¥ iff g' € S[aﬂ.qu'
PUSH 2

S, =@y exvv @y, Gy ere Qs B8 a8y) ' in any case

PUSH 3 (called the emergency push)

S5 % {843, v 3., 0y ced Qs By, qres TR in eny case

PoOPUP 4

85 = (a'aq... aT1 R q2 e qm . ai R P K) iff q1e Fand ¢(q1,a' ye A
POPLP 2

Sy, T 8y «ee @ q;i'qz... Unt@ g4r o0 Biag) iff q,]' = (qq.aiJ

DB?initi?n 14,

LIR) = {w | ados Ay @ NNy ae AX]

Example 17.

Let R € CCA with

fan) Jay oY @ {tape () L[]y ane

G =V, § . o, B where

K = {QO! qz’ qa' q4' qS.g

v=faa. b, A}

§ {qesal = a, & (qz.bl = 4

i) [Q2JbJ = QB) [qz'a] = q4

We know already that L(R) = {A B" ngz 1} if CCA is consider to be not

extended.

Let R* €ECA then LI(R') = c(L(R])

some examples {we only give the path leading to & final state}

Let x = AADD

(AABD, GauAdb— (Abb, X d—(bb, gy, s X) f— ¢ 0,59, A)

|——(ab.q2,?\>|—-(b.q4,7\)}—-(a.}\ A
[(note that we did not use the additional stack}

let x = bbAA
(o bAA, QuuM F— (bAA, go,b}—®AA ,qo, bb) F—C(A, g, b o)

(A, gL br—@A, A L, —CA, A ab) {4, q,ab)

(X, g0} F— {2, go, M a.q5A y

Let x = AbAb
CAbAbL, qe, M b Ab, gy >[——(Ab,q3-~1\)}—-<aﬂb,?\ M=AbA, a2

— { b,

E|2 N a) l'_ (b ;E|4. ;\)l_—'(‘)\.vqu A} I_— (a.-ElS;)

Example 18.

Let R be DOCA with

Re (Jabe) L{asl , fancl o & fiague el)

& ={ K. V: 5 » Qo E) i.2.

K = {qo, Qqs Qg Qv Ggs Oz Tgo q71

8 (g0 ,a) =g, 80g, » B} =g,
6 ‘ = =
(q1,AJ = q, & [q4,B] = a;
8 (g,,b) = a4 § lggrc) = qg
- q,

& [qB,aJ =

== | {qa'q7]5

If R is considered to be ECA then:

Xx= bBcaAbBegca
(bBcaAbBca, Gos) r——;—(BcaAbBca, Q4)) —
(caAbBca.qg A)pPb— ¢tapbnBoca, Qs N)
— ¢ AbBca, g M) p—(aAbBea, A,)
— (Ab‘Bca.q1,)~)|_<bBca .qz,'S\)
f— (bBeca, gy b—(8 0 a, qE, A b— (Ca,aa, »X)

b— (3 s Ggho » X)) = (A 85085, X) (b, GA 0~ A, gg.A)

—— (8. A L A5

The reader should now try the very nice example of x =b bBcaABca

for himself.

Theorem 5. KJ -)
ECA G ['E"i's

The standard proof of this theorem 1s left to the reader.

Given the above results one can introduce the following concepts:
Definition 15.

For a given R & CA the ungrammaticality of @ word w e L({R) denoted
as uglw) s defined by MIN (MAX [s,(3)]) 14 i & n = wnere a configuration

is a triple { si(1], 51[2].51[3] % and s, is the initial configuration and

1

By f— vt b— 5, is a derivation accepting w, i.e. w = sn

ExamEla 19,

For the system Iin example.17.
(i) w=AAEDb then uﬁfw] =0

(iiJ)w=bbAA then uR(wJ

fl
N

n
=

(iii) w=ADbAD then UR[W]

For the system in example 18.

(il w=bBcaAbBrgca
then UR(WJ =0

‘(ii) w=sacBbacBhA

n
~

then'uR[w]

Definition 16.
For a given R € ECA the complexity of & word w € LI(R] dencted as
comy(w) is defined by '

MIN (MAxnsi[sz 1£1€& n

(Note that this definition does also apply to not extended completion automata)

Examgle 20

if w =AADbD
then cumR[wi =2

ifw=bA ADAD

I
-

then comR(wJ

ifw=1hAA

then comR[w]

n
-

Very %nteresting results are obtained by comparing the complexity degrees

of and

0cG cte *

These and other pesults, with special reference tc the application to natural

languages, ovan be found in Stééls % Vermeir {1976},

§ 5 APPLICATIONS

Although this paper concentrates on the formal properties of completion
grammars, in this final chapter we deal as briefly as possible with the view

on language that we wapted to model with completion grammars.

