
Promotor:

UNIVERSITEIT ANTWERPEN

UNIVERSITAIRE INSTELLING ANTWERPEN

DEPARTEMENT GERMAANSE FILDLDGIE

ASPECTS OF A MODULAR THEORY OF LANGUAGE

VOL 1.

Proefschrift ter verkrijging van de graad van Doctor

in de Letteren en Wijsbegeerte aan de Universitaire

Installing Antwerpen te verdedigen door Luc STEELS

H. Brandt-Corstius
Wilrijk,1977

PREFACE

In recent decades we have seen an enormous rise of investigations

into the phenomenon of natural language. Each time it was

shown that a certain aspect of this phenomenon was even more

complex than previously thought or that a new aspect should be

incorporated in the investigations. The present work has not

the ambition of adding new subject areas to the expanding

field of natural language study. We will not try to re-investigate

certain areas of knowledge or apply existing theoretical models

to unexplored language details. Instead we go back to the grounCwork.

We want to present and try out a new approach towards the

investigation of language.

We consider it to be the task of linguistic theory to provide

answers for the following questions: What sort of phenomena are

used by natural languages to fulfil their task as a medium of

cornrnuhication ? How do each of these phenomena occur in a

particular natural language ? What kind of systems are necessary

to produce and perceive the linguistic phenomena ? HOw do these

systems cooperate to understand or produce natural language ?

How can we construct mechanisms that learn to cope ~Ti th the

phenomena found in natural languages ?

It is generally accepted that a grammar model constitutes the

description of knowledge about language which is used by the

speaker/hearer to produce/understand his language, the so called

competence. We will accept this assumption. Normally however this

viewpoint does not affect the theory of grammar itself. One

constructs a grammar theory and then just hopes without further

investigation that it represents the kind of knowledge necessary

for a perceptual model. For our m.vn research we decided to work

the other way round. We tried to construct a perceptual model

and studied what the implications are for the grammar theory itself.

By doing so, we found out that a fundamentally different linguistic

theory is highly -desirable. Not so much as regards the descriptive

claims being made but more as regards the formal structure of

the theory. The most important difference is that all knowledge

sources are brought together in modules or specialists which can

become active independently of each other.

In this work we present the basic principles of this new kind

of theory. To illustrate them on the basis of the vast amount

of language phenomena known today is an impossible task in a

small amount of time. So we will pick out t~Jo basic aspects

of language: grammatical function and case, and show how the

theory formulates rules for them, and how the rules can

be used in an empirical description. At the same time we

will provide a perceptual model that 'consults' the knowledge

represented in the grammar, to analyze and produce natural

language, again basically concentrating on function and case.

Throughout the work, we try to satisfy strictly the requirements

of exactness characteristic of scientific investigations. All

models will be formally defined and for the perceptual models

we will even present computer programs with which experiments

can be performed to confirm the theories.

As a final remark we want to stress that the model to be

presented here is not the final version of our theory nor an

endpoint of our research. On the contrary, we feel a need for

constant self-criticism, continuous revision and certainly

further extensions (which may affect already existing parts

of the theory) . It is therefore better to call this work a

progress rather than a final report.

Nevertheless we think that the general direction of the research

is sufficiently clear and that the results so far obtained are

sufficiently strong to justify the presentation now.

There is a Zen proverb saying 'a finger is needed to point at the

moon but once the moon has been recognized we shouldn't bother

about the finger'. In the same spirit we invite the reader

to concentrate on discovering the ideas contained in the work

and to forget about the deficiencies and errors which will

·undoubtely be present in the current pre9entation.

TABLE OF CONTENTS

VOL.I.

VOL.II.

VOL. III.

VOL.IV.

preface

introduction

§ 0. FOUNDATIONS

0.1. Introduction to the theory of representation

0.2. Introduction to the theory of computation

0.3. Metatheoretical considerations

§ 1. THE THEORY OF MODULAR GRAMMAR

§ 2. THE PROCESS THEORY

2.1. The parsing process

2.2. The production process

§ 3. THE IMPLEMENTATION

3.1. Introduction to the implementation

3.2. The implementation of the parser

3.3. The computation of the structures

§ 4. EXAMPLES AND EXPERIMENTS

§ 5. CONCLUSIONS

Acknowledgement

Index and references

INTRODUCTION

In this thesis we present the first approach of a new

theory about the nature and mechanics of natural languages.

This theory contains two parts:

(i) A description theory dealing with the problem how

knowledge about the language systematics can be formalized.

We will do this by introducing a set of independently

consultable modules where each module explicates the relation

of a certain factor and the language phenomena used to signal

the factor. This explication is neutral in the sense that

there is no bias towards generation or analysis.

(ii) A process theory showing how the linguistic knowledge

is used to analyse or produce natural language.

As a whole the work is organized as follows. In a first

volume the reader will find a chapter on foundations and

a chapter on the description theory. The chapter on foundations

contains all terms, concepts and systems which fotm the

mathematical basis for the theories to be discussed later.

Also we will discuss some metatheoretical assumptions.

The chapter on the desCription theory deals with a

detailed and formal description of the modular grammar theory

which forms one of the main contributions of this work.

In a second volume the reader will find a chapter on the

process theory and on the implementation of this process theory

on a computer. As regards the process theory we will in particular

be engaged in a detailed presentation of a parsing system for

natural language on the basis of the modular linguistic theory

of chapter one. A system for language production also

based of this linguistic theory will be presented only on an

intuitive level. The chapter on the implementation contains a

detailed and fully explicit definition of a parsing system for

natural language as described theoretically in the chapter preceeding

it.

The third volume is devoted to experiments and examples.

Here we will discuss numerous examples for different languages

and perform experiments with the system to illustrate the various

points of the theory.

The final volume contains the conclusions of our work, the

index and the bibliography.

On the whole this is a theoretical work which implies that

the empirical interpretation will be restricted to what

we need for the examples illustrating the theory. We will

even at different points give different grammars or present

facts which do not necessarily hold for the language in general.

We invite the reader to take the same free position as regards

empirical interpretation and we hope that our presentation

Will stimulate him/her to use the formalism in a creative

way.

References to other work will be scarce. This is a consequence

of our method of absorbing scientific infOrmation by discussions,

lectures, personal communications, in other words by oral

rather than written communication. This happened especially

at the Summer ~hool for Mathematical and computational linguistics

in Pisa, at the Tutorial on Computational semantics in the

Institute for semantics and cognitive studies in Lugano , the Tutorial on

Montague grammar in Amsterdam and at the various conferences

(especially the AI.conference in Edinburgh and the Computational

Linguistics Conference in Ottawa) and seminars which we were

able to attend due to generous support from our department.

We apologize for all the errors either due to incompetent usage

of the English language or lack of care in the formal details.

We hope that they will form no fatal obstacle for understanding

our ideas.

We are well aware that the processing of such a large piece of

work as the present one is a hard and time/energy consuming job.

Let us hope that the ideas contained in the work will stimulate

the reader in his own research efforts and that he will gain

some new ideas for his own problems.

Antwerp, May, 1977

§ 0. FOUNDATIONS

In :thL; chap:teA we -Crl:tiwduee a vwmbe~t o6 auxili<VLy notioYIJ.> fiJtom

~e:t :theo!Ly and Jtec~-Cve fiunetion :theoJty :that ~ be ~ed :to

deMne :the :thea!Ly undeA d"-u~~-Can -Cn :the o:thelt chap:te!Lo. MMe -Cn

p<Vttieu.i'.M we will deMne oeveAa.t Mp!LUen:ta.Uon caY~J.>:t!Lue:t; ouch

a-6 a.tom6, n-.tuptu, !.:dJti..ng.6, !.JW, Jte...e.a.u.oV!.-6 and ianguage.ll and