The information in this section is essentially contained in Steels (1976al.

5.1, Completion ghanmars as a means of formalizing case systems

There exist several proposals for case systems. These proposals differ mostly
in the cases that are adopted and in the level of ‘deepness' that is aimed at.
What they all seem to have in common are the follpwing ideas:

(i) A case is a (bimary) relaticn between a predicate and ones of its
argumente. We call the name for the case the case indicator or simply
indicator. Examples of commonly found indicators are agent, cbject, instrument,
source, goal, range, stc...)

(11]) Case relations affect in twe ways language:

(z) They are expressed (or recognized) by means of surface signals
such as prepositions, case affixes, word order, intonation, etc... . These
signals are called case markers.

(b) The system is further refined by the idea that semantic propertie;

of the unit under consideration act as selection restrictions.

(iii) A case structure or case frame for a particular predicate is a set of

case relations that cccur with that predicate, TOGETHER WITH information how

they arz expressed (cr recognized) in language, i.e. the case markers and
selection restrictions involved. '

(iv) Parsing a language expression wilth the guidance of a case system

{(where a case system is just a set of case structures for a language) involves
the discovery of the case structure, that means a decision on which units in
the sentence fill in which slots in the structures; this decision is being made
on the basis of the case markers and selection restrictions of the unit under
consideration.

Producing a language expression with the guidance of & case system involves

filling in the aphropriate concepts in the places where the selection
restrictions permit this, and translating the case markars in their surface

structure eguivalents.

Given the above statements on the neture of case systems, we will now try

to relate this to the formal model that was studied in this paper.

At the center of the case structure we find a predicate, the rest of the
structure contains arguments. 5o, a first step will be to make a basic

distincticn between a set of predicates (vp) and a set of arguments (Va).

In connection with & procedural semantics, predicates can be considered as
the names of procedures and Vp is therefore also called the set of

procedure nNames.

One of our basic insights is a fundamental distinction between predicates

in prefix-position, predicates in infix—positinn aﬁd predicates which appear
in both. (There are languages where still other positions are possible, e.g.
postfix, it should be clear however how the model can be extended to cope
with these). The case frame, and thus & production in the grammar, should
reflect this basic opposition. We call rules which contain predicates which
should glive rise to an expression where they stand in prefix position, infix
position, or both, nondepending productions, depending productions and

indifferent preducticns respectively.

In a gensrative viewpoint, the order of the expressions in a languesge 1s
defined by the derivatlon relatlon. Hence we will have a derivatlon mechanism

realizing prefix-position, this is called @ closed derivaticon, and one

realizing infix notation, this 1s called an open derivétipn.

It may seem superfluous that both prefix and infix predicetes appear in the
samg language, it can be shown however on the basis of ﬁugnitive arguments
(in particular memory limitations]) that it is necessary for humans to have
both types of predi&ates. It would lead us too far . to deal with this

point here.
To maks ths model more precise we now consider the status of the arguments.

An argument 1s said to have three levels:

(1) argument type, being the semantic restrictions and the case markers

(11) argument name, being the case indicator

(1ii) argument value, being the particular cbject involved (this can be a
pointer to a place in the data base for example).
It is easy to see that when studying the forinal properties of case systems
only level (i) is important, Indeed the argument names are nothing else but
mnemonic labels for relations which are.positicnally defined in the structure,
and argument values ars only imﬁortant for the actual semantic interpretation,
not Fuf the parsing. So we are left with the argument type. And also here some

further reduction is still necessary.

The argument type contains as we said semantic properties of the argument that
act as selection restrictions, and case markers. Arbitrary arguments can however
contaln a very large number of properties but there are of course only a certein
set of properties relevant as a selection restriction for a particular case

structure. Hence what we will actually find in cur grammar rules is a set of

- a5 -

relevant properties and for a particular argument to match, the set of relevant
properties should be a subset of the set of all properties of that argument.

Va therefocre contains sets of relevant properties of arguments.

Also it is necessary to delimit a subset of Va, the so called nonterminal
arguments, being those arguhehts which cennot appegar in a language expression
itself put are to be realized further.