p!Leoen:t a gJtaph-teat fioJtma:t and an -Cmpiemen:ta.Uan Jtep!Le~en:ta.Uon

nM each DQ :thue. ffio We Will -Cn:t!Laduee :the Jteade!L :to :the

"-n:tuitioYIJ.> beh"-nd :the notion o6 computation and defi-Cne ~orne

ab~:tMe:t ~yUem; 60JL peitfio!Lm"-ng compu:tatiaYIJ.>,-Cn paJr.:t.icuJ'.M

~~~e Ua.:te mach"-nu and Jtec~-Cve :t!La.Milion ne:twaJtkJ.,. 

Ano:the!L :top-Cc a6 :tM'> chpa:te!L ~ a ~ha!L:t ~c~~-Con on Mme 

me:ta:theo!Leticat caY~J.>-Cde!ta.Uono. HeAe we ~ ~c~o :the 

me:ta:theoJL~at !>:t!Lue:tu!Le ofi :the :theaJty, :the o:ta:t~ upeua.Uy 

a.6 JtegaJtcU 6 aU-CMcatian and compie:teneo~> and :the 

expeA"-men:tat method. 



CHAPTER 0. 

§ 0.1. INTRODUCTION TO THE THEORY OF REPRESENTATION 

§ 0.2. INTRODUCTION TO THE THEORY OF COMPUTATION 

§ 0.3. METATHEORETICAL CONSIDERATIONS 



representation theory 

0.1. Introduction to the theory of representation 

1

In this section, the type of objects used on all the various levels of 

a linguistic theory are introduced and discussed. The study of these 

objects goes under the heading of the theory of representation. This is 

so because each object in the theory (e.g. a structural description) 

represents linguistic information about another object on another 

theoretical level to which it is related (e.g. a natural language 

sentence). In general, let us call an object defined by a theory of 

representation a representation construct. What sort of information is 

represented in a construct will be discussed in following sections. Here 

we concentrate on the type of constructs used. The mathematical 

foundations for the present investigation are provided by set theory. 

A definition of representation constructs involves three aspects: 

(i) A formal definition in t,.1l-:ich the logical or 

set theoretic aspects of the representation construct become apparent, 

we call such a representation the original or basic representation. 

(ii) A formal definition of the graphical representation which is 

used for didactic purpose. It is obvious that there should be a 

homomorphical mapping between the original and the graphical 

representation. 

(iii) (In computational linguistics) a formal definition of the 

implementation representation, i.e. the way in which the representation 

is physically stored in terms Of machine manipulatable entities. It is 

again obvious that we want an homomorphical correspondence between the 

original and the implementation representation. Instead of remaining 

close to the physical storage formats, we will present as implementation 

representation a symbolic representation which can be processed by a 

machine. 

It turns out that we can distinguish a ~ierarchy of types of 

representations. Within the hierarchy there are two levels: The first 

level consists of essentially finite basic representation constructs, 

such as atoms, n-tuples and strings. The second level consists of 

generalizations over these basic representation constructs in that now 

sets of basic constructs are represented. In this way we generalize from 

atoms to sets, from n-tuples to relations and functions and from strings 

to languages. 

- O.l. -



Schematically: 

type 1 type 2 type 3 

level 1 atoms n-tuples strings 

level 2 sets relations languages 

In the following subsections, we will define for each type the 

representation constructs on each level. Also we will give some co~ments 

on the interaction of the various types of representation and their 
i 

respective power. 

TYPE l. 

Definition 

An ~ is a finite sequence of characters considered to stand for a 

nondivisible primitive representation construct. 

Example 

21, ATOM, NOUN are atoms 

Definition 

Two atoms are equal if they have the same outlook. 

Definition 

NIL is the 'null' atom 

Definition 

An occurrence of an atom is the actual appearance of the sequence of 

characters in space/time. 

Comment: The same atom can occur at several distinct times/places and it 

may be that this time/place relation is important. Note that the atom vs. 

occurrence of atom distinction is equal to the type vs. token distinction 

in liri.guistics. 

Now we generalize over atoms by considering collections of atoms. 

- 0.2. -



sets 

Definition 

A set is a well-defined collection of atoms. If the atom a is an element 

of the set s, theYlwe say aE S, if it is not, we say that a¢ S. 

A set is defined either by listing all its members, separated by corrmas 

and enclosed in brackets~} , or by specifying a characteristic property_ 

which is true for all members in the set and false for those not in the 

set. Let P(x) be 

by s = {xl P(x) 

Example 

such a characteristic property, then the set 

, i.e. the set of x such that P(x) is true) 

S = { 1, 2, 3) is a set . 2 E S is true. 

S" = {X \ )( is an even number) is a set. 3 E S '' is true. 

Definition 

is defined 

~ is the set containing no elements, the null set, or empty set. A finite 

set is a set containing a finite number of elements. An infinite set 

contains an infinite number of elements. 

The number of elements in a set S is denoted as # S. 

Definition 

A set A is equal to a set B, denoted as A 

element· in A is also in B and vice-vers~. 

Example 

s = ~,2,3) 

B, if and only if every 

{3,3,2,2,1,1) , etc; 

Note that neither the ordering nor the occurrence plays a role. Some 

concepts as regards sets that we will need further on: 

Definition 

Let A and B be two sets then if xE A implies that xE B, we say that A is 

a subse,t of B, denoted as A<; B. Furthermore is there is an x E B which 

is not in A, then A is a proper subset of B, denoted as A ¥,_B. 

Example 

Let A = {1,2,3\ and B then B 'if-A· A <;;A. 

Definition 

Operations over sets: Let A and B be two ·sets, then the union of A and B 

denoted as A U B contains those elements which belong to A or to B or to 

both; the intersection of A and B, denoted as A n B, contains all elements 

which belong to A and to B; the difference of A and B, denoted as A - B 

is the set of elements which belong to A but not to B; finally, the 

complement of A as regards the universe U, denoted as A', is the set of 

- 0.3. -



sets 

elements which belong to U but not to A'. 

If A n B = ¢, we say that A and B are disjoint sets. 

Exam12le 

Let A { 1,2,3\ and B 

A n B t2,3\ ' A - B 

A' = £4\ 
A and B are not disjoint. 

[ 2 , 3 , 4\ thent A u 

bl and with U 

B = h,2,3,4\ 
~1,2,3,4) 

The only way of structuring that occurs with sets is by letting a set 

be an element of another set. 

Definition 

A family of sets or a class of sets, is a set of which the members are 

sets themselves. 

The powerset of S denoted as t?!S) is the family of all subsets of the 

sets:(?(s) {AJAc:sJ. 

In general: 11' 5' (S) = 2 i1's 

Exam12le 

is a family of sets. Let S be 'v.,2,3l then 

{3\' [1,2)' \2,3) ' l1,3) ,("-,Z-,3 )\ 

So far we discussed only the basic representation, now we turn to the 

other format: graphical representation. 

GraEhical re12resentation 

The graphical representation of a set (known as Venn-diagrams) "'rorks as 

follows: A set is represented by a circular plane area and the atoms in 

the set are written within the area, with one dot for each atom. 

Exam121e 

Let S = ~,2,3) then the graphical representation is: 

1" 

3 

Let s z~l), ~2,3,4}, ~s\\ then the graphical representation is: 

- 0.4. -



sets 

Some diagrams for operations: 

A U B A n B A B 

Implementation representation 

Atoms are usually stored in a coded form as strings of symbols. For 

(finite) sets, one normally uses list structures 

to be discussed later. Infinite sets, which are recursively enumerable, 

can be represented by procedures that enumerate all reernbers of the set. 

Comments on the use of representation constructs of type 1. 

ATOMS are used on every level of a linguistic theory where nondivisible 

entities are needed. This happens in two cases: (a) to represent 

~heoretical entities, i.e. the terms of the theory, and (b) to represent 

observational entities , i.e. the linguistic objects from where an 

investigation starts. Dep_ending on the level on which the observations 

take place, words, morphemes, phonemes, characters, etc; are considered 

to be atoms. 

SETS are used to define the grouping of theoretical or observational 

entities into various classes. However, to represent in an interesting 

way nontrivial linguistic insights, more complex representation 

constructs will be needed. Nevertheless set theory forms the ultimate 

basis for all structures that we will discuss, even the most complicated 

ones. 

Further references 

There is a lot more to say about sets, but we will not give any more 

details, partly because 'ir-Ie assume them well known, partly because all 

details can be found in the mathematical literature about set theory. 

The reader interested in a more tutorial account is referred to 

Lipschutz {1964). For a more linguistically oriented introduction, see 

Wall (1972). An axiomatic treatment of set theory can e.g. be found in 

Fraenkel, et. al. (1973). 

- 0.5. -



n-tuples 

TYPE 2 

Suppose now that v1e take a number of atoms and arrange them in a linear 

order. What we obtain then is an ordere~ pair, triple, quadruple, etc; 

or in general an n-tuple, with n the number of atoms. 

Definition 

An _n-tuple (or array of length n) is an ordered sequence of n atoms. 

Notation: Let a 1 , ••. , an (n) 0) be atoms, then we say that <a1 , 

is an n-tuple. 

Definition 

The zero-tuple is ann-tuple with no atoms. 

Definition 

... , 

Two n-tuples 

if n = m and 

<al, ••• ,_an> 

al=bl''''' 

and < b
1

, ... , b ) 
m 

are equal if and only 

a bm. rn 

Recall that for sets, an element could itself be a set; in the same 

manner we now introduce n-tuples of which one of the atoms is itself 

an n-tuple. 

Definition 

An m-dirnensional array of length n is an rn-tuple where each element is 

an n-tuple. 

Now we will discuss several methods of defining sets of n-tuples, and 

of defining various types of sets of n-tuples. This subject is 

treated in great detail by set theory. We will therefore indicate only 

those aspects that are relevant for our purpose. Besides, we will pay 

great attention to graphs, being the graphical representation of 

constructs on this level, and lists which form the basis for the 

implementation representation. 

The most general definition of a set of n-tuples is by the so-called 

Cartesian product; 

Definition 

Let Sl and 52 be two sets, then the Cartesian product (or product set) 

of Sl and 52, denoted as Sl X S2, is the set of all pairs ( xl,x2) with 

- 0.6. -

a > 
n 



relations 

xl E 81 and x2 E 52. The Cartesian product is generalized over n sets 

in the obvious way. 

Example 

Let 81 (1,3,2~ and S2 = {2,3,4} then 

Sl X 82 = ~(1,2) 1 (!,3) <1,4> , (2,2> , (2,) ) , ( 2, 4) , 

(3, 2 > , ( 3, 3 } ' (3 '4) ) 

The first more restricted notion is that of a relation. 

Definition 

A relation R from Sl to S2 is a subset of Sl x S2. 

D tx1 \ xl E 81 and <xl ,x2 > E R J is the domain, and 

R (x2 { x2 E 82 and <xl ,x2) E R \ is the range of the relation. 

Example 

For 81 and 82 from the previous example: R 

,<2,4>] is a relation. 

L l, 2 1 is the domain and { 2, 4 3 the range. 

Definition 

(1, 4) , (2' 3) ' 

A relation Rl c Sl x 82 is equal to a relation R2 c 83 x 54 if and only 

if 81 = S3, S2 = S4 and R1 = R2. 

Definition 

A relation R is empty if and only if R ¢. 

Definition 

-1 
R = {<x,y) <y,x > E R) is the inverse of R. 

Definition 

Types of relations. Let R be relations on a set S, then 

R is reflexive if (V x) <x,x) E R) 

R is 

R is 

symmetric if (V x) 

transitive if (¥x) 

(X I y) E R 

(( (x,y)ER 

-+ (y,x) E R) 

and <y,z) E R) (X,Z)ER) 

R is an equivalence relation if P. is reflexive, symmetric and transitive. 

Convention: We often say that xRy if <x,y}E R. 

Definition 

Operations 

denoted as 

on Relations. The k-fold product of a relation R (on a set 8) 

Rk is defined as follows: 

(i) 

(ii) 

(x,y)ER1 iff (x,y)ER 

<x,y) E Ri if there is a z 

J i-1 " \Z 1y) E R for i//1. 

in 

- 0.7. -

S such that (X 1 .Z.) E R and 



functions 

In general, the transitive closure of a relation R on a set S, denoted 

as R+ is defined iff xRiy for some i/ 1, and the reflexive and 

transitive closure is defined iff xRx and xR+y for all x,y in 5. 

Example 

The reflexive and transitive closure of a relation is 'of great irn_portance 

in defining languages in a formal way. We vrill see examples later on. 

Further restrictions bring us to the notion of a function. 

Definition 

A function f of Sl into 52 is a subset of Sl x 52 in which xl E Sl 

appears in only one pair belonging to f, we say that f: Sl ~ 52 or 

that f(xl) = ~2 for xl E Sl and x2 ES2 

Example 

For 51 and 52 from the previous example, we construct a function: f: 

t<l,2) ' (2,4>} . Sl 52, defined by the set: 

Defirirt:.ion 

A function fl: Sl 52 is equal to a function f2: 53 84 if and 

only if, Sl = 83, 52 = 54, and for every ele~ent xl E Sl, £1 (x 1) = 

f2 (xl) . 

Some more definitions: 

Definition: 

A function f is partial if there is at least one a E Sl for \Vhich f: 

Sl 52 is undefined. If there is no such an a, f is total. 

If f: Sl ~ 52 is a function and for each x E 52 there is at most one 

y E Sl, such that f(y) = x, we say f is a one-to-one mapping. 

If moreover f is a total function and f is a one-to-one mapping, we say 

that f is a one-to-one correspondence. 

Instead of defining in more detail the various types of functions and 

relations, we now concent·rate on the graphical representations of 

relations in terms of graphs. 

Graphs, and a particular sort of graphs namely trees, have an important 

place in the theory of linguistic representations. 

- 0.8. -



graphs 

Graphical representation 

Intuitive introduction: 

Let R be a set of ordered pairs over a set V: 

R = {<al, a2), (a3, a4), (a3, a~>, (a3, aS>, <aS, al}, <a2, a3 >3 

Let us now associated with each atom in V a node, draw circles for each 

node and put the atom in it; 

8 g 8 
nl 

Q 
n2 n5 

g n3 

n4 

For ease of representation we will often omit nl, ... , nn, and only 

represent the circles with the atoms in them. 

Now let us connect two nodes ni,nj with a directed arc if and only if 

the atoms ai,aj associated with ni,nj are in the set of ordered pairs. 

For the above example this results in the following: 

nl 

Finally we associate labels with each arc denoting the relation, this 

is useful e.g. if more than one relation is represented in the same graph: 

R 

- 0.9. -



graphs 

Here is another examp·le: 

Let us consider the relation • to the second power 1 (denoted as P2) for 

the set of natural numbers from 1 to 4. 

Let~ ~1,2, ... , 16) then P2 ~N X Nand 

P2 = {< 1,1 >, ( 2,4 >, ( 3,9 >, ( 4,16 > ~ because 1 2 
= 1,2 2 = 4,3 2 

= 9; etc. 

The graph of this relation (which is by the way a function because each 

atom on the left of the ordered pair occurs only once in such a position) 

(We leave out all irrelevant nodes for other natural numbers) 

Now let us consider a second relation, 

(denoted as T2) for the same set~. T2 

( 4' 8 >} 

e.g. 

t< 
' two times ' 

1' 2 ) ( 2, 4 ) , 

We represent T2 in the same graph and obtain: 

The diagrams discussed in the previous paragraph are called 

directed labelled graphs. 

Definition 

A directed labelled graph (or DLG) is defined by a 6-tuple: 

G ( V,A,L,R,¢ ,1/.1 > and Vis a finite set of nodes, A is a finite set 

of arcs, L is a finite set of labels for the nodes, R is a finite set 

of labels for the arcs, 1> : V XV -+ A X Rand 1/1: V -+ L. 

In language applications a directed labelled graph is normally called 

a network. 

- 0.10. -



graphs 

Some more concepts around graphs that we will need further on: 

Definition 

If an arc leaves a node nl and enters another node n2, we say that 

nl is the parent of n2, and n2 is the successor of nl. 

If a node has no successors it is said to be terminal, else it is 

non terminal. 

Definition 

A subgraph of a graph is a subset of the nodes in the graph, together 

with the arcs between the nodes in the subset. 

Definition 

A sequence of arcs and nodes leaving from a given node A to a given 

node B is called a path from A tO B. 

Example 

graph 1 

A successor of the node with label A is E. The node with label A is a 

parent of the node with label E. 

The node with label C is a terminal node. 

The node with label E is a nonterminal node. 

is a subgraph of graph 1 

is a path 

Definition 

We say that a path is a circuit if the same node occurs more than 

once in the path. 

Example 

The path given in the previous example is a circuit. 

Convention: We say that a graph has circuits if it is possible to 

construct circuits in the graph. 

- o.u. 



Now we discuss a graph of great importance in linguistic theory: 

Definition 

A tree is a graph with the following special prOperties: 

{i) There is exactly one node in the tree which has no parents. This 

node is the root or topnode of the tree. 

(ii) There is a path from this root to any other node in the tree. 

(iii) The tree has no circuits. 

(iv) There are no arcs in the tree which cross each other. 

Example 

Example of a tree: 

Examples of graphs which are not trees 

c 

A 

This example violates property 1 because there 

is no unique topnode, also it viplates property 2. 

This example violates property 3, because one 

can construct a circuit where B occurs more 

than once. 

This example violates property 4. 

Normally the circles are left out iri a tree representation, and also 

the labels on the arcs if only one relation is represented. 

If the labelS for the arcs are not left out, they are often called 

selectors. 

- 0.12. -



trees 

Example of a tree without circles and labels: 

A 

/\ 
~~ c~ 
C D E 

Additional convention: terminal nodes in a tree are often called the 

leaves of the tree. 

Now -We discuss two kinds of extensions: 

(a) an extension of trees in the sense that 'variable nodes' are 

introduced ~rhich stand for whole trees 

(b) an extension of graphs in the sense that relations are introducel:1 

which are themselves complete graphs. 

Extending tree representations 

Now we define an extension of trees in :such a way that we can represent 

circuits in a tree and that we can somehow use the idea of 

disconnected graphs to obtain more economic representations. The 

extension consists in the introduction of nodes which are given the 

status of variables by the fact that they represent the whole tree 

depending from the node. We denot.e a variable node by putting a bar 

on the label. 

Example 
A 

/\ 
t t 
D A 

It should be clear that by this rnechanism.we can represent a graph as 

a finite tree, where it would otherwise be impossible. 

Another use of variable nodes lies in isolating a subtree which occurs 

more than once in the representation construct. In this way we can 

construct subtrees which would normally not be accepted because the 

arcs crossing. 

A A D 

~c 1\ /~ 
= B c F G 

D E y("' I 

1\ E D 

F G 

- 0.13. -



trees 

Also we can use variable nodes to obtain a reore economical representation: 

~A~ 
B D B 

D 

/~ 
E F 

~~-
c D 

Note that we have qua representation a disconnected graph, but that 

there is theoretically a connection due to the variable node D. 

We conclude with a definition of recursive trees. 

Definition 

A recursive tree is a collection of trees where some nodes, called the 

variable nodes are used to denote the tree depending from this node. A 

variable node occurs either on the top of the tree, in this case the 

variable node is given the value of the tree of which it is a topnode, 

or as a terminal node in a tree, in this case it is to be replaced by 

its value. 

Remark: 

' In a well-formed recursive tree, every variable node has no more than 

one but at least one depending tree. 

To see clearly that recursive trees haVe the power of graphs, 

we give a final example~ 

Example 

)\ 
A B 

l /\ 
X2 C D 

IT 

/~ 
D Xl 

I 
E 

X3 

I 
A 

/~ 
B C 

l 
Xl 

l 
X3 J 

- 0.14. -



trees 

equivalent graph: 

Extending graphs 

There exist several possibilities of e~tending networks or directed 

labelled graphs. Only one extension will be of interest for our 

purposes: recursive graphs or recursive networks. 

We have seen that a graph is a representation construct representating 

a complex of relations between several atoms. Suppose now that we 

consider such a whole representation construct as one complex relation 

which may act itself as a label on an arc in a graph. 

We represent this by introducing variables for a whole graph (or 

network). 

Definition 

A recursive graph is a set of directed labelled graphs, with a label 

for each graph. The label may act itself as the label of an arc in the 

same or another graph. 

Example 

S: 

b 

Note that 5 occurs itself as label of the arc from S/2 to S/3. 

Here is another example 

S: 

NP: 

VP: 

~-----w-e 

~~ 

- 0.15. -



lists 

So far we discussed the basic representation of type 2 constructs and 

their graphical representation. Now we turn to the third aspect: the 

implementation representation. This implementation representation is 

of great importance, we therefore introduce the subject in considerable 

detail. 

Implementation representation 

introduction: list structures 

Definition 

A data structure is {i) a set of cells, which can contain a certain 

datum and {ii) a relation among the cells: a way of organizing them. 

Example 

Some data structures are 

a table: 

or 
a linear array 

In these two data structures the location of the different cells of the 

data structure is defined in an implicit way, namely on the basis of 

the horizontal or vertical order. We can retrieve a value in one of 

the cells by addressing the position the cell takes in the data structure. 

Suppose now that we make the structure explicit by drawing arrows if 

two cells are linked with each other: 

E.g.: 

a) 

or 

b) 

I ~I .. 1 \[] .. 1 
\.liJ \.1.----.-1 ---,l -11 

Definition 

A data structure where the relations between the cells are made explicit 

by drawing arrows between them is a list structure. 

- 0.16. -



lists 

To locate a data cell in the structure, we have to 'walk through it', 

until we come to the desired place. 

From the diagrams it could be seen that in an explicitly linked data 

structure a cell contains two parts. These two parts are known as the 

CAR and the CDR (pronouns 'cudder') of the cell: 

A CDR- or CAR-field contains either a data item or another pointer, 

i.e. a link to another cell. 

Compare: 

EJ] 

Datums are considered to be nondivisible entities, in other words they 

are atoms. A list is a number of cells linked onto each other by their 

respective pointers. 

E.g •: 

Note the slash at the end, it denotes the end of the list. Another 

name for the slash is NIL, denoting that there is nothing in that part 

of the cell. If a list contains no elements at all then it is also 

represented as NIL. In this case NIL is called the null list. So, if 

NIL is placed in a CAR- or CDR-field, then we may assume that a list 

without any elements is attached to this field. 

(Note that NIL = null list = null-atom) 

Some more concepts: 

Definition 

A list structure v1here every cell is linked only to its supcessor is 

a one way list. 

A list structure ,.,here for each cell there is a link both to its 

successor and its predecessor, is a two \olay list. 

From now on we will only deal with one way lists. 

-0.17.-



lists 

Example 

a) one way list [~1'----.J+--•{[:__-+]~•"1'----'---~J-~~.,. .. L_jZJ 
b) two way list 

Definition 

If a list contains a pointer in one of its CAR-fields, then the list 

starting from such a CAR-field is a sublist. 

A list with sublists is called a branched list, a list without sublists 

is called a linear list. 

Example 

branched list: 

linear list: 

s 

The representation problem 

~B VI 

To have a successful data structure it is not sufficient to have a 

graphical representation. One must be able to write down the graphical 

representation in a linear way, i.e. algebraically. For tables and 

vectors, we do this by naming the whole data structure with a symbol 

(say X), and the different cells of the data structure are addressed 

by subscripts, e.g. X(l,2) denotes the first cell of the second column 

in a table called ~-

For list structures the solution to the representation problem is not 

so easy, simply because cells cannot be addressed by subscripts on the 

basis of their location, i.e. by referring to lines and columns. The 

problem is solved by the introduction of S-expressions with two 

particular formats: dot-notation and list-notation. 

- 0.18. -



lists 

dot-notation 

The dot-notation of a list structure is a direct mirror of its graphical 

representation. For each cell we introduce two brackets and one dot: 

On the right side of the dot we write the CAR and on the left side the 

CDR. If the CAR or CDR contains a pointer, then we replace this pointer 

by the whole sublist depending from thiS pointer Vlritten in dot-notation. 

Examples 

( A , B ) 

( L • ( I • ( S • ( T • NIL ) ) ) ) 

( ( (C • D ) • ( B • E ) ) , ( A • F ) ) 

.;. 0.19. -



lists 

The following strategy can be followed for the construction 

of dot-notation from graphical structures: 

( i) Consider a list to be linear and "'henever a pointer 

appear~, introduce a variable name for the sublist depending 

from this pointer. 

(ii) Sifuilarly construct for each sublist on the same 

basis a linear list with variables when necessary. 

(iii) Replace all variables by their respective dot

representations. 

Example: 

with Fl = ( A o B F2 ( ( A o B ) o C ) 

F3 ( ( A o B ) o C ) o D 

F4 F3 o ( E o ( F o ( G o H ) ) ) ) 

Graphically we had the following sublists: 

---- _ .... ./ 
I 

I 

' ' 

I 

I 
I 
I 
I 
I 

The final result is: ( ( ( ( A o B) o C ) o D ) o ( E o ( F o ( G o H))) ) 

- Oo20o -



lists 

Here is another example: 

We have the following sublists: 

Ll ( L2 ( A . ( LS (A M) ) ) ) 

L2 ~ ( L3 ( D I ) ) 

L3 (L4 ( 0 • M) ) 

L4 ( B 0 ) 

LS ( G R) 

Replacing all the variables yields: 

L3 ( ( B 0 0 M) (L4 in L3) 

L2 ( ( ( B 0 ) 0 M D I ) ) L3 in L2) 

Ll ( ( ( ( B 0 ( 0 M D I ) A ( L5 ( A M) ) 

Graphically: 

- 0.21. -



lists 

( ( ( (B • 0 ) ( 0 . M) ) ( D • I ) ) (A • 

( ( G • R ) (A • M ) ) ) ) 

(LS in Ll) 

Although dot-notation is an irrmediate reflection of a graphical 

structure, there is already one sort of list structures that 

cannot be expressed namely a circular list. 

A circular list is a list where a pointer in some field points 

to a previous cell of the list. 

Example: 

R 

- 0.22. -



lists 

cle,::.rly a dot-notation of the graph would never come to an 

end. The fact that circular lists cannot be expressed is however 

seldom felt as a drawback, certainly not in linguistic practice. 

list-notation 

Although the dot-notation of lists is a very nice way of. writing 

graphs into a linear format, it soon becomes extraordinary 

complex when the list structures themselves grow. Therefore another 

representation has been designed: list-notation. This goes 

as follows 

{i) A line~r list is transferred by writing all the elements 

of the respective CAR-fields right after each other. 

E.g.: 

-1-.-.. GIJ 
or 

( L . ( I . ( S . ( T • NIL ) ) ) ) (dot-notation) 

or 

(LIST) (list-notation) 

(Note that nothing is provided if there is an atom in the CDR-field). 

(ii) As for dot-notation , as soon as there appears a 

pointer to a sublist in one of the CAR-fields, construct the list

riotation for this sublist and replace the pointer by this sublist. 

Example: 

dot-notation 

( ( ( ( L • NIL ) ( I . NIL ) ) ( S • NIL ) ) ( T . NIL ) 

- 0.23. -



lists 

[.e.. 

T/ 

'--+-'--=::-GZJ 
L--f--I-~+---GJ2] 

in list-notation: ((((L)I)S)T) 

The technique for constructing dot-notation from graphical 

structures can also be used here to construct li~t-notation 

from graphical structures: 

(i) Consider a list to be linear and whenever a poihter appears, 

introduce a variable name for the sublist depending from this 

pointer. 

(ii) Similarly construct for each sublist on the same basis 

a linear list with variables when necessary. 

(iii) Replace all variables by their respective list representations. 

Example: 

(i) 

·ir'---'lo l___jl " G2J 

IB I .. [[J 

- 0.24. -



l;i.:sts 

Let LO 

Ll 

A J,l D E ) 

B C ) 

then Ll in LO yields: (A(BC)DE) 

(ii) Given the following list (in dot-notation) : 

( ( A . NIL ) . ( B . NIL ) ) . ( ( C . NIL ) . ( D . NIL ) ) ) 

We have the 

L5 

Ll 

L2 ( 

L3 

Finally: L5 

LS: 

following steps: 

(Ll L2 D) 

( L3 B) 

c ) 

( A) 

( ( ( A ) B ) ( C ) D ) 

cp3-G0 
GI2J 

"-+-"---'-+--GO 

Restrictions on list-notation: 

(a) It is not possible to represent circular lists 

(b) Whenever an atom appears in a CDR-field vm have to use 

dot-notation. 

- 0.25. -



lists 

list-notation of trees 

List structures are widely used in any sort of linguistic 

applications. There are two reasons for this 

(1) easy input/output of strings and easy processing 

of alphanumeric data.; 

(2) (and this is even more important) easy representation 

of structures. 

The latter point will be illustrated more explicitly in this 

section. We will discuss the standard means of representing 

tree structures in terms of list structures. The reader should 

not proceed without being thoroughly familiar 'iflith this. 

The representation of linguistic information will depend 

crucially on it. 

A typical tree looks as follows: 

/s~ 
Nr Ar /\ 

N M V NP 

, I I 1~ I DT N 

sincerity may frighten \ \ 

the boy 

An alternative linear representation of the same information is 

the so called labelled bracketing: 

( ( MAY)M ) AUX 

- 0.26. -



lists 

OR 

AUX (M MAY) ) 

(VP ( V FRIGHTEN) ( NP(DT THE) (N BOY) ) ) ) 

respectively called right labelled bracketing and left labelled 

braCketing. Now, if we take the left labelled bracketing and write 

all symbols on one line we obtain: 

( S ( NP ( N SINCERITY) ) ( AUX ( M MAY)) VP (V FRIGHTEN) 

(NP ( DT THE) (N BOY ) ) ) ) 

and this is nothing else but the list-notation of a list 

structure, the graphical representation of it being: 

- 0.27.-



lists 

Because of the importance of. the relation between trees in graphical 

and list-notation we define explicitly the relationships between 

the wo: 

(i) Given a tree structure 

A 

4~ 
Bl B2 Bn 

with A,Bl, ... , Bn nonterminal nodes, then the equivalent 

list-notation is: 

( A ( Bl ••• ) ( B2 ••• ) ( Bn . • . ) ) 

(ii) Given a tree structure 

/\ 
ai ··· an with A a nonterminal node and 

al, 

then the equivalent list-notation is 

Example: 

, an atoms 

(A a
1 

••• an) 

/s~ ( S ( NP • • • ) ( AUX • • • ) ( VP • • • ) ) 

NP AUX VP 

I I I 

NP ~AUX . VP 

I I /~ 
( S ( NP ( N • • • ) ) (AUX ( M • • • ) ) 

N M v NP 

I I /~ 
I DT N 

I .1.. 

( VP ( V NP DT ••• ) 

(N ) ) 

- 0.28. -



lists 

finally: 

N M 

I 
sincerity 

I 
may (S ( NP ( N sincerity) ( AUX ( M may)) 

(VP V may) ( NP ( DT the) (N boy)) ) ) 

v DT N 

frighten the boy 

reverse: 

Given a list (A 

with a 1 , ... ,an sublists or atoms, then 

the equivalent tree is 

Exarn~le: 

Given ( A ( B C ) D ) the equivalent tree is: 

c 

- 0.29, -



I 
I 

i 
lists 

Comment 

We stress the importance of the relation between trees (= graphs) 

and the equivalent list-notations. Due to this importance 

the author (in coopreation with P. Reypens) took the pain of 

constructing computer programs that given a list-notation 

of a tree, automatically plots the graph structure of it. 

The output has the following format: 

SINC AITY I FAllEN l B y 

~ 0.30. -



lists 

€omments on the use of representation constructs of type 2 

N-TPPLES are used in the definition of formal systems. 

All components of the system are given a naroe and these 

names are grouped in an n-tuple. The definition of a formal 

grammar is an obvious example of this, see e.g. also the 

definition of a directed labelled graph, already given. 

RELATIONS are used for two purposes: 

(a) The representation of linguistic information structures 

which are produced or processed by the language systems, 

examples are structural descriptions in the form of a tree 

as result of a syntactic analysis, semantic structures, etc. 

(b) The representation of linguistic data upon which the 

language systems operate. Examples are serr.antic networks, 

recursive transition networks, etc. 

Further references 

For the mathematical aspects of relations and functions, we 

refer to the relevant mathematical literature about the subject. 

A tutorial account is found in Lipschutz (19£~). A more 

linguistically oriented introduction in Wall (1972). A nice 

introduction to graplEtructures can be found in Gavare ( 197 2) 

An introduction to list structures can be found in any textbook 

on the programming language LISP. E.g. Weissman (1968). A formal 

treatment of list structures is p~ented in Guha and Yeh (1976). 

- 0.31. -



strings 

TYPE 3 

Level 1: Strings 

Another representation construct that is of considerable interest 

in linguistics is the concept of a string. 

Definition 

A string is a finite sequence of occurrences of atoms. 

Notation: Let al,a2,a3 ... be atoms, then ala2a3 ... is a string. 

Definition 

The null string, denoted as 

elements. 

X , is a string without any 

A useful operation is that of concatenation. 

Definition 

Let a and ~ be strings with a al ... a n and 

then the concatenation of a and ~ denoted as 

(or a • ~ 

Definition 

A string a 

for 'Y , 8 

Example 

b rn 

is a substring of a string ~ 

possibly empty strings. 

, if 

Let abc be a string then {A , a , b , c , ab , be , abc , ac ') 

is the set of all substrings of abc. 

- 0.31. -
ai$ 



languages 

Definition 

The reversal of a string 

reverse order, i.e. let 

Definition 

a denoted as 

a = 

aR 
is a string in 

then uR = an 

The length of a string u , denoted as l a I is the number of 

atoms in rr 

Note that n-tuples as elements of an n-tuple are in comparison 

to substrings of a string what sets as elements of a set are 

co~pared to subsets of a set. This is exactly the difference 

between n-tuples and strings. 

Level 2: Languages 

We now generalize over strings by considering ways of definings 

sets of strings, called langu~ges. 

The most general way of doing so, is by considering a language to 

be a subset of the set of ali strings over a given alphabet v. 
I 

Definition 

Let V be a finite set of atoms, called an alphabet, then V+ is 

the set of all strings over V, and v* = v+utx) 

The statement that a language L is a subset of the set of all 

strings over its alphabet is a rather trivial statement. We want 

to have ways to define more exactly what elements there are in 

the language. As languages tend to be infinite, we should find 

a finite representation of this infiniteness. The solution to 

this problem is a system called a formal grarrmar. 

- 0,32. -



grammars 

Definition 

A formal grammar is defined by a quadruple G =<Vn, Vt, P, S > 

where Vn, Vt are finite 
' 

nonempty disjoint sets of nonterminals 

and terminal symbols respectively, v = Vn u Vt 
p >: v* X v* is the set of rewriting rules. 

say that a -• {1 if (_a , ~ > E l' 
S 6 Vn is the start symbol or initial symbol. 

Definition 

The derivation relation denoted- as 

strings a ' ~ if and only if a ·4 

'* holds 

~ E '\' 

betwe.en two 

*'*is the reflexive and transitive closure over -=> 

Definition 

We 

A language defined by a grammar G, denoted as L(G) is defined 

as the set [ x s """=:. X, x E Vt J 

Conventions 

As we will use formal grammars sometimes, it is important to 

keep the follov.Jing notational conventions for productions 

in mind: 

1. Nonterminals will always be written between angular brackets<> 

2. When two possibilities occ,ur at the right of the arrow, we 

write braces: \) 

e.g. <a> ~ { :} 

- 0.33. -



grammars 

3. When a substring on the right of the arrow is optional, 

we will write it between straight brackets: 

e.g. <a> ~ a[b c]d 

is a shorter version of 

<a) 

Example 

Let G ~ <- t<s > , a , b) ~ (S) ~ a b , (S) -+ a (S) b \ 

be a grammar 

Some derivations: 

(S) ~ a(S)b a a <S> b b "* aaabbb 

<S) ~ a 

The language generated is 

It is well knowri that the.re exists a hierarchy of grarnmars 

(the Chomsky hierarchy) which is defined on the basis of the 

formal outlook of the rules: 

Definition 

type form of rule 

3 (regular) <S >-+ a or ( s ) ~ a ( s) for aE Vt, 

2 (context-free) s ~ ~ for SE Vn, ~E (VnuVt) + 

SE Vn 

l (context~sensitive) ~ ~ ~ (1 ~ •• (f\.) •• .E (Vn u vt) 
' 

~ E (VnV Vtl' 

0 (unrestricted) ~ ~ ~ for 8 ,n (VnUVt)* 

- 0.34. -



grammars 

It is equally well known that a different sort of power {i.e. 

type of language) corresponds to each type of gra~mar and that 

each type of language has certain distinct mathematical properties. 

Details and other mathematical results can be found in any 

textLook on formal language theory. 

Contrary to what may be assumed, we will NOT use formal 

grarnmo_rs of the kind just defined in the definition or recognit~on 

of natural languages. The reason for this is that the formalism 

is too simple to account for the complexity of natural language. 

We will however use formal grammar; to define representation 

languages on the various level of a linguistic theory, in 

particular we will use type 2 grammars because the languages 

generated by these graremars are sufficiently complex but 

at the same time not so complex that a recognition and processing 

of expressions from the language becomes difficult. 

Formal grammars cts definition of representation languages 

Already right from the moment of conception of phrase structure 

gramrr\ars, it was felt that they shou:ld not only be used for the 

definition of linear languages but also for the definition of 

structures, i.e. representation lariguages. The two usages 

are given different names: s.trong and weak generative capacity. 

Definition 

The weak generative capacity is the set of terminal strings 

generated by the grammar. The strong generative capacity is 

the set of structural descriptions assigned by the grammar to 

these strings. 

For completeness, we indicate here briefly the well known 

method for assigning structural descriptions to strings. 

- 0.35. -



grammars 

Algorithm: 

= (Vn, Vt, P, ( S) } be a cf-gra:mmar, then Let G 

(i) We introduce a node for<s> the topnode of the tree 

(ii) Whenever we 

with (A) E Vn and 

use the rule A ) ~ in a derivation 

r E (Vn U Vt) + 

n ~ 1. We introduce new nodes 

connect these nev-1 nodes with 

Example 

Let G <{<s > 

be a cf-grammar 

derivation 

(S) 

<S) a (S) b 

a(S)b ,.. a a(S)b b 

a a<S>b b ,;. a a a b b bi 

for each ai, 1~ i~ n 

a line from<A> to ai. 

{<S>~ a b 

tree 

( s) 

s 

(8) 

in 

8/I'"~,b 
a11\ 

a b 

- 0.36. -

... an 

'Y and 



grammars 

It should be clear that the relation between derivations and 

trees is not a 1 - 1 mapping, because the information about the 

order of rule application is lost in a tree representation 

This method o~ defir:.ition, which we will call derivationallv 

controlled tree construction, is widespread in linguistics. 

It is actually the only method being used to define representation 

languages. However there are some strong restrictiohs on its use. 

Let us consider them briefly and after that try to find a new method 

of defining representation languageSwith formal gra~mars. 

The main 'bad' point about the derivationally controlled method 

of tree construction is that 'open' situations are only allowed 

to appear at the ter~inal nodes of the tree. 

Suppose the following representation for a simp~e propositional 

calculus expression: 

·It is easy to see that there. correspOnds no straightforward 

context-free grammar that waul~ generate these structures. 

The reason for this is that the operators form open classes, i.e. 

classes where there is more than one member but where all 

members have the same possible position and functiOn in the 

expression. These operators occur in the nonterrninal part 

of the tree and therefore we cannot generate them. 

Another illustration of the restrictedness of the strong 

generative capacity of cf-grarrnnars is the representation of 

coordination (see Lyoris, 19 6 8, 221) : 

- 0.37. -



grammars 

A structure as 

~~ 
N and N and N and N 

where the number of (AND N ) nodes is open, cannot be generated 

by a cf-grartrrnar. The only way to bbtain a similar structure 

is by the recursive rule: 

N---+ N [and NJ 

This however leads to 

N 

/\~ 
N and N 

I\~ 
N and N 

which is not quite the representation of coordination that 

we wanted to have. 

Again a cf-grarnmar cannot represent this kind of structures because 

an open situation occurs in the nonterrninal part of the structure. 

There is however another meanS of defining repreSentation constructs 

by formal grammars: The method consists in (i) defining an 

equivalent symbolic expression for each tree, (ii) defining a 

grammar which generates such symbolic ~,expressions, (iii) converting 

the generated expression into a tree. We call this method the 

indirect tree construction method. 

- 0.38. -



grammars 

As symbolic equivalent of a tree we will use the list-notation 

(already discussed), e.g. giVen the tree: 

/s~ 
.NP VP 

/\ /~ 
DT N V NP 

I D!~ 
the boy saw \ N\ 

the gul 

we have 

(S (NP (DT the) (N boy) 

(VP (V saw) (NP ( DT the) (N girl)))) 

as list-notation (or left labelled bracketing) 

Let us n0\'1 define a gram:tnar for the propositional calculus example. 

<propos> -i> ( (Operator} (propos) <Propos} 

(operator> ~ AND, OR, 

<propos> p, q,. ... 

(note that the brackets are terminal symbols ! !!) 

Structure from the derivation: 
I 

- 0.39. -



grammars 

(propos/ 

4\~ 
((operator/ (propos( <propos( 

AND p 

(oper; 

I 
OR 

(propos) ('propos> 

I ;; 
p~ 

(structure 1) 

( (oper/(propos) (propos> 

IMPliES l l 
the resulting terminal string: 

(AND p (OR p (IMPLIES p q ) ) ) 

if we consider this as a list we get the following tree: 

AND 

/""' p OR 

I~ 
p IMPLIES 

/\ 
p q 

(structure 2) 

and this is exactly what we wanted to have. 

- 0.40. -



grammars 

All the syntactic load in structure 1 is absent fro~ structure 2 

but we do have the structure on which the intErpretation 

can work. 

Now we discuss the grammar for the coordination example: 

<nomen) <N) <co-N • s) 

(co-N•s) (N) 

<co-N• s) (N) and <co-N • s) 

derivation 

<nomen) ~ ( <N) and ( cn-N • s) ) ~ (<N>and (N)and <co-N's) J 

(N ) and ( N ) and (N ) and ( N >) 

This final string represent the following structure: 

(N) 

A\~ 
<N) and(N) and (N/ 

<It is easy to see that we could have's many N 1 S as necessary 

while preserving the structure in whi~h the coordination should 

be represented. 

Summarizing, formal grammars can be used to define representation 

languages in two ways (i) either directly by a straightforward 

mapping from the derivation sequence to a tree structure, (ii) 

or indirectly by considering the language generated by the 

grammar as symbolic linear representations of tree structures. 

The first method has the disadvantage that certain types of structures 

cannot be defined. The second method is unrestricted qua representational 

power .. It has the additional advantage that we can define a structure 

of the representation construct, outside the construct itself. 

For these two reasOns we will define representation languages 

always by means of the second method. 

- 0.41. -



discussion 

Discussion 

In the previous subsections we have presented several representation 

constructs: 

type 1: 

level 

level 

type 2: 

level 

level 

trees 

type 3: 

level 

level 

1: 

2: 

1: 

2: 

1: 

2: 

atoms: the primitive objects o£ the representation 

sets : an unordered collection of atoms. 

n-tuples and lists: an ordered collection of atoms 

sets of n-tuples: relations, functions, graphs and 

strings: ordered sequences of occurrences of atoms 

languages: sets of strings. 

It is obvious t.hat for each type, representation constructs 

on level 1 are more powerful than those on level 2. The relation 

between type 1 and type 2 is such that an n-tuple(a1 , a 2 , . . . an> 

is per definitionem equivalent with the set \\a 1),{a 1 ,a2~, 
(al' ... an)\. 
So we see that there· is no theoretical difference between the 

two. It is clear however that a set representation of n-tuples 

is more cumbersome and therefore inconvenient. 

The relation between type 2 and type 3 is such that any n-tuple 

can be considered to be a string (but not vice-versa ! ) 

and similarly any set of n-tuples can be considered to be 

a language. This is an interesting observation of which 

we make extensive use in the indirect tree construction method 

for defining representation languages. 

- 0.42. -

1 



references 

Comments on the use of representation constructs of type 3. 

As we already said before formal grammars will be used to 

define representation constructs on every level of the theory. 

Note that we will always use the indirect tree construction 

method. 

The formal grammars of the type discussed in this section have 

only a theoretical significance: they are a representation 

construct representing classes of structures. How these 

structures are computed and processed is another matter. 

Further references 

Since the formalization of p.s. grammars by Chomsky, the 

concept of a grammar has been fully investigated mathematically. 

Textbooks on the subject are Hopcroft and Ullman{l969) and 

Salornaa (1973). For all details about the mathematical foundations 

of formal grammars, the reader is invited to consult these 

references. 

- 0.43. -



computation theory 

§ 0.2. Introduction to the theory of computation 

As we assume no knowledge or experience with computers, we 

start this section by giving a very broad and intuitive introduc

tion to the main ideas behind the operation of machines that are 

able to compute. We address ourselves to the question: how is it 

possible to design machines that are capable of doing symbolic 

manipulations as required for linguistic tasks. After that we 

define some basic concepts of computation theory such as 

procedure, algorithm 'and the like. The first part can be skipped 

by someone who knows about corr_puter progra:rrming. 

Intuitive introduction 

(i) Coding and storing 

The first principle that underlies the design and operation of 

a computer is that of coding. It runs as follows. Firs-t define 

different representations in such a way that information in one 

representational format can be translated into another format \Vhile 

the meaning (= interpretation) of the first is equal to that of 

the second. Then define the reverse of this relation. E.g. we have 

a message in natural language, we design a code for each letter of 

the alphabet and then we can translate each sentence in a code 

representation and back. Thus we can store any sort of information 

we want to. 

' Now suppose you can construct a machine that can perform on command 

certain operations (however simple), i.e. that can change x into y 

if you tell it to do so. Then you can consider the objects that 

the machine is capable of changing as the 'zero-language' and design 

a coding such that your information (in whatever representational 

format) is transformed into this zero-language and back. Doing so, 

you can instruct the machine to manipulate information via the 

coding. 

- 0.44. -



programming 

As an illustration consider a cnlculator; the operations that 

c·an actually be performed are very simple: change of a state 

from one to zero (how this is realized does not concern us here) 

As 0 and 1 are the objects that can be IT:anipulated, we construct 

a code with 0 and 1 for the infor~ation, which are normally numbers 

for a calculator. The code is called the binary code. The actions 

necessary to do a computation can be described as follows: 

(a) Translate the input numbers in terms of 0 and l and store 

this information, i.e. change a piece in the machine in such a 

way that it now reflects the codings of the nuwber, 

(b) change the O's and l's in a particular way (=computation) 

(c) and translate the result of the change back into the 

'user's language' which is the decimal form. 

{ii) Programming 

We now have a way to represent the information inside the machine 

and a way to perform a simple operation over that representation. 

Now comes the second step. Suppose we code the operation that is 

to be performed also. That means a particular way of carrying out 

changes is given a code (in O's and l's), and this code is also 

translatable. Instead of pushing a particular button, say, for 

a certain operation, one can make the machine react to that code. 

Clearly what we have then is not only a way to represent the data 

(that upon which the change is being made) but also a way to 

represent the operation ( a ~arne for the change) . 

Given this idea we can even go further. As we can keep data in 

some way stored in our machine, we can also store the names for the 

operations that are to be performed. We need then a mechanism 

'reading' operation names and carrying them out after each other. 

- 0.45. -



programming 

This soon leads to fascinating cowputer power because we can 

construct operations that change the flow of carrying out 

operations on the basis of a condition, e.g. given a list of 

operations: oper 1, oper2,oper 3,oper 4 we could let 

operation3be such that it goes back to execute operation 2 

unless scree condition is satisfied. 

E.g, operation l: store nurrber 0 in register 17; 

operation 2: add 1 to the contents of register 17; 

operation 3: if the contents of register 17 are less 

than 5 go back to operation 2, else proceed; 

operation 4: stop. 

What happens is that the machine will count until 5 and then 

stop. It is important to note that one starts from the first 

operation and takes each time the next one (this is known as 

a sequential manner of executing operations) , except when the 

norll'.al flow is changed due a control staterr.ent, such as operation 3. 

A sequence of operations is called a program, the language ih 

whiCh the human instructor writes programs is called a 

programming language and this is translated into a code the 

machine can read (the machine or object language) . 