E.pe 1F a certain argument type contalns the indlcator that a case affix should
be present, then the argument is terminal if and only if this case affix 1s
indeed added to the word form of the argument. In the grammar. definition we will
indicate the terminal arguments, and the nonterminal arguments are all the other

arguments.

In addition we will incorporate the result -of semantic interpretation ., of
which at least the type information is known in advance, in cur definition
of & case frame. This will guarantee among other things the recursiveness

which 1s necessary to cope with the infiniteness of language.

With the above explanations the reader should understand all the components

of a completion grammar G = (Va. vp., P, AX, Vta, K> and the derivation

processes @Ep , P, and T/

5.2. Some axampies
example (a) A subset of the FORTRAN IV programming language

Although completion grammars were designed to cope with natursl languages, they

are equally wel; applicable to programming languages. These languages are (syntactically]
simpler than the natural languages, and therefore ﬁnt all aspects of the model

can be illustrated. It is our hope that completion grammérs will once form a

tool in the development of a more human oriebted outlook of programming languages.

let G = (Va. Vp, P, AX, Vta , K» be a completion grammar with

Va = ‘ {statem » num , log . rightpar}
Vp = { =, +, -,/ , %, (, 6010, IF, AND, OR, NOT, END, GT, EQ, LE , LT }
ax = [statem)
Vta = {num » log } (i.e. numerical variable or constant and logical variable or
constant)
and P:
d
1. statem —p = num num

d
2, Dum +] hum num

/
X

3. num _n.,, (num rightpar

4. statem — g IF log statem
5. statem — e GOTO num
6. log S f6T) num onum

| LT

LE

EQ

NE
7. log L{ANDE log log

OR

8. log — e NOT log
9. statem — END

10, rightpar ——s=)] 11. lng—n-;[rightpar
(Ncte that we always put arguments between sguare brackets)
Some derivations:

(1) statem ::;:» num = num [E.g.: I =1)

(i1) statem 4- IF log statem & IF [log rightpar statem

10 ' '
= IF(log) statem $>IF(log OR 1log) statem

Bﬁ> IF (num EQ num OR log] atatem
——>IF (num EQ num OR ([log)) statem
B S
——IF (rnum EQ rum OR (num GT num) } statem

4
l@IF (num ER num OR (num GT num 1)) BOTO num

(Eeg.: If (I EQ 1 0R (I GT J)] GOTD 16)

As 1s usual with grammars, one can de?ine structures assigned by the grammar tc a
particular string of the language. The structures assigned by completion grammars
are called relation strucutres. They‘wurk as follows: for a procedure draw a
circle and for an argument a sguare. Argument squares can be divided into two
sublevels repressenting the level for the argument type and cne for the argument
value. Input relations are represented by directed lines leaving a circle .and

entering a square.

Example for derivation (i)

num

statem =

.num

If there is any need to specify names or labels for the case relaticons

{i.e. case indicators), we write these on the directed lines:

2
statement

num

Where '1' denotes 'filrst input argument' and '2' denotes the second input

argument’.

If we want to specify these indicators in the grammar we write the case

indicafof as a subscript:

statem —_— = num num
. 1

The relation structure for derivation [ii). (Note that in a strict open
derivation output and first input argument are identical, therefore

we get a symmetric relation in the structure)

statem IF 5 tatemen
GOTO
1og num
(rightpar
log
EQ OR
log
GT
num num
num num
Example:

Let us now give ancther grammar which contains case frames for some arithmetic

procedure names. (It is the smallest 'natural langusge' example we could

think of).

Let G =

E num ’

Vp = { divided, division, is, of. by . the} s AL = {numg and P contains

num, prep;of B

the following pro ductions

A derivation:

num % num

num —”—a— division

num —8 o divided

num, prep:by LI, by

num, prep:bf —n—- of
d .

num ———m i5 num

num _n_‘_ the num

is

1‘ the division

n

num,prep: cf

ggﬁ the division of num
3

=y the division -of num b
2 P

ﬁthe division of num by

num, prep:by

ﬁum,prep:uf

num

num

num

um

¥

num B‘the [TEL I

{va, Vp, P, AX, Vta, K% be a completion grammar with Va =

num, prep :by

num, prep by

num

num,prep:by

is num
num is num
num is num

is num

3
ﬂthe division of num by num

A possible realization of which is

The relaticn structure for this de;ivation:

[

num,prep:by

is

divided

divided

num

'the division of 4 by 2 1s 4 divided by 2'.

by

num, prep :by

num

This example shows clearly how prepeaitions are expreased and recognized in
their function &s case markers: prepositions ere considered as predicates which
add simply the marker that the prepositicns is present to the list of properties
in the argument type of the result. (Note it can be that prepositions do more
than a mere syntactlc functioning, this fact only makes the formalization even

mare valid.)