The task of the user should be clear now: he has to specify 

all the actions that he wants the computer to perform, and the 

way in which the actions are organized. In other words he has 

to \-.'rite a prograrr._. Then he gives this program to a coding 

device which delivers a program in machine readable form. This 

then is read and executed by a machine with (hopefully) the 

required result. So, a program can be considered as a sophisticated 

way of pushing buttons that lead to machine action. 

The rest of the story is one of ever growing complexity based 

on these main principles. An important step was to let the computer 

itself do the process of translating the program stated in some 

programming language into a prograrr, stated in the machine code. 

Such a process is also directed by a program and this program 

is called the compiler or int:erpreter. 

- 0.46. -



programming 

Currently the result is (i) that any information whatsoever 

can be represented within the memory of a computer if properly 

coded, (ii) that any process when sufficiently explicit (that 

is when every single step is made clear) can be prograrnwed and 

executed. 

These powerful tools (powerful especially if one considers that 

a very high degree of complexity is allowed) are the basic 

means that are used in order to bring about the process of 

language understanding and producing and they are regarded 

to be sufficient for that purpose. Horeover signals from acoustic 

and visual analysers can be proceSsed, again after properly being 

coded, which makes spoken and written language analysis possible. 

Also signals can be issued from the computer· to acoustic 

synthezisers leading to speech synthesis. The normal means 

for input/output are however type writing. 

Having presented in an intuitive manner the basic principles 

of doing computations by rr.achines, we now turn to some 

fundamental terms used to talk about computation. 

Fundamental terms 

Definition 

A procedure is a finite sequence of instructions which can be 

executed mechanically in a finite amount of tine. 

Normally a procedure takes some input and returns some output 

after executing the sequence of instructions. 

- 0.47. -



a1gori thms 

Example 

Input: any natural number 

Output: 0 if the number is divisible by 2, else 1. 

Procedure: Let N be the input number 

step 1: if N is l or 0, output Nand stop, else do step 2. 

step 2: set N equal to N - 2, proceed vlith step 1. 

Example of operation: 

Let N be 7 then the result should be 1, which was the code for 

nondivisible by 2. 

step 1: as 7 f lor 0, we do step 2 

step 2: N becomes 5 and we do step l again 

step 1 as 5 ~ l or 0, we do step 2 

step 2: N becomes 3 and we do step 1 again 

step 1: as 3 f 1 or 0, we do step 2 

step 2: N becomes 1 and we do step 1 again 

step 1: N = l, so the result is 1, and that is what vre 

expected. 

Definition 

A procedure is an algorithm if and only if for each input 

only a finite amount of instructions are carried out. 

This implies at least that somewhere there must be an 

instruction saying 'halt' or 'stop• or 'end'. (In the 

example this was the case in step 1) . It alss implies 

that this instruction must be reached in a finite amount Of 

time. 

Example 

The following procedure is .not an algorithm 

Input: Any natural number 

Output: ? 

- 0.48. -



decidability 

Procedure: 

step 1: whatever the input, do step 1 again 

step '2: halt. 

It is obvious that we will never reach step 2 and therefore 

will never stop. 

At first sight it seems silly to design machines that do 

not necessarily stop. It was one of the great discoveries 

of this century however, that there is a class of problems 

for which there is no algorithm. The best thing we can do 

in such a situation is to use a procedure. 

Obviously a procedure defines a function from its input 

to its output. 

Definition 

The function defined by a proecure is a partial recursive 

function. The function defined by an algorithm is a total 

recursive function. 

Important for our purposes is also the idea to relate the notion 

of procedure and algorithm to sets and therefore to languages. 

We do this by means of the notion of a characteristic function: 

given a set S, then when we apply this characteristic function 

to all members of S, the function yields true, and when to all 

elements which are not a member of S, the function yields false. 

This brings us to the following definition: 

Definition 

If the characteristic function of a set is necessarily a partial 

recursive function, i.e. if there exists no algorithm for that 

function, only a procedure, then the set is said to be recursively 

enumerable or undecidable. 

- 0.49. -



dscidability 

And if the characteristic function of a set is 

a recursive function, then the set is said to be recursive 

or decidable. 

Because languages· can be considered as infinite sets, we talk 

about recursively enumerable or undecidable (and recursive 

or decidable languages) if there is not (or there is ) an 

algorithm to decide for an arbitrary sentence whether it 

is in the language or not. 

In the theory of formal languages and abstract automata several 

systems have been defined to represent procedures: Ttiring 

machines, register machines, Chomsky phrase structure grammars, 

Post systems, Markov algorithms and of course programming 

languages. Normally we use a natural language description of 

a procedure and give formal definitions in a programming language, 

because then it can be demonstrated that the procedures are 

working by objective experimentation: we simply execute the 

procedure by some machine. It has been shown that all these systems 

are notational variants, i.e. the one has no more computational 

power than the other. 

In addition the so called Church-Tlirinq thesis is accepted 

which states that any explicit process that is completely 

understood, can be simulated on a Tliring machine. In other 

words, if you are able to explicate the working principles of 

a process, then you will be able to express these principles 

into a procedure. The problem is of course to discover the 

working. principles. 

The theory of formal languages not only provides us with a 

way to write down procedures iri an accurate way, in addition 

a hierarchy of notation systems has been discovered, which 

provides a finer distinction than that between algorithms and 

procedures. 

- o.so. -



finite state machines 

The best known example is the so called Chomsky hierarchy 

already discussed earlier, and the hierarchy of abstract 

automata equivalent to it: 

type 3: finite state machines 

type 2: pushdown automata 

type 1: linear bounded automata 

type 0: TUring machines 

An important result of studying sets in their relation to these 

systems (via a characteristic function) is that type 0 systems 

define recursively enumerable sets/languages whereas type 1-2-3 

systems define recursive sets/languages. 

We now introduce members of the c1ags of automata on two levels 

of the hierarchy. The reason for picking out these systems and 

no other ones (e.g. Markov algorithms) is that they have a 

special place in the theory of natural language processes. So 

e.g. we will introduce recursive transition networks on level 2 

instead of pushdown automata because the former are used 

substantially where the latter net at all. Much more detail 

about automata theory can be found in the references. 

(1) LEVEL 3 

The least powerful automaton is a finite state automaton. 

Definition 

A finite state automaton FA is a 5-tuple 

with 

1. Q a finite nonempty set of states 

2 0 :E a finite nonempty set of symbols 

=CQ,L ,0 ,qO, F > 

3 0 ! : 

4o qO 

Q xr-"-=\.c")is the transition function 

.:: Q is the initial state 

5o F<; Q is the set of final states 

- Oo51. -



finite state machines 

8 is represented graphically as follows, if ql EB (q2, a ) 
• ql,q2 EQ and a E r then 

a 

A complete graphical representation for ~ 

a transition diagram. 

Definition 

is called 

with 

Let 

of 

9= (Q, L, 0 ,qO,F) 

e is a pair < q, a) 

be a finite 

in Q x 1:* 

auto~aton then a configuration 

The reduction relation denoted as ~ holds between two 

configurations a and~ if a = <q,au) and ~ =<q• ,u) 

* a E 1: a E 1: , q , q 1 E Q and q 1 E o ( q, d.) 

where 

Let ~ denote the reflexive and transitive closure of r---

Definition 

The language 

* <qo, a )f--- < 

Example 

defined 

q, A) J 
by El denoted as L ( El) {a / a E ~· and 

for some q E F 

We construct an automaton for the sentences "the (very) n cold winter", 

with n /; 0. 

Let e = < Q, r , o 
o ~ {qo,ql,q2,q3J 

qO,F ) and 

F ~ l q3J , Z 

the transition diagram: 

- 0.52. -

tthe,very,cold,winter) 



recursive transition networks 

very 

Examples of operation: 

(i) "the cold winter" 

(qO, "the cold winter")J-- (ql,"cold winter") ._ (q2,"winter" '> 

(ii) "the very very cold winter" 

(qo, "the very very cold winter"> 1- <ql, "very very cold winter") 

f-- (ql, "very cold winter"> t-- (ql, ''cold winter") 

t--- <q2, "winter") ._ 

(2)LEVEL 2 

A second class of systems is more powerful in the sense that 

they admit embedding. The example we will discuss on this level 

is a system called recursive transition network automaton. It 

carne out of computational linguistics studies as a process 

model for context-free grammars and as an alternative for 

pushdown automata. 

Although recursive transition nets are widely used (since ~ 1970) 

they seem not yet to have reached the textbooks on formal language 

theory. We introduce here a formalism for recursive transition 

networks that is new by' lack .of standard notations. 

- 0.53. -



recursive transition networks 

Definition 

A recursive transition network automaton is a 6-tuple 

R = (Q, V, 5 , 0.0 F, Fe 

with 

1. Q a finite nonempty set of states 

2. v a finite nonernpty set of symbols Q n V = ¢ 

3 . o : Q x (V \) Q) ~ i)"(Q) is the transition function 

4. . Q0 is the initial state 

5. F C Q is the set of final states 

6. Fe c F is the set of completely final states. 

s is represented graphically just as for finite automata. 

Note that the only differences between finite automata and 

recursive transition nets so far a~e that (i) we distinguish 

a subset in the set of final ,states 

and (ii) a 'condition' for a transition cannot 

only be a symbol from the alphabet but a state as well. The 

motivation for including the latter will become clear in next 

definition. 

Definition 

Let R = <o, V, 0 , qo , F, Fe) be a recursive transition network, 

then a configuration ~ of R is a pair <"/,a in Q * x V * 

The reduction relation 

a and (J 

and 

if 

(i) TRANSITION 

a 

fJ=<q''Y,a 

(ii) PUSH: 

denoted as ,______ h@lds between two configurations 

* * <q 'Y a a) with q E Q, 'Y c Q , a E V, aE V 

with 

if q' E O(q,a) 

with 

fJ = (q'q" 'Y , a. a ) for q' ,q" E Q and q" E O(q,q') 

- 0.54. -



"' recursive trans:j,~ n~1tworks 

( iii) POPUP: a I ~ 
POPUP 

with 

< 'Y , a a> if q E F 

u u I POPUP and~ is 

the reflexive and transitive closure of r--

Comment: In a configuration < c; 'Y > is called a 

pushdownstack because information is placed on top of it and 

the latest added information is first consumed. 

Definition 

The language defined by R, denoted as L (R) =~a I aE v* 

and <qo , a)~<';I,A > (for some q EFc)\ 

Example 

Let us define a language for bracketed numerical expressions 

such as ( ( 1 + 1 ) x ( 2 + 3 ) ) or ( ( ( 1 + 1 ) + 1) + 1) 

R = <Q,V, 0, expi/1 ,F,Fc } with 

Q = (expr/1, expr/2, expr/3, expr/4, expr/5, expr/f ,oper/1, oper/F) 

V = g,2,3, ••• , +,x,-,/, (,)J F = \.expr/f,oper/F\ 
Fe ~ ~expr/f ') 

The transition diagram: 

( expr/1 oper/1 expr/1 ' ) 

~ 
+ 

- 0,55. -



recursive transition networks 

Example of operation 

Let (((1 + 2) + 1) + 3 

( expr I 1 , " ( ( ( 1 + 2) + 1 ) + 3) " ) ITR (expr/2," ( (1+2)+1)+3") 

IPUSH <expr/1 expr/3,"((1+2)+1)+3)") ITR <expr/2 expr/3,"(1+2)+1)+3)") 

lpusH <expr/1 expr/3 expr/3,"(1+2)+1)+3) ") 

iTif <expr/2 expr/3 expr/3,"1+2)+1)+3) ") 

l PUSH <expr/1 expr/3 expr/3 expr/3 , " 1 + 2) + 1) + 3) ") 

I TR <expr/f expr/3 expr/3 expr/3 , " + 2) + 1) + 3) ") 

1 POPuP <expr/3 expr/3 expr/3 II + 2 + 1 + 3 " ) 

IPUSH <oper/1 expr/4 expr/3 expr/3 II + 2 ) + 1 ) + 3 ) II) 

r-rn 
I POPUP 

I PUSH 

<oper/F expr/4 expr/3 expr/3 " 2) + 1 ) + 3 ) ") 

<expr/4 expr/3 expr/3 , " 2 ) + 1 + 3 " ) 

<expr/1 expr/5 expr/3 expr/3 , " 2 ) + 1 ) + 3 ) ") 

'TR <expr/f expr/5 expr/3 expr/3 , " ) + 1 ) + 3 ) ~·) 

I POPUP <expr/5 expr/3 expr/3 II ) + 1 ) + 3 ) ") 

'TR <expr/f expr/3 expr/3, " + 1 ) + 3 } ") 

lpoPUP <expr/3 expr/3 expr/3 , " + 1 + 3 ") 

<oper/1 expr/4 expr/3 , "+ 1 ) + 3 ) ") 

- 0.56. -



recursive transition networks 

ITR <oper/F expr/4 expr/3 , " l ) + 3 ) "> 

I popup <expr/4 expr/3 , n 1 ) + 3 ) " ) 

I PUSH <expr/l expr/5 expr/3 1 II 1 ) + 3 ) 11 
) 

<expr/f expr/5 expr/3 " ) + 3 ) " > 

I POPUP <expr/5 expr/3 , " ) + 3) "> I TR < expr/f expr/3, " + 3)" > 

I popup <expr/3, " + 3 ) 11
) ( oper/l expr/4, " + 3 ) "> 

<oper/F expr/4, " 3 ) 11
) I POPUP < expr/4, '' 3) 11 

) 

<expr/1 expr/5, 11 3) n ) expr/f expr/5, " ) " > 

I popup <expr/5, ")" > (expr/f, X > 

An extension of recursive transition networks up to the level 

of type 1 and even type 0 can be obtained by introducing (l) 

arbitrary conditions for the transition to take place, (ii) registers 

in which additional information can be stored and (iii) actions 

each time a transition is made to change the contents of these 

registers. 

This type of systems is called augmented transition networks and cUey 

arewidely used for natural language processing because it is an 

in-teresting and powerful process model for transformational grammars. 

But for this very reason we will not be concerned here any further with 

th.is type of systems. It is shown elsewhere that by. superposing on 

each other type 2 systems instead of integrating all the ~Ul8S in 

one system, the linguf5tic facts for which you need the augmentation 

can be dealt with without increasing the power of the grammar. 

- 0.57. -



comments 

Discussion 

After some intuitive explanations about computation by machines, 

we presented some relevant aspects of computation theory. Important 

for our purpose here are the following points. 

1. If we know explicitly how natural language processes work 

we will be able to design a procedure defining this process according 

to the Church-TUring hypothesis. 

2. Some care is necessary however. We must find not only a 

characterization of the process in terms of a procedure but 

one in terms of an algorithm. The reason is that with a procedure 

it is not necessarily guaranteed that the process is finite. 

In other words, suppose we construct a program for understanding 

natural language, then if we give it a sentence, it would not 

be guaranteed that the program will ever stop ! Clearly we do 

not want that. It is counterintuitive in comparison to 

human language use and it is irnpracticle. 

The theory of computation warns us for this situation, a warning 

which is not wholy unnecessary because transformational grammars 

for example are type 0 systems. 

Further references 

There are a great number of works on the general theory of 

computation and on the theory of abstract autolT'.ata available. 

We mention especially ~linsky(l967), Arbib (1969) and Engeler 

(1973) and the textbooks on formal languages already 

referenced when introducing formal grammars. 

- 0.58. -



metatheoretical assumptions 

§ 0.3. Metatheoretical considerations 

In this section we try to forwulate an answer to the following 

questions: (i) what is the metatheoretical structure of the 

proposals to be presented in this work and (ii) what is the 

scientific status of the components in the structure. 

First we state briefly some assumptions underlying the present 

discussion (1). Arguments for these assumfions can be found in 

the works cited in the references at the end of this section. 

Then we deal with the structure of the theory (2) and with the 

status of each aspect in the structure (3). In a final subsection 

we will discuss in some more detail the experimental method we 

are going to follow (4). 

( l) ASSUMPTIONS 

1. There are empirical sciences where the theories have a relation 

to some part of an observable reality, and non-empirical 

scd:ences which do not have such a relation. 

Linguistics is an empirical science. 

2. For a theory to be considered a scientific theory, it is 

necessary that the theory has at least the following properties: 

(a) All aspects of it should be fully explicit (i.e. the 

theory should be exact) . A good test for this 

construct computer programs based on the theory. 

is to 

(b) The theory should be internally consistent. The construction 

of computer programs is an equally valid test for this purpose: 

(c) It should be possillile to falsify the theory, i.e. it must 

be clear what claims are being made by the theory and how each 

of these claims can be refuted. 

(d) A theory dealing with everything all at once is outside 

the scope of the present knowledge. It follows that the domain of the 

theory is somehow restricted. It shoUld be possible to see 

the restrictions being made and it should be obvious in what 

directions further developments may extend the domain. 

- 0.59. -



thecretiGal structure 

This list is not meant to be exhaustive. E.g. we did not 

go into the purely'Semantic' properties of what it 

means to be a theory (see Achenstein,l968, for such a 

discusSion) . 

In the following discussion aspects (c) and (d) will be of 

particular interest to us. 

( 2) Structure 

We now start by presenting the 'nOrmal' structure of a 

linguistic theory. The structure has three compartments: 

formal pmpirical data theory theory 

(i) The formal theory 

A formal linguistic theory, often called a universal grammar 

(although we are here only thinking about ''formal universals") 

is the definition of a language in which descriptions of a 

natural language can be expressed. An example of such a formal 

theory is the transformational theory in which it is specified 

e.g. that linguistic structures take the form of trees, that 

rewrite rules are to be used as a means to define regularities, 

that a special sort of rewrite rules, namely transformation 

rules, are a necessary component, etc. 

(ii) The empirical theory 

The empirical theory is the actual description of the data in a 

form specified by the formal theory. We often say that the 

empirical theory iS an interpretation of the formal theory. 

An example of such an empirical theory would be a transformational 

grammar for a particular language. 

- 0.60. -



theoretical structure 

(iii) The data 

The third component of the structure consists of the data for 

which it all started. 

Between each component there are certain well defined relation

ships and it must be possible to prove that the relationships 

hold, otherwise the whole construct collapses. In particular: 

(i) It mu&: be possible to decide whether an arbitrary 

empirical theory is a member of the class of possible empirical 

theories characterized by the formal theory and 

(ii} it must be possible to decide whether an arbitrary 

sentence is a member of the claSs of sentences characterized 

by the empirical theory. 

In an optimal situation, both decision processes should be 

algorithms, although (from a pUrely theoretical pOint of view) 

it is not such a great harm that there is no algorithm and 

that creative intellects are necessary to prove the relation 

between the various levels. 

For the tranSformational theory the relation between the formal 

theory and the empirical theory is usually obvious, albeit that 

this relation is seldom explicitly proved. The relation between 

the empirical theory and the data is taken care of by the derivation 

relation inherent in generative grammars. By means of this derivation 

relation it is possible to prove exactly that a certain piece of data 

falls indeed under the empirical theory. On the other hand it is 

known that there is nO algorithm that given an arbitrary piece 

of data tells us whether it is defined by a particular transformational 

grammar or not. 

- 0.6L -



theoretical structure 

Having presented very briefly the commonly accepted 

struc~ure of a linguistic theory, and an example of it, 

namely transformational grammar,we now turn to a meta

theoretical investigation of the linguistic theory presented 

in this work. The most important results of this investigation 

are: 

(i) The relation between the 'grammar' and the 'data' can 

no longer be proven directly but we have other means available, 

and 

{ii) the formal completeness is no longer guaranteed. 

The first thing of importance is that the straightforward 

structure 

I formal theory~ empirical theory ~L-d_a_t_a-'-_j 
should be extended simply because the subject matter of the 

theory itself has been enlarged. We are dealing with a theory 

about parsing, a theory about production and a theory about the 

knowledge used in both: the grammar. 

So as a first approach we get 

formal theory empiiical theory data 

of parsing of parsing about parsing 

formal theory empiri~al theory language 

of grammar of grammar . data 

formal theory empirical theory data .::>_bout 

of producing of producing producing 

But this is not quite the scheme we want to have, simply because 

that is not the way we proceed. In particHlar the parsing/producing 

systems are in this work not studied as empirically observable 

entities, therefore the structure of an empirical science does not 

apply to these investigations. Note that there do exit parsing 

and production systems in reality: every human has one. Still we 

do not apply an empirical approach to them. This is a work of linguistics, 

the only empirical reality r,.Je are dealing with is langUage. 

- 0.62. -



theoretical structure 

Instead we have the following structure. 

We construct a formal theory with two components: 

(a) A formal theory of grammar defining ways to represent 

linguistic knowledge, we call this the description theory 

(b) A theory of parsing which defines the set of ?arsing 

processes for all sentences defined by a possible grammar defined 

by the description theory. That means the process that occurs if 

a sentence defined by a possible grammar is analysed into the 

structures defined in the description theory. And a theory of 

producing which defines the set of production processes for all 

sentences defined by a possible grammar defined by the description 

theory, that means the process that occurs if a structure defined 

in the description theory is converted into a natural language 

sentence based on a possible grammar. 

We call the theory of parsing and producing the process theory. 

There is a clear relation between the process theory and the 

description theory in the sense that for each formal rule in 

the description theory there is a predicate in the process theory 

(as the reader will see) . On the other hand the process theory 

involves more than the description theory because knowledge 

due to the process itself is available. 

Now the next question is, what is the relation to the language 

data themselves. It must be obvious from the presentation that 

due to its formal properties it is not possible to 'generate' 

in some way language sentences on the basis of the grammar 

alone. The grammar tells us what factors are responsible for what 

language phenomena but not what the,interrelationships of the 

phenomena itself are, this is so because the grammar is organized 

in a modular fashion. This brings us however in the unhappy position 

that the relation between the language data and the description 

system cannot be proven. Fortunately we have a theory of parsing 

and producing and by means of this theory we can indeed provide 

~he necessary relation. 

- 0.63. -



theoretical structure 

How is this going. Consider a language sentence and a 

particular grammar which specifies all information for this 

sentence in a format prescribed by the description theory. 

How can we know that the grammar specifies indeed the inforrration 

for that sentence ? For this purpose we introduce the parser 

which is actually a function taking as arguments (i) the sentence 

i:tself, and (ii) the grammar under discussion, and produces 

as result: the structure assigned by the grammar to the 

sentence. If no structure is produced the language defined by 

the grammar does not include the sentence. 

To complete the proof, we take the structure computed by the 

parser and hand it over to the producing system. ThiS producing 

systero is again a function taking as arguments (i) the structure 

and (ii) the grammar under discussion, and produces the natural 

language sentence again. 

We can summarize the results of the discussion in the 

following diagram depicting the structure of the theories 

presented here: 

formal theory formal theory 

of the grammar of the process 
~ -- --/ 

/ ~, 

/ "\ 

I \ 

' f 
empirical language 

description data 

We come now to our second topic: the status of the components 

in the structure. We first investigate the 'normal' type of 

structure. 

- 0.64. -



scientific status 

( 2) Status 

Let us investigate the question of fa.lsification and incompletenes:=:. 

(i) Falsification 

A formal linguistic theory of the 'normal' type is 

falsified if certain description modes which are defined in the 

formal theory are superfluous for the formulation of empirical 

theories. 

An empirical linguistic theory is falsified if it defines 

language phenomena which do not occur. 

It suffices to find such a phenomenon and the empirical 

theory is falsified. 

(ii) Incompleteness 

A formal linguistic theory is incomplete iff certain systematic 

aspects of a natural language cannot be expressed. 

An empirical theory is incomplete iff certain phenomena which 

occur in the data are missing in the description. 

It is of interest to note that 

(i) A transformational theory is always complete because 

the transformational grammars are type 0 systems and therefore 

any computation prOcess can be defined in terms of transformational 

grammars (according to the Church-TUring thesis) 

(ii) The price to be paid for completeness is however that the formal 

transformational theory is much too broad. In this perspective the 

attempts to restrict the power of transformational grammars becom~ 

extremely important. 

(iii) We think it is fair to state that there is at the moment 

no complete empirical theory for any language based on. a transformational 

model (and there is no such a theory -for any other model). 

- 0.65. -



scientific status 

(iv) On the other hand if the empirical theory defines 

phenomena which do not occur, this is mostly due to carelessness 

of the grammar writer. Although it must be said that 

transformational grammar is not an easy or perspicuous way 

of representing systematic aspects. 

We study now the conditions for falsification and incompleteness 

for the theory under discussion in this work. 

(i) FalSification 

The description theory is fal~ified if certain description 

modes which are defined in the formal theory are superfluous 

for the formulation of empirical theories. 

The empirical description is falSified if it defines language 

phenomena which do not occur. 

The process theo~v is falsified if the rules expressed in 

the description theory do not lead to the predicted results. 

(ii) Completeness 

The description theory is imcomplete if there are phenomena 

occurring in natural languages which cannot be expressed by 

the formalism provided by the theory. 

The empirical theor~;'" is incomplete if there are phenomena 

which occur in the data but are missing in the descri9tion. 

The process theory is incomplete if there are rules in the 

description theory for which the corresponding processes have 

not been defined. 

- 0,66. -



scientific status 

Notes 

(a) It is known that the formal description theory to 

be presented here is incomplete (a proof of this incompleteness 

is provided in the text). Also it is known that no description 

example to be given is complete, far from it. 

(b) It will become obvious that it is trivial to prove that 

the process theory is complete as regards the formal description 

theory. 

(c) As regards falsification, we claim that the formal 

description theory so far will be hard to falsify. It 

suffices to show that a certain aspect is superfluous 

but we do not think that this is the case. It is :tather 

too weak than too powerful. 

In this context we want to make the following remark, It is 

highly probable that is is impossible to construct a 

complete empirical interpretation of a language because of 

the complexity involved. What we need therefore is a lea-rning 

system that is able to extend its knowledge on the basis of its 

ov.m observations. Although· some work is going on in this 

area (cf. Sikklossy (1972) ,Anderson (1975)) it is generally 

accepted that we are not yet far enough to construct such 

systems. Meanwhile our own attempts to write empirical 

interpretations constitute a sort of learning process. Each 

time we add new words or types of constructions we extend 

or change the description of the language. 

(d) We Consider the process theory strongly confirmed by 

the computer programs we construct.ed for it and the experiments 

being done: One could say that the theory of parsing and producing 

defines a way of experimentation by which an empirical description 

theory can be tested. As we were able.to construct computer 

- 0.67.-



experimental method 

programs for simulating the parsing and production processes 

the experiments can be performed fully automatically and in 

a completely objective way. Notice that the highest standards 

of experimentation as regards exactness, repeatibility, etc. 

are all met with. We think that the ability to perform experiments 

is a very important aspect of our work. In next paragraphs we 

provide some more detail about the way in which they are perforwed, 

(4) The experimental method. 

As we said the test whether a language sentence is properly 

treated by the linguistic theory (in all its aspects) can be 

performed by means of experiments. The performance of experiments 

is something unusual in linguistic theories. We therefore study 

the conditions under which we do these experiments in some detail 

now. At the same time this will enable us to reflect on the 

nature of the linguistic argumentation being used. 

The need for experiments 

Whenever human beings deal with complex problemsthey try to 

develop means to control this cornplexi ty. In science this is 

done by introducing machines that gather data automatically 

or which perform the calculations involved in complex computations, 

etc. 

It need not be said that natural language 'is an example of 

an extremely complex problem: . The software needed to process 

a SpOken natural language sentence is comparable to that needed 

to send a manned rocket to the moon ! 

Due to this complexity it is simply necessary to use machines 

which assist us in testing the theories. 

The preparation 

In order to execute experiments, we use general purpose machines, 

i.e. computers, although it is perfectly possible to construct 

linguistic systems directly in hardware. The main preparation 

necessary is the constrUction of computer programs that reflect 

in full detail the proposals ronde by the formal linguistic theories. 

- 0 68. -



experimental method 

At least the exactness and consistency requirement should 

be met with if these programs are to be successful. The 

construction of the programs requires some technical knowledge 

from the part of the experimenter, but eVery experimentation 

involves a technological background and there is no reason 

why it should not be part of the basic training of the linguist. 

Once the program is ready, the empirical theory to .be ·tested 

is prepared for consultation by the program. Finally we give 

an input sentence and the result co~es out. It need not be said 

that the preparation of an experiment needs the utmost care 

up to the finest detail. 

The evaluation 

Now comes the important part of the discussion here~ the evaluation 

of the outcome of an experiment. If the outcome is as was 

expected (i.e. Predicted) all components of the metatheoretical 

structure are confirmed. But if there is not outcome or not 

the outcome we wanted to have, the following method of reasoning 

comes into action: 

(a) The preparation. 

First we critically examine the way in which the experiment was 

performed: Whether no errors occured in the construction of the 

programs, whether the data were entered in the format of 

the programs, e~c. 

The remedy to improve the preparation is simply to improve the 

program or to improve its data. 

(b) Empirical theory 

If the performance of the experiment itself is allright, we 

examine the empirical description. Maybe wrong facts were 

included or inappropriate facts. One can (and we did) design 

the experiments in such a way. that it becomes obvious in what 

way the empirical theory is false or incomplete. The remedy 

here is to extend the description or change it. 

- 0.69. -



experimental method 

(c) The formal description theory 

Suppose however that we try to deal with a certain fact and 

we cannot express it in the format that is provided, then 

it becomes necessary to extend the description theory itself. 

This is normally a far reaching activity. Not only will it 

be necessary to extend the process theory, but moreover the 

experimental setting itself will need a revision. 

(This is not necessary if the empirical theory fails) 

(d) The process theory 

The process theory as such is constructed in direct relation 

to the description theory and will therefore be reworked as 

soon as the description theory is reworked. Besides these 

considerations it may be that the bad outcome of an experiment 

is due to a badly conceived process theory . 

In such a case we Work on the process theory and subsequently 

change the experimental setup itself. 

- o. 70. -



discussion 

Discussion and further references 

There is a growing literature about the metatheoretical 

foundations of linguistics, especially in the German 

language (see e.g. Wunderlich,1974, Van de Velde,1975). 

The reader is referred to these texts for a characterizati6n 

of linguistics as an empirical science and for the 

deductive structure of generative theories. 

For the problem of falsification as a _method of investigating 

the scientific status of a theory, see Popper (1974). The 

problem of incompleteness is unfortunately not very much on 

the foreground in the philosophy of science. 

The use of computer simulation as a method for proving the 

operational feasibility of a linguistic theory is not yet 

very widespread in linguistics. Although a very fine 

example exists for transformational gra~mars (Friedrnan,1968). 

Normally work with computers is placed in an 'applied linguistics' 

corner, but we think this is an underestimation of the power 

obtained by having machines to assist you in the testing 
' and development of linguistic theories. We feel that for 

the heuristics involved in the present investigation, the 

use of computers proved to be irreplacable . 
• 

See for the metatheoretical foundations of computer simulation 

in general Harbordt (1972). 

- 0.71. -



§ l. THE THEORY OF MODULAR GRAMMAR 

I11 .t!JM du1p.teJt we ht.tJwduee " gMrnm<vt .theoJty whieh "'"" d~lg11ed 

wah .the p<VL6lng a.nd p!toductlon pJtoblem ln mlnd. T!JM g!tammM 

.theoJty l6 " Ungul6ue .theolty ln .the ~ua£ ~enM; A 6aJtm<tl model 

6oft .the Jteplt~enmtion o6 .the ~y~.tem<tU~ ln l<tngu<>ge. 

A.t .the Mme time we will pltavlde Mme examp£~ o 6 <tn empl!t-le<t£ 

ln.teJtpJte:two" o6 .thM fioJtm<tl model fioJt Mme n<tlUJt<tl l<tngun.ge<l. 

Th~e ex<tmple.,.~ Me lneoJtpo!t<t.ted .to ill~.tJt<t.te .the <tppltO<teh, 

.they Me by 110 me<>m me<>n.t to eamWu.te <t eample:te d~eJtlptia11 

a6 .the n<t.tuJt<tl l<tngu<>ge be.htg fue~oed. 

To m<tke cteM .the dl~U11e:tlan be:twee11 .the fioJtm<tl made£ <tnd 

.the emplJt-le<t£ ln.te!tplte;t<ttia n a fi a, .the Jtea.cieJt Mn keep ln mhtd 

.th<t.t eveJty ~.t<t.temen.t wah .the l<tbe£ deMnlilan l6 pM.t ofi .the '.theaJty 

a.nd eveJty ~.t<t.temen.t wah .the label ex<tmple l6 pM.t a6 .the empl!tle<tl 

~e ofi .the .theaJty. AU .the Jte.,.~.t Me -ln.tuli-lve explan<t.tlom. 

Afi.teJt e<>eh ~ubpM.t ofi .the .tex.t we lme!t.t fue~<~lam and fiuit.theJt MfieJtene~ 

whleh bltl11g OU!t ldeM -l11 .the peMpectlve ofi ex-l6ti11g Ungul6.tle .thea!tl~. 

On .the whale .the Jtea.deJt will fihtd .t!JM peMpeetive moJte ln <teeoJtd<tnee 

wi..th .the EU!tope<tn :Vta.i:U;Uam afi langun.ge ~.tudy .than wah Jteeen.t 

Ame!t-le<tn app!taach~. exeep.t m<tybe fioJt .the exae.tn~~ "-" fioJtm<tll6m we 

Me ~.t!t-lv-lng fioJt. Th~e fueuMlaM e<tn be ~!Upped <t.t 6"-Mt Jteadlng. 



§ l. THE THEORY OF MODULAR GRAMMAR 

1.0. Introduction to modular grammar 

1.1. Grammatical function 

1.1.0. Introduction to grammatical function 

1.1.1. The relations environment 

1.1.1.1. Determination of the head 

1.1.1.2. Determination of the subordinate 

1.1.2. Order 

1.1.2.1. Order of subordinate and head 

1.1.2.2. Internal order of subordinates 

1.1.3. Concord 

1.2. Case 

1.2.0. Introduction to case 

1.2.1. Semantic features 

1.2.2. Order 

1.2.3. Government 

1.3. The structure of the lexicon 

1.4. Semantic structuring 



introduction 

l.O. INTRODUCTION TO MODULAR GRAMMAR 

The model we are introducing here will be called a 

modular grammar because the major deviation from other 

theoretical approaches is that instead of striving for an 

integration of all linguistic knowledge into one compact 

single system, we decompose the grammar in several 

independent modules. 

In a vray you could say that any theory of language is 

'modular' in the sense that various components (morphology 

syntax, semantics) are distinguished and in each component 

still further subcomponents (e.g. in transformational grammar 

you could say that the lexicalisation transformations, the 

various cycles, the postcyclic transformations are each 

different modules of the subcomponents, you could even say 

that each transformation is in fact a module on its own !) 

But that is not the way in which we want to use the term 

module. 

In Webster's dictionary we find that module means 

(a) 'any of a set of units ( ... ) designed to 

be arranged or joined in a variety of ways; 

(b) a detachable section, compartment, or unit 

with a specific purpose or function, as in a space craft; 

(c) in electronics; a compact assembly functioning 

as a component of a larger unit.' 

We1here envisage especially meanings (a) and (b), for (a) in 

particular that it is possible to arrange or join modules in a 

variety of ways (b) that each modUle has a specific purpose 

or function. When we say modular we mean that the various rules 

of the grammar are seen as independently consultable sources 

of knowledge which can be joined in a parallel fashion with 

other modules to accomplish the task of producing or understanding 

natural language. 

- l.l. -



introduction 

Now how do we get all those modules ? From observation 

it is clear that natural languages use a number of devices 

such as the ordering from left to right of the words, the use of 

concord or agreement, the use of morphological affixes to 

signal certain relationships,etc. In an integrationistic grammar 

all these phenomena are stated in the same type of rules, e.g. 

rewrite rules, and each rule operates on the result of the 

application of other rules. In other words the gramrn.ar rules 

specify explicitly the interaction necessary to obtain the 

whole language sentence. 

It turns out that there are some good reasons why it is 

advisable not to proceed in this way. These reasons stern 

from purely theoretical considerations (e.g. efficiency 

of representation) and especially from the problem of 

desiijning a whole language system. 

The alternative to an integrationistic conception of crrq~nar 

which we will present here, is to see the grammar as a set 

of specialists: One specialist is competent in word order, 

another one is competent in agreement rules, and he knows 

exactly in what situations they are applicable and how 

it should be done, another one is competent in morphological 

affixes for the signalling of case relations, etc;. 

The specialists on their own cannot cause the analySis or 

production of a naUural language sentence, to that purpose 

processes outside the scope of the specialists are neeessary. 

Let us call a specialist a MODULE. It is a body of knowledge 

concerned with a specific aspect of language. As the grammar 

consists of a set of modules, it follows that a linguistic 

theory should investigate the knowledge contained in the mOdules. 

This investigation has three main aspects: first what kind of 

knowledge is involved, second ho.w should we represent this 

knowledge and third how should we use the knowledge. 

The third problem will be treated in next chapter when we come to 

a discussion of the whOle language system in operation. In this 

chapter we will further concentrate on the first two aspects. 

- 1.2. -



introduction 

As regards the ·problem of how the knowledge should be represented, 

we point out that on some occasions this representation 

will be very straight forward, on other ones we will have 

to introduce quite complicated representation constructs 

to realize our goals. In particular we anounce the introduction 

of a new class of automata and a new representation construct 

for feature complexes. 

As regards the problem of what kind of knowledge is involved we 

may already point out that there are two main things that will 

be discussed in this context: First there is a situation in 

the language sentence that is of interest, second (and even 

more important) there is a reason for the situation to be there. 

Let us call the situation a language phenomenon and its 

reason a factor. The factors themselves are anchored in the 

higher level process of semantic structuring as we will see. 

Examples of situations are word x comes before word y, word x 

takes certain features of word y, etc. Examples of factors 

are word x has a particular grammatical function as regards 

word y, word x is stressed, word x fills a certain 

case slot in the frame of word y, etc. 

In each module one phenomenon and one fnctor are brought 

together. During analysis the module will be asked what 

factor is responsible for a particular phenomenon, during 

synthesis the module will be asked what phenomenon shoUld 

be used to signal a certain factor. The bare information 

i.e. the relation factor/phenomenon is stated in a rule 

which forms the core of each module. 

So we arrive at the following notion of grammar: 

- 1.3. -



introduction 

Definition 

A modular grammar is a set of modules where each module 

contains a rule. 

A rule is a function (in the mathematical sense) . The function 

defines a relation between a language phenomenon and the 

factor(s) determining it. This implies that the formal structure 

of a rule r is 

r(f) ~ p 

with f the factor and p the phen.ornenon. 

In the following sections we will make a start with 

investigating what kind of modules are necessary to 

represent the linguistic knowledge used by natural langueges. 

In particular we will investigate two important factors: 

grammatical function and case. We know that there are (probably 

many) other factors such as the type of speech act, the use 

of coordination, various sorts of 1 pragrnatic 1 factors 

~e.g. stress on particular aspects of the utterance), but 

one must start sorr,ewhere and it is impossible to cover everything 

all at once in a short amount of time. Moreover grammatical 

function and case appear to be very basic factors in the 

functioning of language and we think it is therefore 

simply necessary to start with them. 

The rest of the text contains two main parts. In the 

first one we introduce the notion of grammatical function 

and the modules centered around grammatical function. Ih 

the second one we introduce the notion of case and the modules 

using case (and grammatical function). After that we will 

discuss some other topics, such as the relation to semantic 

structuring and some further problem areas. 

- 1.4. -



introduction 

Discussion and further references 

In this first pa.rt 'ir'le presented the first central assumption 

of our theory, namely that a linguistic description system 

should be brganiZed in a modular fashion, rather than in an 

integrated one. This first central assumption is at the same 

time the first distinctive assumption. If we look at the 

grammar constructs being used at the moment, we see that 

they are all organized in an integrated way. Indeed, one could say thot 

the idea to have such an integrated description system 

has been growing gradually from the early traditions of 

structuralism to culminate in the conception of a 

transformational grammar (Van de Velde, personal communication) 

On the whole the more traditionalistic a grammar the more it 

is modularly organized ! (E.g. Zandvoort (1945) treats word 

order, concord, functional interrelationships, etc. in different 

chapters of this grammar; another example of a grammar 

with a modular flavour is Jespersen (1961)) 

Although the idea to have this modular organization of a grammar 

is in direct opposition to the current trendin linguistics, 

in other areas relevant to the subject of natural language, 
' modularity has already been recognized as being a very fruitful 

approach towards the organization of knowledge. We are 

here thinking about studies in artificial intelligence. 

Here modules are called demons (Charniak,1972), specialists 

or molecules (Rieger, 1975). Each time referring to a body 

of knOwledge needed to perform a certain cognitive task 

(e.g. inference making). The necessity of having modular 

whole systems has become especially obvious when trying to 

design speech understanding systems vrhich must be able tc 

cope with unclear data (see Reddy(1973) for a discussion of the 

problem and Bruce and Nash-Webber(1976) for an example of 

a speech understanding system) . 

Although the idea of modularity is obviously present in 

artificial intelligence, it has never been applied to the 

design of gram.TTiars :i_tself. An augmented transition network 

e.g. (cf. Woods, 1972) is a typical integrated systeTil. 

- 1.5. -



grammatical function 

1.1 GRAMMATICAL FUNCTION 

In the introduction to this section, we mentioned that we 

will be investigating two factors: grammatical function and 

case. In this subsection we present some modules concerned 

with grammatical function. First we introduce the concept itself 

in some detail. 

1.1.0. Introduction to grammatical function 

Definition 

Let us consider a finite nonempty set of words l'l of a language, 

then the .functional relations over W denoted as FR is a 

relation in the set theoretic sense FR £ W x W 

If ( wl ,w2 ) E FR, then we say that a grammatical r·elatibn 

holds from wl to w2 

We can furthermore distinguish subsets in FR where each subset 

defines a particular sort of grammatical relation. 

If a particular grammatical relation, say F ~ FR ,holds 

from wl to w2 then we say that wl has the grammatical function F 

as regards w2; w2 is called the head and wl the subordinate 

of the relationpair < wl,w2) 

If < wl ,w2> fj. FR then we say that wl has the grammatical function 

NIL as regards w2, i.e. NIL is the empty grammatical function 

If a word w occurs as the subordinate of at least one F c FR 

then we say that F is a possible grammatical function of W. 

- 1.6. -



grammatical function 

Example 

Let adjunct be a·granuuatical function then in "young boy" 

a grarrrrnatical relation holds from "Young" to "boy". We say 

that "young" is the subordinate and "boy" ththead, and that 

"young" has the function adjunct as regards "boy". 

Adjunct is a possible grammatical function of "young". 

Additional conventions 

1. It is well known that one single form of a word may 

have different functions and meanings. This is a serious 

problem in the design of natural language processing systems 

and We will see what we can do about it. 

Theoretically we will consider such a word form as being 

more than one word form: for each function or meaning then 

we could say that we are dealing with another word. This greatly 

simplifies our definitions. 

2. Although the relational character is lost, we will often 

say that a word w1 is an F if there is a word w2 and wl 

has the grammatical function F as regards w2. This is in 

accordance with existing habits. 

We now bring the notion of grammatical function in relation to 

a Sequence of words. 

Definition 

Let w1 .•. wn be a sequence of words, then the functional 

structure for w1 ... wn is defined as follows: 

- if n = 1 the functional structure of the sequence is the 

posSible grammatical function of the only word occurring in 

that sequence~ 

if n i·s greater than 1 the functional structure is the set 

of all pairs <wk,wk+l> such that 

- 1.7. -



grammatical function 

(i) a grammatical relation holds from wk to wk+l; 

(ii) except for one wj each w1 1 ~ i ~ n is the subordinnte 

of at lea~ one but no more than one relation pair where the 

head of this relation pair is wk lf k ~ n and i fr k. 

In other words each word in the sequence has at least one but 

no more than one grammatical function as regards another word 

of the sequence; 

(iii)a path in a functional structure is a sequence of relation 

pairs where the head of one relation pair is the subordinate 

in the next relation pair in the sequence. A path is 

a circuit if the same relation pair occurs more than once 

in at least one path in the functional structure. There 

should never be circuits in a functional stxucture. 

The word wj which is not occurring as the subordinate of any 

relation pair is called the top of the functional structure. 

The top has of course a possible grammatical function. 