Normally nouns, adjectives (in front positionl, prepositione, a.0. are defined
by nondepsnding productions, whereas verbs, adjectives (in post-noun positions)

participles, etc... are defined in depending productions.

Another aspect, namely the case affixes are treated in a similar fashion. In
particular, the case suffixes, which are added at the end of a word form, are
simply depending procedures whereas case prefixes, which are added in front of a
word form are nondepending procedures. Although the consequences for merphology
should be further investigated, this way of dealing with them guarantees

a more 'semantically' oriented treatment of morphology and a unifying approach

to surface analysis. Let us now deal with & third aspect: order.

For phrase structure grammars and similar systems 'being grammatical' means that
elements of certain syntectic categories are present 1n a particular order, i.e.
these grammars define a dominance relation (x belongs to the category y) and a
precedence relation (X cmﬁes before y). With completion grammars we define first
of all functional relations among arguments and predicates, and hence we can
have a freeer attitude towards word order. The need to have systems which are
not so strict bound to a linear order has often heen mentioned and various
attempts have been made to construct grammars which are free from word order
[see Levelt (1973,104]1.

A completion gremmar defines a weaker precedence relation. Weaker because order

CAN be an element in the decision about which relations exist and

therefore a completely free word order will not do. The notiop of a weaker precedsnce
relation order is introduced by considering the order imposed by a strict

agpplication of the grammar rules as a preferentisl order. If certain cases ,

i.e. arguments, are missing in an expression this.expression is said to be incomplete.
Between an incomplete expression and a prefersntially ordered one, it is possible

to define & gradually increesing degree of grammaticality (see the section

on order in this peper). We have also sesn that it is possible to increase the power
of completion automata by preclse methods such that they accept not only preferentially
ordered expressicns but also not preferentially ordered ones, and when order IS

a means of decision making, the preferential order has a higher priority,

The term completion grammar/automaton (which is due to M.A.M. Verreckt) 1is
reflecting the fact that patterns are being described, and during analysis the
parser looks for such patterns to be completed. When the elements that complete

the pattern will occur is of lesser importance than their occcurrence.

A more detailed treatment of applications for naturasl lenguages is given
in Steels {1975b). In this paper the reader can find. implemented parsing
systems for complstion gremmars and some experiments in language understanding
systems. '
We also started to apply the model on a large scale in a project for the
construction of an sutomatic translation system for notes used on catalog

cards in libraries from and into the different languages 1n the EEC.

We are also considering a possible extension of the theory by the introduction
of rule production mechanisms. These rules would construct completion grammar
type rules on the basls of (i) the information to be axpressed and (ii)

information on how this information should be expressed, and (iii) informaticon

on how this should be done in a given language.

References A

Levelt, W.J.M. (1875) Formal grammars in linguistics and psycholinguisties, II.

Mouton, Den Haag.:

Salomaa, A. (1973) Formal languages, Academic Press, New York.

Steels, L. (1975a) Recent research results In computational semantics. In:
Nickel, A. (ed) Proceedings of the fourth international congress of

applied linguistics. Forthcoming.

Steels, L. (1975blCompletion grammars and their applications. Antwerp papers

in Linguistics. Nr. 3. U.I.A.

Steels, L. (1976a) 0On formalizlng case systems. Paper submitted to the
Artificial Inteliigence and simulation of behavieor summer conference 1876
Edinburgh.

Steels, L. and D. Vermeir (1978) Some results on the relation of word order

tao grammatical complexity. Forthcoming.

Woods, W.A. (1970) Transition network grammars for natural language analysis.
Communicetions of the ACM 13 (1C), pp. 587 - BO6.

ISSUES OF ANTWERP PAPERS IN LINGUISTICS

4 - 1875 "
2 - 1375
3 - 1875
4 - 1976
5 - 1976

Luc Steels : Parsing Systems for Regular and

Context-free . Languages.
Johan Van der Auwera : Semantic and Pragmatic Fresuppositicon.
Luc Steels : Completion Crammars and their Applications.

Georges De Schutter & Eddy Kockx : Meervoudsvorming en
Vervoeging in het Nederlands. Een hnrfofonalogische

Proeve. -

Luc Steels & Dipk Vermelr: On the formal Properties of

Completion Grammars and their related Automata.