Ex-ample 

For "the edited translation of a text", ·the functional 

structure contains. the following relations: 

"the" has the function determiner as regards "translation" 

"edited" has the function adjunct as regards "translation" 
11 translation 11 has the possible function object 

"of" has the function casesign as regards 11 text" 

"a 11 has the function determiner as regards "text 11 

"translation .. is the top of the structure. 

We are now faced with the task of defining a graphical 

representation construct for functional structures. The 

main requirement of this representation is that it should 

reflect the functional relations for a sentence in an 

explicit and perspicuous way. 

- 1.8. -



grammatical function 

The solution we will adopt here goes as follows: 

Use the standard mathematical way of drawing graphs for 

relations. The graph thus obtained is the representation we 

are looking for. More explicitly: 

Convention: 

If wl has the grammatical function F as regards w2, then 

we draw a node for wl and w2 labeled with wl and w2 respectively. 

Then we draw a directed line from Y.!l to w2 and label the 

line with F: 

F 

Wl 

But if w has only a possible grammatical function F we draw 

a node labe)rl w and draw a line from it with label F 

Example 

For "the edited translation of a text 11
: 

-~t-------~object 

adjunct det rm 

d term 

A 

- L9. -



grammatical function 

To simplify the representation we can turn those graphs 

into trees by the following convention: 

If w2 

then I 
F 

I 
wl 

and 

if then F 

I 
wl 

Example 

For "the edited translation of a text": 

object 

I 

.~. 
adJunct determ obJect 

I I I 
EDITED THE TEXT 

I~ 
casesign determ 

I I 
OF A 

It is important to keep the unsirnplified graph representation 

in mind when studying functional structures. 

- 1.10. -



grammatical function 

Two questions can be asked in connection to these functional 

structures: 

(1) Will the convention of turning graphs into trees always work ? 

(The question raises because a graph is a more powerful represen

tation construct than a tree.) 

Then answer is yes. The proof follows from the definition of 

functional structures. 

A tree has the following properties (i) there is one topnode, 

(ii) this topnode is reachable form all other nodes, and (iii) 

there are no circuits. 

Condition (i) is always satisfied because_ there is one wj which 

is not the subordinate of any relation pa~r. 

Condition (ii) is always satisfied because each word is connec

ted to the graph via another word. Condition (iii)was 

a condition of functional structures per definitionern. 

(2) Is it possible to construct a generative grammar which 

derives a functional structure just as a phrase structure grammar 

grammar derives constituent structure trees ? 

(The question is important because it influences our choice 

of grammar type) 

The answer is no. The proof follows from the method of 

constructing trees on the basis of the derivation relation as 

defined in formal language theory for phiase structure grammars. 

A consequence of this definition is that a node can only occur 

as dominating another one if its label occurs on the left of 

a rule. But this implies that the label is a nonterrninal. 

Because the words of the sentence which are terminal symbols 

occur higher up in the tree, they should be nonterminals. 

But in a generative grammar the set of terminals and nonterrninals 

form disjoint sets hence it is not possible to do it. 

(Notice however that it is possible indirectly by means of 

the indirect tree construction method defined earlier 

for generative grammars) 

- 1.11. -



grammatical function 

We now have a definition of the concept of grammatical function 

and a definition of functional structur~to represent 

the grammatical relations holding in a certain ~equence of 

words. We close this introduction to grammatical functions 

by discussing a typology for functions and by introducing 

the concept of an inference tree. 

Typo1ogy 

One of the main results of our investigations is that it 

is possible to distinguish between3classes of functions 

and to translate this distinction into the formal theory 

itself. The question is first on what ground such as 

typology should be built. 

As we said in the introduction to this chapter knowledge 

about a specific aspect of language as contained in a rule 

involves two things: a factor and a phenomenon. The factor 

here under discussion is grammatical function. Recall 

that a factor has relevance for the process of semant~c 

interpretation. It follows that a typology of functions can 

be based on the differences as regards semantic functioning. 

But due to the second aspect in a rule, the way in which 

the , language phen0mena are approached is an equally ~alid 

approach. It turns out that the typology we will be proposing 

is based on both grounds. First the semantic side. 

We will see later in more detail that the functional s
1
tructure 

of the input sentence is some sort of control struct1'1re 

for the creation of semantic representations: with each function 

a particular tree building action is associated and what the 

arguments of this action are is determined by the func!tional 

relations in the sentence. 

The fundamental entities of a semantic structure are the predicates 

(which may be considered as bundles of properties or r,elations) . 

Each of the predicates has a certain role in the communication, 

some introduce entities, others modify other predicates, qualify 

an already introduced entjty, etc. Now let us associate with 

each of these roles a certain gramrnatical function. 

- 1.12. -



grammatical function 

Seen from this perspective it turns out that there are two 

main types of functions: objects (leading to predicates which 

introduce entities) and adjuncts (leading to predicateS 

modifying other predicates qualifying another entity). 

A third class comes in for words which carry no predicates 

themselves but act as additional instruments to signal 

certain aspects. These are the functionwords. 

So we obtain three basic classes: 

Definition 

Let F be the set of all grammatical functions, then F-obj, 

F-adiu,F-functw is the set of grammatical functions of the 

type object, adjunct and functionword respectively. 

Comments: 

(i) Objects: 

Objects are words which denote an entity or a class of entities, 

that means they will lead to a semantic structure which 

represents an entity or a class of entities. An object 

stands in a dependency relation to either other objects 

(as in the father of John) or adjuncts (as in translated 

from a text ) . 

Traditional grammars further distinguish subject, direct 

object, 'indirect object, prepositional object and other 

sorts of objects. 

We will not make that distinction because the particular relation 

of one object to its 'head' is better explicated in terms of 

case relations as we will show later. 

(ii) Ad~uncts 

Adjuncts are words which 'amplify' or 'modify' an object or 

another adjunct, that means they will lead to a semantic 

structure attached to an object or another adjunct in which 

- 1.13 0 -



grammatical function 

new information is introduced. This happenS e.g. by 

relating the object which is modified to another object. 

Trad~tional grammars distinguish several types of 

adjuncts: predicators (or verbs), attributive adjuncts, 

predicative adjuncts, adverbial adjuncts, etc. 

(iii) Functionwords 

Functionwords are words not introducing anY semantic 

predicates in the sentence, they only add features and 

modifications to the words which act as heads of the 

function words. 

Examples are determiners, casesigns, particles, a.o .. 

The typology discussed above on semantic grounds will find 

a fUrther foundation in the differences in behaviour which 

exist bn a mere surface level, .especially between objects 

on the one harid and adjuncts/functionwords on the other. 

In particular we will center the information on surface 

phenomena for objects With the head of the relation pair 

and for adjuncts and functionwords with the subordinate 

of the relationpair. It will become obvious very soon what 

we mean by this and why we do it. 

Functional inference tree 

Of equal importance in the whole theory is the idea that 

yoU may organise the set of functions into groups which 

show a particular behaviour as regards a certain phenomenon 

We do this to capture certain regularities in the rules of 

the grammar which are otherwise treated by using nonterrninals 

(which we will not use at all). It is e.g. necessary to make 

within the general class of objects a disti:n.ction between 

pronominal objects.and nominal objects, simply because words 

having these funCtions may vary considerably in their 

behaviour. But nevertheless we must keep the possibility to 

- 1.14 0 -



grammatical function 

consider the class as a whole. 

We solve this representational problem as follows: We define 

a hierarchy of functions which is represented in a 

tree. The tree will be called the functional 

irtference tree (later on we will have inference trees for 

other theoretical objects). We will use our standard method 

of representing trees in list notation. 

The idea is that given a (possibly sub)tree 

(A with a 1-, . . . , an subtrees or functic'-'--~ 

a property which is defined for node A also holds for 

every node irt a 1 , ... ,an. 

E.g. an adverbial adjunct may link with practically every 

other adjunct, so we define a tree for all adjuncts: 

For another purpose it may be necessary to address onlY 

the verbs, then we make a subtree: 

It may be necessary to still make a further subdivision, -·e.g." 

in order to address only the auxlliaries: 

adjunct 

verbs------? ~ 
I \ auxil · · 

nonfin.verb\ . A . att.ad] 

verb / "" 

adv.adj 

nonfin~aux aux 

etc: 

- 1.15. -



grammatical function 

Discussion and further references 

Already in traditional grammars the words of the language 

where classified according to their part of speech or synt~ctic 

category: noun, pronoun, adjective, verb, adverb, preposition, 

conjunction, interjection, etc. 

In traditional gramars this classification was meant as 

an indication of the semantic function these words had in 

the communication, their 'mode of signifying' (Lyons, 1968,272) 

E.g. nouns are words naming entities, adjectives are words 

qualifying a noun by amplifying its meaning, etc. 

In structural grammars the part of speech specification 

Y~-ras more considered to be an indication of what structural 

properties the word having that part of speech could have. 

E.g. nouns are words showing a particular sort of behaviour 

on the morphological level, they occur only in certain combinations 

with other parts of speech, etc. Various methods were designed 

to classify the words via (structural) tests into distinct 

classes where each class was labe]tl with a particular 

category (or subcategory) . 

The two roles which are assigned to parts of speech by 

tradi~ional grammarians and structural linguists respectively 

will in our grammar be related to grammatical functions 

(or functional categories) as they ~ere called in traditional 

grammars) . 

The reason for doing so are as follows: 

(i) To indicate the function of a word in the communication 

more precise characterizations are needed than the eight or 

ten parts of speech that were used in traditional grammars. 

This is so because (a) one single function (e.g. complement) 

can be realized by more than one part of speech (for complement: 

noun, pronoun, adjective, verb, adverb, etc.)and 

(b) one single part of speech (e.g. adjective) can have many 

different functions (for adjective:attributive adjunct, 

predicative adjunct, complement, etcr). 

- 1.16. -



grammatical function 

(ii) On the other hand many of the structural properties 

of a word are not determined by the part of speech it belongs 

to but by the grammatical function. We will see many examples 

of this in the sequel. 

The step to make grammatical functions instead of categories 

or consituents the basis of the grammar is a very important 

one. And although phrase structure trees (and grammars) are 

a very powerful mechanism for dealing with a parts-of-speech 

analysis, they fail completely as regards the treatment 

of grammatical functions. 

Because the grammatical functions are in a transformational 

grammar not represented explicitly in the deep structure, all 

surface phenomena which we will Show to depend on grammatical 

functions and which are to be realized by transformations 

in such a grammar cannot in a clear way be related to 

these functions. Especially if the surface phenomena relate 

to so called 'derived' grammatical functions, such as 

attributive adjuncts which are obtained only after the 

application of a whole series of transformations. If the 

grammatical functions are represented by relations between 

dominance relations (as is norma.lly assumed) the transformations 

will need extensive tree processing as a condition for their 

application. 

The move towards deeper structures by the generative 

semanticists has nothing changed that would affect the 

criticism presented here. On the contrary, the fact that 

semantic structures are further away from the functional 

level results in even more obscurity as regards the role 

of grammatical functions and their effect on the surface 

structure. 

The typology introduced above is strongly related to 

traditional ideas. E.g. the distinction of a special class 

of words not functioning in the semantic structure as 

predicate (the functionwords) is close to that of introducing 

a class of words having only grammatical significance or 

structural meaning vs. words which have not only a grammatical 

- 1.17. -

I 



grammatical function 

but also a lexical effect (Lyons,l968,435). 

~he idea of using a functional inference tree proved 

to be very pO't'lerful. Notice that in an integrationistic 

grammar these generalizations are to be expressed in 

the same sort of rules as those where the linguistic 

phenomena themselves are regulated. In contrast we 

declare the grouping of functions as a global phenomenon 

of the grammar. 

- 1.18. -



relations environment 

Now we start introducing the rules themselves. This 

is done in a series of subsections each of which contains 

three parts (i) a theoretical introductlon of the 

rule 1 (ii) an empirical example and (iii) discussions 

and further references. 

Much more examples will be presented in the section on 

experimental results (Chapter 3). 

1.1.1. The relations environment 

The first phenomenon we will discuss is this: The occurrence 

of a functional relation presupposes the occurrence of .·other 

functional relations. 

This takes two forms: Given a functional relation F between 

words w1 and w2, i.e. wl is the subordinate and w2 the head, 

then 

.(i) the occurrence of the relation F presupposes that w2 

has a particular function F', in other words a certain head 

is required; 

(ii) the occurrence of the functional relation F presupposes 

that w1 is the head of another functional relation F', in 

other words a certain subordinate is required. 

Let us discuss each of these aspects in some detail 

1.1.1.1. Determination of the head 

(i) theory 

The first structural property of importance i s given 

a word w1 and a word w2, for wl to have a particular grammatical 

function F as regards w2, w2 should have a particular 

possible function F'. 

- 1.19. ~ 



relations environment 

For example take "the translated play", "play" can function 

as an object (drama for the sta~e)or as,amongst other things, 

predicator or verb. A possible function of "translated" 

is attributive adjunct, but obviously for 11 translated" 

to be attributive adjunct as regards "play", "play" shou.ld 

itself function as an object. 

We express this by saying that a property of a word having 

the function attributive adjunct is that its head is always 

a word having the function object or shorter the 

function of the head of an attributive adjunct is an object. 

Here is another example: 11 he translates plays", "plays" is 

an object of "translates" but this is so only because the 

head of ••plays", i.e. ••translates•• takes objects. 

We express this by saying that a property of the word 

having the function verb is that it may take objects. 

Notice our difference in talking about the two examples. 

In the first case (and in general for adjuncts and functionwords) 

we introduce the specification of the head as a property of 

the subordinate (i.e. attributive adjunct) and in the second 

case (in general for objects) we introduce the specification 

as a property of the head ! 

This is at first sight a remarkable attitude, but it will 

crop up again and again: information about functionwords 

and adjuncts is to be centered around the subordinate, 

information about objects around th~ head. 

Having specified what Kind of information we have in mind, 

we proceed by formulating the rule in which this information 

is presented. This turns out to be easy. We introduce two linguistic 

functions: function-of-head (for adjuncts and functionwords) 

which relates a function (the subordinat~ is having) to 

a function (the head is supposed to have) and taking-objects 

(for all functions) which relates a truth-value to a function 

to signal whether it takes objects or not. 

- 1.20. -



relations environment 

Definition 

function-of-head: F 

(II f) (f E F-adju 

~ F is a partial function defined 

u F-functw) such that for wl, w2 words 

of the language, if wl has the function f as regards w2, 

w2 should have the grammatical function f 1 ~function-of-head(£) 

f• may be a feature complex of functions (we will later 

explain what a feature complex is). 

Definition 

taking-objects: F ~tTRUE, FALSE} 

as follows: 

is a function defined 

let f E F, then 

taking-objects (f) 

TRUE if a word having the function 

f may be the head of a relation 

pair with the function object. 

l FALSE otherwise 

- 1.21. -



relations environment 

(ii) example 

Let us take the sentence 

" a very urgent letter was sent to John" 

and specify the function-of-head/taking-objects information. 

We introduce the following grammatical functions: 

determiner (for "a 11
) 

adverbial adjuncts (for "very") 

attributive adjunct (for "urgent 11
) 

nominal object (for "letter" and "John") 

finite auxiliary (for "was") 

nonfinite verb (for "sent") 

case sign (for "to") 

Next we specify the information: 

and 

function-of-head (determiner) = nom.object 

function-of-head (adverbial adjunct) = attributive adjunct 

function-of-head (finite auxiliary) = nominal object 

~unction-of-head (casesign) = nominal object 

taking-objects (nonfinite verb) = true 

for all other functions (in this sentence at least 

taking-objects is false. 

The following structure holds then for the sentence as a whole: 

nominal object 

LETTER 

deteL\~-~ 
~ attributive adjunct 

A URGENT 

I 
adverbial adjunct 

I 
VERY 

TO-- case 

sign 

- 1.22. -

finite auxiliary 

I 
WAS 

I 
nonfini te verb 

SENT 

nominal object 

JOHN 



relations environment 

(iii) _discussion and further references 

The fact that other functional relations play an 

important role in the determination of the grammatical 

relation of one word has since long been recognized (think 

e.g. about the structuralistic notion of syntactic 

valence) . Notice however that normally these functional 

restrictions are expressed in categorial terms, and in 

particular by means of the notion of phrase structure, 

constituent structure, or related concepts . In such 

a categorial context, the knowledge captured by the 

function-of-head ahd taking-objects rules, is formalized 

by placing the element in a whole pattern (such as 

in phrase structure grammars) or by a more explicit 

indication (such as in categorial grammars). 

Our approach differs in two ways from the currently 

accepted one. First of all we express this information 

in terms Of functions. The reason is that the same category 

(e.g. adjective) may function differently (att.adj, complernent,etc.) 

in different environments. Second we do not include any 

information about order in the given rules. This is in accordance 

with our principle of a modular grammar. Notice that this 

may already lead to a more economical grammar: if the 

same function occurs in different orders, then this rule 

needs to be specified only once, in an integrated grammar 

we would need to specify the relational environment for 

every order anew. Another element of economy is that we 

do not need nonterminals. This reduces the number of 

theoretical terms being used. 

Finally notice that in an integrationistic grammar it is impossible 

to formalize the difference in behaviour between adjuncts/function

words and objects. Although this difference was felt in 

traditional grammars, think e.g. about the status of the 

terms transitive/intransitive, which refers exclusively to 

objects allowed or not allowed for a certain verb. 

- 1.23. -



relations environment 

1.1.1.2. Determination of the subordinates 

Next we come to something like the reverse of the previous 

rule. Not only the function of the head plays a role but 

the function of the subordinate may equally well be of 

importance. This phenomenon correspond·S to the notion of 

endocentric vs. exocentric constructions known from structural 

linguistics. 

Take e.g. "the man in the cafE!". Let us say that "in 11 has the 

grammatical function relationword as regards "man". But 

obviously we can say that if and only if there is a word with 

the grammatical function object as regards "in". So "in" 

needs the subordinate to have the function relationword. 

Similar cases are e.g. "he knocks the door down", where 
11 knocks" needs "down" to become a transitive verb. 

Having discussed the phenomenon we now turn to a 

discussion of a representation for the relation between the 

phenomenon and the factor function. 

A possible solution for the representation problem goes as 

follows: We organize a grammatical rule that changes the function 

of the head of a grammatical relation as soon as the subordinat~ 

of the functional relation is present. E.g. we let 'from' have 

the function 'preliminary relationword' and change this into 

relationword if an object is there. Only then 'from' can 

start functioning as a relationword. Although this looks as 

being a nice solution (and it is the one used by categorial 

grammars e.g.) and although it works in this case, the need 

for another approach soon becomes obvious. 

The point is that the not being active of a certain word holds 

up the whole analysis and this leads to dead situations during 

parsing. Consider e.g. the example of 11 he knocks the door down". 

Here "down" has to jump over "the door•• to make contact with 

"knocks" and only then "the door 11 can be linked. But this 

jumping over is something we will not allow in the parsing 

process, and we have good reasons for that. So the analysis 

blocks: "the door" waits for "down 11 and 11 down" waits for 

"the door". 

- 1.24. -



relations environment 

The other approach (which will be followed here) consists 

in associating with each function a state. If a function 

needs a certain subordinate we associate with it the 

state non-final. As soon as the required subordinate comes 

in, we change the state associated with the function 

to final. Obviously to be effective there should be a 

final state associated with each function at the end of 

the analysis. 

We will define formal systems which are able to perform 

this sort of actions in the following section (1.1.2.2.) where 

we come to a discussion of order. The systems are 

called completion networks and a generalization over them 

completion automata. 

- 1.25. -



order 

1. 1. 2. Order 

The next phenomenon is the use of order. Just as for the 

relations environment discussed in the previous subsection, 

we see again two types 0f rules: 

(i) The first having to do with the order of the subordinate 

of the relation vs. its head, 

{ii) the second having to do with the internal order of the 

subordinate of the same head. 

1.1.2.1. Order of subordinate and head 

The first phenomenon we investigate in relation to order is 

the following: Given a word w1 and a word w2, for wl to have 

a particular grammatical function f as regards w2, wl should be 

in a certain position as regards w2. 

There are three possibilities: 

(i) either wl comes BEFORE w2 

(ii) or w1 comes AFTER w2 

{iii) or it is UNDETermined whether wl comes before or after w2. 

Again we introduce a grammatical rule in the form of a function 

this time called position which relate~ a grammatical function 

to one of the indicators BEFORE,AFTER, UNDET . 

Definition 

Let position: F ~ ~BEFORE,AFTER, UNDETJ defined for 

(Vf) (f E F-adj u F~functw) be a function such that if wl has 

the function f as regards w2, then if 

position (f) 

BEFORE wl should come before w2 

AFTER 

UNDET 

wl shou•ld come after w2 

wl may come either before or 

after w2. 

- 1.26. -



order 

With the difference in behaviour in mind between 

adjuncts/functionwords and objects, we investigate whether 

objects can be dealt with by this function position. 

But again it turns out that the position of objects is 

more easily determined by its headword whereas the 

position of adjuncts/functionwords is determined by 

the subordinate itself. Even more it is logically impossible 

to use the same function position because the position 

of the objects changes depending on the function of their 

head. 

We call the linguiStic function that relates a grammatical 

function to a position of its objects the object-position 

rule. Obviously it is only defined for those f E F such that 

taking-objects(£) =TRUE. We use again the indicators 

BEFORE, AFTER, UNDET meaning the objects come before their 

head, after their head or it is undetermined whether they 

come before or after it. 

Definition 

Let object-position : F ~{BEFORE, AFTER, UNDETJ be a 

partial function such that if wl has the function object 

as regards w2 and w2 has the function f then if 

object-position(£) 

BEFORE wl comes before w2 

AFTER wl comes after w2 . 

UNDET wl may come either before 

or after w2. 

- 1.27. -



order 

(ii) Example 

Let us take the same example sentence "a very urgent letter 

was sent to John" and specify the information for the 

rules position and object-position: 

position {determiner ) = before 

position (adverbial adjunct)= before 

position (finite auxiliary) = after 

position (casesign) =before 

taking-objects (nonfinite verb) after 

(iii) Discussion and further referenceS 

The fact that order is an important phenomenon has si,nce long 

been recognized. In a categorial or constituent structure 

treatment, one would use phrase structure grammars, categorial 

grammars or equivalent systems to treat this order. In such 

systems this is done by giving a pattern in which the order 

relation is implicitly stated. E.g. if we say S ~ NP VP then 

t~is rule contains implicitly the information that the VP 

constituent comes after the NP . 

One of the important consequences of making abstraction of the 

phenomenon of order as we did, is that this order can be controlled 

completely as an independent variable. We will see later an 

exiting experiment where we reverse the indicators before and 

after (i.e. consider as before [corning after
1

and as after'coming 

befor€) and where after that a sentence can be processed by the 

parsing system in right to left order l 

The object-position rule is equivalent to the well known 

typology VSO,SOV,etc. although this may not seem to be so. 

First of all we have generalized over all predicates taking 

arguments (and not just the verb - subject - object relation) . 

Second we consider the verb syntactically as the adjunct of one 

particular object, traditionally called the subject. The other 

objects are then all depending on the verb (cf. the example). 

Only then it is possible to apply the given formalism with only 

three theoretical terms: before, after, undet. 

- 1.28. -



order 

1.1.2.2. Internal order of subordinates 

Now we come to the second usage of the phenomenon of 

order: the situation where the occurrence of one 

particular subordinate restricts the possibility that 

other subordinates may occur. 

Take e.g. "translated the text". We know that translate cannot 

be att. adjunct here because its head (text) is although an 

object, linked with another word (the). This •the" has 

changed the structural properties of the object "text" 

to such an extent that it is no longer a valid head of 

an att.adjunct. 

There are essentially two situations where the restriction of 

the internal order of the subordinates may occur; 

(i) among adjuncts and functionwords (cf. the example) 

(ii) among objects (consider 11 he gives me a book" and not 

"he gives a book me") 

The first type will be discussed in this section, the second 

type will be treated later because the other factor namely 

case, Plays a very important :rb1e in it. 

Having discussed the phenomenon we envisage for this module, 

we will now present a formal system in which these facts 

can be stated. This turns out to be a nontrivial task and 

we will introduce a new system called a completion automaton. 

The system is constructed in the tradition of automata theory 

but differs from already existing models in several respects. 

An essential part of the system (as for all automata) 

are the transition networks. Such transition networks will 

be called syntactic networks in the present context. But 

we will see later on that for the internal order of objects 

one can use the same formal system. Then we will qpll 

the networks semantic networks. 

The intuitive ideas behind the use of the networks are 

that with a particular piece of input (e.g. a particular 

grammatical function in a structure) we associate a state. 

- 1.29. -



order 

When nothing is linked with the input piece the initial 

state is associated and whenever we make a link a new 

state (or more than one new states) are associated. 

In order to be a subordinate of a given word it is 

not sufficient then that this word has a particular 

grammatical function (as specified by the linguistic 

function function-of-head) or that it takes objects 

(as specified by the linguistic function taking-objects) 

and that the right order (as specified by position or 

object-position) is present, in addition a particular 

state should be associated with the head before the linking 

takes place. 

Example: Given the function deterrn, att.adjunct and norn.obj 

then with nom.obj we associate the initial state OBJ/1. 

If the att.adj comes in we go from OBJ/1 to the state 

OBJ/2, if the determiner comes in we go from OBJ/1 to 

OBJ/3 or from OBJ/2 to OBJ/3. 

Schematically: 

att.adj deterrn 

determ 

Now consider as input "the translated text". Text starts 

with state OBJ/1; 

with "translated" as att.adju we go to OBJ/2 

with "the" as deterrn we go to OBJ/3 

Now consider as input "translated the text 11
• Text starts again 

with state OBJ/1 

with "the 11 as detenn we go to OBJ/3 

and with "translated as att.adj we can go nowhere 

Notice that (in contrast to finite state automata and recursive 

transition networks) the network is written from the point of 

view of the head of the relation. Notice also that (again in 

contrast to existing automata) the position is considered to 

be not a part of the automaton,· i.e. we only formalize relative 

order restrictions, not absolute order. The absolute order is 

of course captured by the previously discussed rules. 

- 1.30. -



order 

We now introduce the formal systems. 

(1) COMPLETION NETWORKS 

Definition 

A completion network (CN) is defined by a quintuple 

CN = ( Vn, Q, F, qO, 'Y > with 

(i) V a finite nonernpty set of elements, the alphabet 

(ii) Q a finite set of states 

(iii) F £ Q the set of final states 

(iv) qO E Q the initial state 

(v) 1' : Q x V -+ 51Q) the transition function 

We define a graphical represent~tion of a completion network 

as follows: 

if ql E ~(q2, a) 

then 

with ql,q2 EQ and a EV 

~ and 

if q2 E F then we write ~ 

if ql is the initial state then -e 
Example 

is the graphical 

with 'Y (a,ql) = 

representation of a CN =< {a,b) ,\.,ql,q3,FIN), 

\FINJ, r (ql,b) = [q3l and r (q3,a) = {FINJ 

- 1.31. -

ql, 1' ) 



order 

There are a number of tasks that you can perform with 

a network. Two tasks Will be of par-ticular interest here: 

(i) the recognition of elements defined by the net and 

(ii) the ordering of elements of the alphabet into the 

format prescribed by the network. These two tasks both 

fall back on the "neutral" representation of the 

transition function as defined in the previous definition. 

-i- the recognition task 

The problem is given a string pE V*, decide whether it 

contains the right element on the right place according 

to a given network. 

We solve this problem by the introduction of information tuples 

called configurations and a relation over them, the 

reduction relation. 

Definition 

Let a be a configuration with a { p , q > and p E V* and 

q E Q. 

The initial configuration for a string pE V* , called 

in( p ) is a = {p,qO > with qO the initial state 

The final configuration for a string p called fin ( p ) 

is a = {A , qi } with qi E F. 

Definition 

We define the reduction relation denoted as ~ as follOws 

Let a ,fj be two configurations a = < p, q ) with 

P = a 1 a 2 . . . an_ 1 an , n) 1 then 

1-
R 

iff 

(right going reduction) 

l3 = (p' ,q') and 

- 1.32. -



order 

1-
L 

(left going reduction) 

iff ~ =(p',q') 

and p' = a 1a 2 ... an_1 , q' E 1 (q,an) 

and ~ denotes the reflexive 

and transitive closure of 1---

Definition 

we define the left going reduction language of a CN C 

as LRL (C) ={pi in(p) ~ fin( p) J , the right going 

reduction language of a CN C as RRL (C) =[PI in (p) 1 ~ fin (p) J 
and the reduction language of a CN C as RL{C) = 

* \P I in(p) f-- fin( p 

Example 

Given the CN 

a 

then RRL is a 2n+ 1b 

Example of operation 

b 

n ~ 0 

Let p aaab , then( aaab, qO )~ < aab, q 1 ) "R'" < ab, qO) 

~ (b,ql) 'R (X,q2 ) 

LRL is ba2n+l n> 0 

n 40 ). 
and RL is L a,b in 

-ii- The reordering of elements 

The second problem is given an unordered series of input symbols 

compute as output one (or more) ordered sequences of this 

same input symbols. We will organize such a 'transduction' 

process as follows. First -..,,e distinguish an input vector in 

- 1.33. -



order 

which we find all symbols that are to be transmitted 

and the number of times that they will occur. Next we 

have a so called output string, i.e. the resUlt of the 

process. Because of the nondeterministic property of completion 

automata it may be that more than one possible result is 

obtained. Hence we organize the process in terms of transduction. 

configurations containing an input vector and an output string. 

Then we define the transduction relation (formally represented 

as ....IlL..,_ ) which transforms one configuration into another one. 

Here are the definitions: 

First an auxiliary definition 

Definition 

Let V be an alphabet then an input vector I over V 

for a CN C is a set of pairs I = l< a, n > a E V, n E N J 
We say that a E V is in an input vector I iff n > 0 for 

( a,n ) ~ I 

An empty input vector is denoted as ~-

Definition 

Let a be a transduction configuration in CN when 

< a 1 ,a 2 ,a3 ) with a 1 an input vector, a 2 E Q and 

E V* the output string. 

Definition 

The transduction relation denoted as ~ 

as follows: 

is defined 

Let • ' ~ be two configurations • ={I,q,p) and 

~ = ( I,q' ,p.') with I = (al,nl) ,(ak,nk) k::; 
and p= bl ... b. j-1-0; 

J 

- 1.34. -

l 



order 

·--L 

holds 

---R 

(left going transduction) 

iff 1. ai is in I 

2. I' ( al ,nt, . . . 
3. q' E 7 (q,ai) 

4. p ' ~ aibl b. 
J 

(right going transduction) 

holds iff 1. ai is in I 

< ai,ni-J)' . .. ,< ak ,nk> 

2. r• < a 1 ,n 1>, ... < ai,ni-1), ... ,< ak,nk) 

3. q•Er (q,ai) 

4. p • = b 1 bj ai 

~ u ......... 
L R and 

denotes the reflexive and transitive closure of 

Definition 

We define the left qoinq transduction language of a 

CN Cas LTL(C) { (I, qO,A) ~ ( ¢,qf,p) qf EFJ 

The rightgoin transduction lan ua e of a CN C as 

RTL (C) ~ <I ,qo, A) ~ ( ¢,qf ,p) qf E F } and 

the transduction lan~ua~e of a CN c as TL (C) 

{ (I, qO,A)- ( ¢, qf ,p) 
} 

qf EF 1 

It may be that ~ vector contains elements outside V or 

that a final state is reached with the input vector not 

being empty. In such a case the remaining input vector 

is called the rest. We will see that in practical applications 

this usage of the transduction relation is of interest. 

Example 

Given C 

then RTL(C) 

and TL (C) 

{ a 2n+lb n ':1 0 ~ , LTL (C) ~ tba2n+l 

f 1 p contains :jF b ~ i and -:jj:.a ~ 2n+l 

- 1.35. -



order 

Example of operation 

< < b, 1 >, < a, 3 > , q0 , X: 5 

k 
I 

«b,l>,<a,2>, ql, cl. 

k 
I 

«b,l> ,<a,l> 

R/ 
/ 

<<b,l> ,<a,0), ql, aaa > <<b,0><a,l>, q3, aab 

k 
I ... 

<<b,l),(a,JZI>, q3, aaab) 

(= valid end configuration) 

So far we have presented the formal basis of completion 

networks. Let us before turning to the completion automata 

themselves discuss briefly the weak generative capacity of 

the present system. We do this only for the reduction 

languages because of the following theorem: 

THEOREM l 

LetT be a completion network then LRL(T) 

RRL(T) = RTL (T) and RL(T) = TL (T) 

Proof 

LTL (T) 

This follows immediately from the definitions. 

In order to study the weak generative capacity we need 

the following amdliary definitions: 

Definition 

Let CN denote the c~ss of all completion networks then 

~RL , LRRL , ~L denotes the class of left reduction 

languages, right reduction languages and reduction languages 

respectively. 

- 1.36. -



order 

THEOREM 2 

~ cf!---
RRL REG 

Proof 

The proof follows immediately from the definitions. 

Lerruna 1 ~RL 

Proof 

Let CN = ( V, Q, 'Y , qO, F } 

FA 6\_ =( V' ,Q', 'Y qO' ,F'} 

where 

!i) v = V' 

(ii) Q = Q' u [qo•J 
(iii) qO' 

(iv) F'= {qoj 
(v) Let 

then 

r (q,a) 

r'(ql,a) {q\, ... 

and if qi,l~i~n, (; 

then we define the equiValent 

r' (qn,a) ={q\ 

F , r"(qO',a) ={qJ 

The rest of the proof follows by induction on the number, lc:if 

steps in the application of the reduction relation. 

Lemma 2 ~G 

Proof 

Similar to lemma 2 

THEOREM 3 L 
LRL 

~G 
Proof 

This result follows immediately from lemma 1 and lemma 2. 

- 1.37. -



order 

NOw we study what happens if no strict order has been 

implied. 

THEOREM 4 CF and L 
REG 

incomparable but not disjoint. 

Proof (due to D. Vermeir) 

( l) Ll 

This follows immediately from the property 

(PROP l) that if L E CN then wE L implies 

mir(w) E L; where mir is the mirror imaage. 

Obviously the property holds. 

(2) L2 ~[a,b1 .. E ~EG n o?N 

Obvious. 

are 

(3) L3 is the language accepted by the following completion 

network: 

b 
Here the following holds: 

(i) V w E L3 : it=a (w) 

(ii) VnEI;liJ, vn 

\<w) 

(iii) Now recall the pumping 

lemma for regular languages: (V L) ..z;.EG ( 3 n) N : 

(x == y
1

z y 2 EL, [z\ ~ n+l implies that 3z': z = zl z' z2 

and y
1

zlz'rnz2y2 f:.. L , VmEN) 

App~ying liii) to words vn( n large enough) yields words v~ 

with ~ (v') > itb(v') and thus b.v' ¢ L3,consequently 

L3 E~Ga . 

On the other hartd L3 is generated by the following cfg G = 

{A,B),{a,b) ,(A~bB,Bb;B~aA,Aa,'- \,B) thus 

L3 E~ 

(4) L4 ~(anbn:n)'lJ ~.leN because of property 1 

(5) The fact that--' £~ follows immediately from the 

equivale-nt grammar representation (as a matter of fact ~N 

This ends the proof. 

- 1.38. -

obviously 

¥~N). 



order 

Comments: 

In this section we defined a representational device called 

a completion network and two usages of the device: the rec

cognition and reorganization of a sequence of symbols. 

2. Completion automata as generalized completion networks. 

The earliest attempts to generalize overftransi tion networks 

up to the level of type 2 syst8ms is a recursive transition 

network (the formal basis of augmented transition networks). 

The idea is here to introduce as condition for a transition 

a whole network. By means of a pushdown store, you then 

store the currenlstate before starting with the new embedded 

network and when a string has been recognized by this network 

you popup again and proceed with this earlier state. 

We will now follow a quite different course of action. 

Instead of •calling• the network of the embedding via anoth~ 

higher level network, we associate the transition networks 

(as defined before) with elements of the string itself 

An element is then allowed to be a condition of 

a transition iff it is in a final state. 

Let us formalize all this in a set of new definitions. 

We call the system a completion au·t.ornaton. 

- 1.39. -



order 

Definition 

A completion automaton (CA) is defined by a quadruple: 

dL = <V, Q, RS, F, INIT, r with 

(i) V a finite nonempty set, the alphabet 

(ii) Q a finite nonernpty set of states 

(iii) RS a set of reading states, RS ~ Q 

(iv) F a set of final states, F ~ RS 

Q n v 

(v) INIT: V ~ Q a partial function called the initial 

state assignment function 

(vi) r: Q x V ~j'(Q) the transition function 

r can be represented graphically as follows, 

if q1 E 1(q2,a) with q1,q2 E Q and a E V then 

Definition 

Let~ be a configuration in~ when ~ = ~ 1 ~n 

with ,B i ( ai ,qi) for 1 ~ i ~ n ai E V and qi E Q 

Let a 1 , ... ,an E V for n:? 1, then the initial configuration 

for a string p = a 1 ... an denoted as in ( p) 

< a 1 ,q1> ••• < an,qn) such that INIT (ai) = qi, 1 ,{ i~ n 

If INIT (ai)is undefined , qi =FIN 

A final configuration 

as fin( p) = 
for a 

1 ~ 

string p = a 1 ... an, denoted 

i ,( n, q. E F. 
J 

Definition 

We define the reduction relation for a CA Q denoted as 

1-- as follows: 

Let 

• < a ,q ) 
n n 

( 1 0 j ,< n) 

- 1.40. -



order 

then 

(i) 

(ii) 

We call 

1-----
L 

holds if 

l. qj-l E RS U [FIN) 
2. qj E 1 (aj-l'qj) 

3. %=<al,ql) (aj-2'qj-2)(aj,qj 

holds if 

the left going reduction relation and ~ 

the right going reduction relation. 

f-y;- v and ~ is the 

reflexive and transitive closure of r--

Definition 

The reduction language of a CA denoted as L(CA) = 

[P l in (p ) ~ fin (p ) J , the left-going reduction language 

LRL (CA) = ~P\in ( p )It fin ( p >} , and the right-going reduction 

language RRL (CA) = [, I in ( p ) ~ fin ( p ) 

Let CA 

~A 
denote the class of completion automata then 

= ( RL ( a ) ,G, E. CA ~ U it&.L ( (\_ ) , lX_6 CA ~ lJ {f...RL((}J ,QE CA ~ 

- 1.41. -



order 

Example 

Let0c=(V,Q, qF,qF,INIT,0/ withV=~a,b} 
Q =(ql,q3~ , INIT (b) = ql 

and 

!i: 

q3 

Then the left -going language of C\. is anbn n ~ l 

example of operation: 

(f = aaabbb 

in((f) = (a,FIN)\_a,FIN)(a,FIN)(b,ql)(b,ql) (b,ql) 

f-- (a,FIN) (a,FIN')'(Jo,qNi> (b,qi)(b,ql) 

)--- .(a,FIN) (b, qF')' 

= fin ( <r ) • 

And the right-going language is bnan n~.l 

Example of operation: 

<T = bbbaaa 

- 1.42. -



order 

ini t ( <J) 

1;-- <b,ql) (b,ql)(b,qf/(a,FIN)'(a,FIN) 

1-- ¢,ql) (b,q3)(a,FIN>(a,FIN). 

=fin (a-) 

The detailed study of the formal properties of completion 

automata would lead us too far from the main subject of 

this works. We will present here a summary of the results, 

proofs and detailed discussion can be found in the references 

at the end of this section. 

As regards the weak generative capacity we obtained a 

very interesting result . The weak generative capacity of completion 

automata is similar but not identical to completion networks, 

more in particular we have the following situation with 

unrestricted order: 

The right-going reduction languages are equivalent with the 

context-free languages {compare this with completion networks) 

and the same result holds for the left-going reduction languages. 

The strong restrictedness is a very strong theoretical result 

especially from a linguistic point of view. 

As regards the closure under AFL-operations we discovered 

that completion automata behave very awkward {no closure under 

union, etc;). 

Finally we mention that the transduction relation can be defined 

just as for completion networks. 

- 1.43. -



order 

Di·scussion and further -references 

We have published quite a number of papers which show 

the evolution in our thinking about completion automata 

of which the latest stage has been presented here. 

See Steels(l97Sa) ,Steels(l975b) ,Steels and Vermeir (l976a) 

Steels(l976a) ,Steels (1976b) ,Steels and Vermeir (1977). 

The f-ormal difference with recursive transition networks 

lies in the point that networks are associated with 

elements of the input directly, rather than called via higher 

level networks. By this method we could (i) remove the concept 

of nonterrnina~ from the automata, (ii) remove the necessity 

of having an independent memory, namely a pushdownstore. 

Although it may be difficult to see this at the moment, the 

advantages both for efficiency and power of the use of 

the presentation are enormous. Especially becaus-e (:j..) irrelevant 

parts of the network are not to be brought into the memory 

of the parser, (ii) due to the 'call by input' strategy 

unfruitful paths are cut out not by processing until they 

are dead but by the fact that they are simplv not called. 

Moreover we will see later that it provides for the first 

time the ~ossibility of formalizing so called 'semantic 

parsing'. 

The theorY of completion automata of which only a little 

part has been shown (there are e.g. related completion 

grammars) is the first sort of results that can be obtained 

by applying the modular viewpoint to automata theory itself. 

- 1.44. -



features 

1 • 1 • 3 . Concord 

In natural languages it is common to associate.certain 

features with the words of the language. These features 

which may show up by morphological affixes are used for 

various purposes in the language. One is the indication 

of functional relations (by the presence/absence of 

relationships between the features) or of case 

(by the use of so called case indicators). 

The following points will inter-est us (i) how can we 

represent such syntactic feature complexes, (ii) how can 

we perform operations with such features, in particular 

the comparing of two complexes, and (.iii) where are they used 

and for what purpose. The last question will only 

partially be considered, namely for functional relations 

where the subordinate is an adjunct or functionword. In such 

a situation the phenomenon of concord (or agreement) may 

occur: the features associated with the subordinate match 

Wi_th the features associated with the head. The other part 

(which we will be considering later) is that where the 

functional relation object holds (notice again the dichotomy 

between objects and adjuncts/functionwords). In such a 

situation the ph~nomenon of government occurs: the case 

relation prescribes the presence of certain syntactic features. 

This aspect is treated later when we have introduceqthe 

factor case. 

Our first job now is the definition of a representation 

construct for features. This turned out to be very difficult 

but we feel to hav~ found a powerful solution. For its introduction 

we invite the reader now to a short excursion in another area 

of mathematical linguistics representation theory. 

- 1. 45. -



features 

(i) Theory 

Introduction to feature complexes 

First we will analyse the requirements of a nontrivial 

representation of features (part!) then we will define 

the notion of a feature complex (part2) and some 

operations over feature complexes (part 3). Finally 

we will discuss the possibility of using an inference 

tree for cross reference (part 4). 

part 1 requirements 

Consider the German (definite) article system which 

expresses information about (i) number (singular vs. plural) 

(ii) case (nomin, accus, dative, genitive), (iii) gender 

(male, female, neuter). 

Instead of having 3 x 4 x 2 ~ 24 wordforms corresponding 

to each combination of features there are only 6 forms: 

der, dern, des, den, die, das. 

Obviously one form has to have more than one function. In 

particular the following diagram represents the distribution 

of features over woids. 

singular : male female neuter 

NOM der die das 

GEN des der des 

OAT dern der dern 

ACC den die das 

plural 

NOM die die die 

GEN der der der 

OAT den den den 

ACC die die die 

Such diagrams, well ~nown from school grammars illustrate 

the point that complex features for one unit do not consist 

of only one sequence of features but of a set of sequences 

of features. However the diagrams are inadequate for certain 

purposes, because they are constructed so as to reflect the 

association between a sequence of features and a word but 

NOT to reflect what feature sequence is associated with What 

word. To know this we have to search through the whole diagram 

or we need an additional diagram as follows: 

- 1.46. -



features 

CASE GENDER NUMBER 

der nom male sing 

der gen female sing 

der dat female sing 

der gen male plural 

der gen fernale plural 

der gen neuter plural 

etc; 

From this we conclude that it must be possible to 

associate with one unit (e.g. der) a set of sequences of 

features (requirement 1). We can represent this set by 

listing all the mernbers(as is done in the above diagram) 

but obivously it would be stronger to have a more 

compact representation for one set, in which such 

generalizations as "all plural genitives have der" can 

be expressed (requirement 2) . Note that such a compact 

representation would allow· us to carry ambiguities around 

until they are resolved, something which we feel to be 

very important, especially for an analysis proCedure. 

In an operational system it must be possible to do something 

with complex features. The most common operation is 

that two complexes of features are matched, e.g.· the feature 

complex of a determiner is matched with that of a nomen. 

Or the feature complex of an object is mathed with a feature 

complex representing the selection restrictions in the 

case slot. There is one important aspect about this matching, 

namely relevance: only those feature are considered which 

are relevant for a particular matching process. 

By relevance we mean that only a subsequence (maybe even 

only one element of a feature sequence) is checked an~ the 

rest is not important in the final decision. E.g. given the 

requirement that feature complex 1 contains feature A 

and feature complex 2 contains A and B, then feature complex 

1 matches with feature complex 2 because A is in A and B, 

but nbt the reverse, B is not in the feature complex!. 

We will need a special kind of relevance logic for this 

(requirement 3) , 

- 1.47. -



features 

Another useful operation is the combination of two 

feature complexes to form a new one. This happens e.g. if 

a new semantic unit is formed which has the properties of 

its components. In other words the operation of combining 

two feature complexes must be available (requirement 4). 

Needless to say that to design a representation Construct 

that meets requirement (1-4) is a nontrivial task. In this 

work we will propose a possible solution. 

Intuitively the representation construct constitutes a 

tree where the nonterminal nodes contain directions 

(AND, OR, XOR (= exclusive OR), NOT) and the terminals 

the features themselves. 

Example (for der) 

XOR 

/\ 
iD\ A\~ 

S!NG XOR PLURAL GENITIVE 

/~ 
AND AND 

!\ /~ 
NOM MALE FEMALE XOR 

/~ 
DATIVE GENITIVE 

The idea is that to find w~ether the unit to which the tree 

corresponds contains the features being looked for, one walks 

through it and performs matches with the terminal nodes. On 

the other hand, when you want to know what sequence of features 

iS associated with the unit, you compute the extension of the 

tree, i.e. the set of sets of features that corresponds to it. 

- 1.48. -



features 

Intuitively AND means both sides are members of a 

sequence, OR means both sides are members but one may 

be nbt, XOR means only one side constitutes the members 

of a sequence, NOT means that the depending sequence is 

not in the feature sequence. 

Before we now turn to a more exact account of the formalism 

it must be noted that we will use again our standard 

convention for representing trees in a linear expression 

by means of the list-notation introduced earlier. 

So, for the example tree of DER we get 

(XOR(AND SING (XOF (AND NOM MALE) 

(AND FEMALE (XOR DATIVE GEN)))) 

(AND PLURAL GENITIVE) 

part 2: Definitions 

(a) Syntactic definitions 

We define the formal outlook of a feature complex (for short FC) 

by a context-free grammar which generates the linear representation 

of an Fe. 

Definition 

Let FCG = { Vn, Vt, P, 

with 

FC »be a context-free p. s. grammar 

p 

Vn 

Vt 

i< FC lJ 
£(,) ,AND,OR,NOT,XOR\ U FS 

the set 

contains the following productions: 

l. ( FC ) ~ A A E FS 

2. ( FC ) ~ (AND ( FC )( FC ) 

3. ( FC ) ~ (OR ( FC ) ( FC ) 

4. ( FC ) ~ (XOR < FC ) ( FC 

5. ( FC ) ~ (NOT ( FC) 

where FS denotes 

of features 

(Note that the brackets are terminal symbols !) 

- 1.49. -



features 

The set of feature complexes as a .,.,hole is then L (FCG) . 

Example 

Let FS = fsiNG, NOM, MALE, PLURAL, DAT, GEN, FEM~ 
then 

(AND (XOR (NOT NOM) MALE ) GEN) E L (FeG) 

Proof: 

<_Fe>=;. (AND <Fe) (Fe) ==> (AND (XOR ( fe).(f'C/ )<Fe> 

=? (AND (XOR (NOT <Fe) )(Fe) ) (Fe) ) ~ 

(AND (XOR ( NOT NOM ) MALE GEN ) 

which is equal to the following tree: 

AND 

/~ 
XOR GEN 

/""' NOT MALE 

l 
NOM 

The main 'trick' now is to define an extensi~nal AND 

truthlogical semantics for the expressior.s. The extensional 

interpretation yields the set of sequences of features which 

are expressed in a compact feature complex (cf, requirement 1 

& 2) . On the other hand the truthlogical interpretation for 

the same expressions yields a truthvalue, using the 

'relevance' idea (cf. requirement 3). 

(b) Semantics 

-i- extensional 

Feature complexes are the representation of sets of sets 

of features. Each FC represents therefore the complete charac

terization of a possible feature combination. Let us define 

this set interpretation of an FC, denoted as ·~ (FC) as 

follows: 

- 1.50. -



feEjtures 

Definition 

l. ext I A if A)\ with A E FS 

2. ext I (.'I.ND X Y 

3. ~~(OR X Y) I 
~ ext 

4. ext t (XOR X y 

~ ext 

5. ext NOT X) 

~ Jll 

Example 

' ) 
' 

with X,Y E L(FCG) 

[<x, u Y') with X' E ~f X I , Y'E ext( Y t3 
with X,Y 

(ANDXY I 
I with X,Y 

X j U ext I 

E L(FCG) 

E L (FCG) 

y I 

for X E L(FCG) 

Let FC ~ (AND ( XOR ._A B ) ( XOR C D ) ) , 

The tree on the right contains for each node the semantic 

interpretation of the corresponding node in the tree on the 

left 

AND 

~~ 
XOR XOR 

/\ /\ 
A B c D 

ext I FC , ~,cj 

Note: 

Perhaps a more exact account of extf (OR X Y )j would be 

~ I (XOR (AND X Y ) ( XOR (AND X ( NOT Y ) ) ( AND ( NOT X ) Y ) ) ' 

In the application however the simplification as introduced 

in the main definition never lead to any problems. 

- 1.51. -



features 

- ii - truthlogical 

Definition 

The domain of an FC is a set of sets 

Definition 

Let X E L(FCG) and D a domain, then we define the truth-value 

of an FC as regards a domain D, denoted as eval 

as follows: 

X, D ) 

First we define eval' X, d0 )for an arbitrary d0 ED 

X E FS 1. eval' X, d 0 ) for 

{ 
TRUE 

FALSE 

2. eval' for 

\ 
TRUE 

FALSE 

3. eval' for z 

{ 
TRUE 

FALSE 

otherwise 

z ~ (AND X Y ) and X, Y E L(FCG) 

otherwise 

(OR X Y ) and X, Y E L(FCG) 

if eval' (x, d0J or eval' ( Y ,d0 ) is 

true or both 

othel:"11lise 

4 • §!@.1 ' ( z , d 0 ) for z (XOR X Y and X, Y E L(FCG) 

\ 
TRUE if eval' (X, d0 ) or eval' ( Y, d0 ) is 

true but not both 

FALSE otherwise 

- 1.52. -



features 

5. eval' (, z' do l for z (NOT X) a.nd X E L (FCG) 

( 
FALSE if eval' (x, do) is true 

TRUE otherwise 

Now we generalize over~· as follows: 

eval( X, B for X E L (FCG) 

{ 

TRUE 

FALSE 

Example 

Let 0 and 

eval (FC,D) = TRUE 

Proof: 

if eval' (X, d 0 ) is true for at 

least one d
0 

E D 

otherwise 

FC (OR A (NOT A)) then 

Let 0u E o be l A) , eval' ( A, [A\) = TRUE and eval' ( (NOT A), {All 

A)), ~A)) =TRUE. = FALSE, so eval' (OR A ( NOT 

so ~ (Fe ,JIA\)l is true 

Example 

, tB,Dl) and Let D 

FC (AND ( XOR A B ) XOR C D ) ) then ~ 

is true. 

Proof: 

Let dD E D be (A, C~ 
then (i) eval' ( A, [A,c1 
=false. So (iii) eval'( 

(ii) ) . 

=true and (ii) eval' 

XOR A B ) , [A,CJ) =true 

FC , D ) 

( B, {A,C~ ) 

(from (i) and 

Moreover ( iv) eval' ( C, f._ A, C} true and (v) eval'( D , (A, c]) 
= false. 

- 1.53. -



features 

So (v) eval' ( ( XOR C D) true (from iv and v) 

and therefore eval' ( (AND (XOR A B 

(from iii and v). 

(XOR CD ) , \A,C~) true 

This ends the proof. 

To illustrate the relation between the truthlogical and 

set theoretical interpretation of FC's a small table illustrating 

some sample relationships in detail is presented. 

In the table: evall Y, ext(x)) withY on the lines and 

X on the columns. 

A (AND A B ) . (OR A B ) (NOT A ) 

A T T T F 

,AND A B I F T T F 

(OR A B) T T T F 

(NOT A ) F F F T 

(XOR A B) T F F F 

part 3: operations 

-i- Matching 

Feature complexes are used in linguistic systems in the 

(XOR A B) 

T 

F 

T 

T 

T 

context of tests investigating whether two feature combinations 

match. For this purpose FC's as formalized in previous sections 

are particularly useful, because now we can define exactly 

what nontrivial matching is about. 

Definition 

Let FCl, FC2 be two feature complexes then we say that 

FCl matches with FC2 if and only if eval (Fcl, ext(Fc2\) is 

true. 

- 1.54. -

-



features 

Note that according to the definitions the functions pick 

out those features of FC2 which are relevant as regards 

FCl and not vice-versa. E.g. if the adjective agrees only 

in gender, say, with the noun, then \o7hatever other information 

may be contained in the FC associated with the noun, only 

that feature will determine the truth value. 

Note also that we can compare complexes of features with 

each other and in both directions. 

In some cases it may be important to remember for what 

subsets of the domain the two feature complexes match. 

E.g. if the determiner matches with the noun, then a verb 

later on should match with the same subsets as was the case 

for the determiner. We call the sets £or which a match resulted 

in true the satisfied domain. 

Definition 

Given two feature complexes FCl and FC2 then the satisfied 

domain is 

d f ~t(FC2) and eval' FCl, d ) is true 

- ii- Combination 

We finally discuss the notion of combination 

Definition 

If FCl and FC2 are feature complexes and Gl = ~ ( FCl ) and 

g = ext ( FC2 ) then the extensional combination of FCl and 

FC2 denoted as combe(FCl,FC2) = { Y V Z Y E; Gl, Z (, G2.\ 

- 1.55. -



Teatures 

Inference trees 

So far cross classification was formalized as a local 

process: As soon as certain features appear we make 

inference by considering only that part of the tree 

further on that contains the features already present. 

This works out very well for such applicationsas concord 

where cross classification is typically local. But in 

other situations (e.g. semantic feature matching) it may 

be of interest to have a global cross classification, in 

other words if, say +HUMAN, is present in a feature complex 

that we can match this with +ANIMATE, without the need to 

say in each feature complex (AND HUMAN ANIMATE) . 

We therefore introduce an additional tool in the representation 

language of feature complexes, namely global inference 

rules which are applied embedded in the calculus itself. 

First we define a representation for the inference rules 

, the so called inference tree, then we define how 

it can be applied ~uring the .matching of feature complexes. 

(i) Inference treeS 

Definition 

~inference tree is a tree in the usual sense with features 

on the nodes. 

Example: 
ENTITY 

/ ----------+COMMON - COMMON 

/ ""' I ------------+ COUNT - COUNT + ANIMATE ~ ANIMATE 

+ ANI~ ~!MATE ~~ +HjMAN ~MAN 
/ 

""-. + ABSTRA~ 
""-. - ABSTRACT 

+ HUMAN - HUMAN 

- 1.56. -



features 

Definition 

The list representation.of an inference tree is the 

standard list representation of a tree as defined earlier. 

(ii) Evaluation 

The only thing we have to redefine as regards the given 

defin~ion of eval in the feature complex calculus is 

the truthlogical interpretation. 

Recall that 

eval' ( X, dD) for X E FS 

TRUE if X E dD 

FALSE otherwise 

Now we extend this as follows 

Definition 

The father of a node X, denotes as father(x) is the node 

immediately dominating a node X. 

The fathers of X denoted as fathers(X) 

ry Y = father(x) or Y = father(x') ,x'E fathers(Y)j 

Definition 

eval' (X, d
0 

) for X E FS 

{ TRUE if X E dD or ( J x) d (x E fathers (X)) 
D 

FALSE otherwise 

The rest of the definitions remains the same. 

- 1.57. -



features 

The use of syn.tactic features 

We now have a way to represent and compare feature complexes 

with each other. Let us now discuss their role in language. 

It turns out that the discussion can best be split up in 

three parts according to the major classes of functions: 

object, adjuncts and functionwords. 

(i) Objects 

With each object a particular feature complex is associated 

right from the start. This feature complex contains at least 

all the possible feature constellations as regards gender, 

number and case. 

Th ambiguity present in the feature complex of the object 

is during analysis restricted cr :extended. 

(i} restricted by all subordinates for which the concord 

rule applies (each subordinate defines a subset of the feature 

sets of the object) and by the surface case signal tests 

(see later) which further restrict the case indicators in the 

feature complexes; 

(ii) extended by means of a rule (to be defined soon} by 

which features of. a word are attached to the feature complex 

of the object. E.g. a case sign sends some signal to the feature 

complex of its head. The indefininte article may send the 

feature •undefinite• to the feature complex of the object, 

etc. 

(ii) Functionwords 

The task of restricting or eXtending the feature complex of 

objects seems to be the main task of words having the function 

functionword. Indeed it can be said that it is their only 

purpose of being there. 

(iii) Adjuncts 

A more complicated situation occurs with the adjuncts. They 

seem to have the behaviour of both objects and functionwords 

as regards features. On the one hand adjuncts restrict the feature 

- 1.58. -



features 

complex of their heads, e.g. the verb 'sleeps' in 

'the sheep sleeps' restricts the ambiguity of 'sheep' 

(sing or plural) to only singular. 

But on the other hand verbs e.g. have a feature complex on 

their own which contains such things as future, perfective 

or other modification items. 

The latter feature complex is also subject to restrictio'ns and 

extensions, either by other adjuncts or by functionwords. 

It follows that 

(i) with objects we associate in the lexicon one featurP 

complex subject 

(ii) with functionwords we associate in the lexicon one 

feature complex that is itself not subject to change during 

analysis but which itself evokes the change; 

(iii) with adjuncts we associate in the lexicon two feature 

complexes: 

-a- one used to restrictthe feature complex of others (we 

call this the external feature complex) , 

-b- one that is associated with the adjunct itself (we 

call this the internal feature complex)and objects have 

only an internal syntactic feature complex according to this 

terminology) . 

We need some additional rules to cover the use of syntactic 

features as described above. First a rule saying whether there 

is concord or not. 

Definition 

Let concord: F ~~TRUE, FALSE~ be a function such that 

concord (f) 

TRUE if the feature of the 

word having the function should 

match with the features associated 

with the1head 

FALSE otherwise 

the function is defined (V f) (f E F-adju u F-functw) 

- 1.59. -



features 

Second a rule telling whether synt. features are sent 

through 

Definition 

Let send-through 

that 

send-through(f) 

F 4 {TRUE, FALSE\ be a function such 

TRUE implies that features of the 

subordinate are to be attached 

to the internal feature 

complex of the head 

FALSE implies no action 

- 1.60. -



features 

(ii) Example 

To see the functioning of feature complexes in the language 

system, consider the following example from German (all 

feature complexes are d~ to K. Lambrechts): 
11 (Er setzte sich) neben ein frerndes FraUlein .. 

We start with 11 Fralilein .. having the feature complex: 

AND 

/~ 
NEUTER AND 

/~ 
XOR XOR 

1~,, /~ 
)N\ 7D~ 

XOR XOR PLURAL GEN 

,L,/\. 
NOM I~ 

DAT ACC 

with extension: 

((NEUTER STRONG SING NOM) (NEUTER WEAK SING NOM) 

(NEUTER STRONG SING ACC) (NEUTER WEAK SING ACC) 

(NEUTER STRONG SING DAT) (NEUTER WEAK SING DAT) 

(NEUTER STRONG PLURAL ACC) (NEUTER WEAK PLURAL ACC) 

(NEUTER STRONG PLURAL DAT) (NEUTER WEAK PLURAL DAT) 

(NEUTER STRONG PLURAL GEN) (NEUTER WEAK PLURAL GEN)) 

So 14 possibilities. 

- 1.61. -



features 

Then "fremdes" comes in with feature complex: 

AND 

/~ 
STRONG AND 

/~ 
SING ~R~ 

AND AND 

/~ /'\_ 
NEUTER NOT 

I GEN MALE 

DAT 

This feature complex matches with that of the following 

subsets of the domain: 

((NEUTER STRONG SING NOM) 

(NEUTER STRONG SING ACC) ) 

So we are left with 2 possibilities then the word 11 ein" 

comes in with features: 

AND 

/~ 
STRONG AND 

/~ 
SING XOR 

/~ 
AND AND 

I\ I~ 
MALE NOM NEUTER XOR 

/\ 
NOM ACC 

"ein" matches with the same subsets of the domain, so it does 

not help us any further. 

- 1.62. -



features 

Finally we have 11 neben 11 with features: 

XOR 

/\ 
ACC O>,T 

and we are left with onlY one satisfied subset: 

((NEUTER STRONG SING ACC)) 

This reduction from 14 to 1 possible feature sequence is 

typical for the functioning of the feature matches and it 

is extraordinary that for such a complex feature system as 

used in German the efficiency for removal of ambiguity 

is almost 100 %. Notice that we worked from right to left 

here. It is possible to go from left to right also, 

although then the processing becomes more complex. 

- 1.63. -



features 

{iii) Discussion and further references 

The concord phenomenon has since long been recognized 

as being an essential feature of language functioning. 

In some languages (e.g. German and Latin) it plays a 

much more important role than in others (e.g. English). 

That may be the reason why in most linguistic theories 

from Anglo-American origin concord is treated rather 

badly (consider e.g. T.G.). 

The representation construct we have introduced here is 

we believe the first nontrivial approach towards the 

problem of feature representation within a formal 

framework. We are currrently using this calculus not 

only for syntactic feature matches but at several 

other places in the theory and more in particular 

at every point where a complex specification is given. 

The feature complex calculus was applied to concord 

within the German nominal grou.p. Results appear 

in Lambrechts and Steels (1977). Some more examples 

will be given later. 

The idea of cross· classification is already present in 

existing gramrnars,especially for the cross classification nf 

semantic features or selection restrictions (the tree is 

a translation of the tree in Chornsky,l965,63). 

According to the general spirit of integrative grammars 

such a cross classification was incorporated in the 

grammar itself by means of rewriting rules ! Obviously 

it iS more powerful to let the cross classification 

be active over the whole language, after all that is 

what cross classification is about. 

- 1.64. -



summary 

SU~~RY OF SECTION l.l. 

In this first subsection we presented the first pieces 

of a modular grammar. In particular some rules having 

to do with function. 

We have first of all defined the notion of function and 

a representation construct for functional relations in 

the sentence (1.1.0) . Then we introduced some modules 

related to the functional environment of a particular 

function (1.1.1.) . In particular how the function of the subordi~ 

nate may be determined by the occurrence of a 

functional relation of the head (1.1.1.1) and how the 

function of the subordinate may be determined by the 

occurrence of other functional relations for the 

s arne head ( l. l. l. 2) • 

The second phenomenon was that of order (1.1.2.). First 

we investigated how the order of a subordinate is 

determined as regards its head (1.1.2.1.), and second 

how the subordinates themselves may have an internal 

order ( l . l . 2 . 2 . ) . 

The third pheriomenon we have investigated is that of 

syntactic feature concord (1.1.3.). 

In the following sections we go on with the presentation 

of more rules. But now a second factor comes in, namely 

case. In a first subsection we introduce this new factor. 

- 1.65. -



case 

1.2. CASE 

1.2.0. Introduction to case 

Although the theory of cases will here be introduced in 

connection to the words of the language themselves, it 

should be noted that there is a 'semantic counterpart' 

to the terms and concepts. This counterpart will be 

presented later on. 

Definition 

Let us consider a finite nonempty set of words W over a 

language, then the case relations over W, denoted as CR, 

is a relation in the set theoretic sense , CR ~W x W. 

If(wl,w2)ECR 

between wl and w2. 

then we say that a case relation holds 

We furthermore distinguish subsets in CR, where each subset 

defines a particular case relation. If a particular 

case relation say C ~ CR holds between wl and w2, then we 

say that wl has the case C as regards w2 or that wl is a C 

of w2. wl is called the (slot)filler and w2 the frame 

carrier of the relation pair < w~,w2 >. 

If(wl,w2 }E CR then we say that the empty case, denoted 

as NIL holds between wl and w2. 

Example 

In "(the) boy sings" a case relation holds between "boyh 

and "sings". This particular case relation is often called 

the AGENT case. We say that "boy" is the slot filler and 

"sings" the frame carrier and that "boy has the case AGENT 

as regards "sings" or simply that "boy" is the agent of "sings". 

(Comment: compare these definitions with those of the notion 

of grammatical function.) 

- 1.66. -



case 

We now bring the notion of case in relation to a sequence 

of words: 

Definition 

Let w1 ... wn be a sequence of words then the case structure 

of w1 wn is defined as follows: 

if n 1 then the case structure is empty 

if n is greater than 1 the case structure is the set 

of all pairs <wk,wk+ 1> such that a case relation holds from 

wk to wk+1 . 

(Note the lack of any further restrictions compared to 

the functional structure defined earlier) 

Example 

Given the sentence "John consulted the edited translation", 

then 

the case relation AGENT holds between "John" and "consulted" 

the case relation SOURCE holds between ''translation" and "consulted" 

the case relation SOURCE holds between "edited" and "translation". 

Now we define a graph representation for case structures 

following the standard mathematical conventions. 

Convention 

If a case relation C holds between w1 and w2 we draw a node 

for w1 and w2, if such nodes did not yet exist, and label 

it with w1 and w2 respectively. Then we draw a directed line 

between the nodes and label the line with C: 

c 

- 1.67. -



t..;dSB 

For "John consulted the edited translation": 

SO CE 

rRANSLATION 

The reader may recall that we introduced a simplification 

in terms of trees of the graph structure representing 

functional structures. This simplification is now impossible 

because the conditions that guaranteed the possibility 

of performing the simplification are no longer fulfilled. 

In particular there is not necessarily a unique topnode 

as is illustrated in the example. However it is possible 

to apply the following operation on the graph which yields 

a tree structure, albeit that it does not reflect the 

graph structure anymore. 

Convention 

A subtree is constructed by group~ing all pairs (aj, bi) 

1 ~ i ~ n with aj the top and bi all the branches such that 

(aj (case 1 b 1 ) (casen bn)). 

All subtrees are then grouped under one top with label 

case structure. 

Example 

For 11 John consulted the edited translation": 

case-structure 

I ~ 
CONSULT EDIT 

/ \ I 
agent source source 

I \ I 
JOHN TRANSLATION TRANSLATION 

- 1.68. -



case 

Now we introduce a number of additional concepts related 

to these case relations by making gradually further 

abstraction of the surface account given above. 

( 1) Predicates 

If we investigate in more detail the case relations that 

hold in the language, certain regularities can be dis-

coVered in that a number of words all have the same particular 

cases. To capture this regularity we introduce _abstract 

predicates which are directly related to the words themselves. 

The idea is that the case relations of a language are not 

expressed in the grammar in terms of the actual words but 

rather in terms of the predicates associated with these words. 

We will see later that these predicates play a very important 

role in the semantic processing. 

In order to enable us to speak about the predicates of a 

word w, we define a function assigning a predicate to a word 

(and one word may have different predicates). 

Definition 

Let W bet the set of words and P the set of predicates, then 

predicate: W -+ [j(P) is a. function. 

We say then that the case relation ( wl,p) - wl E W and 

p E P holds if (wl,w2> E CR and predicate(w2) = p. 

(2) Argument slots 

In order to specify in the grammar what particular case 

relations holds, we introduce an auxiliary notion, that of 

an argument slot. We denote an argument slot by the 

sign L....J i where i is an index. 

Just as the notion of predicate, the concept of an argument 

slot can only be understood in a semantic context (cf. supra), 

nevertheless we introduce it here making abstraction of these 

deeper motivations. 

- 1.69. -



case 

An argument slot is simply an 'open place' that can 

be filled (under certain conditions). For the moment we 

say that words fill this open place. 

Definition 

Let AS be the set of argument slots, then we say that 

a potential case relation (L._Ji ,p ) holds iff 

( :\ wl) :l w2) <wl,w2) ~ CR and predicate (w2) 

where p E P and wl,w2 E W. 

In addition we introduce a label function that assigns a 

case label to each member of a particular case relation: 

Definition 

Let label: AS x P -+ L with L the set of labels 

be defined as follows label (LJi' p) 

LJ. E AS 
l 

Ciff 

and p E P. with 

We have now made abstraction of both members of a case 

relation. Now comes the next step: to make abstraction of 

the case structures. 

{ 3) Case frames 

The regularity mentioned before Was such that the 

same set of cases occurred for a number of words in 

the language. It follows that we need a way to state 

explicitly what cases occur with what predicates. We call 

such a statement a case frame. 

Definition 

A case frame 

1 .>;; i ~ n 

case relation 

(p, L__Jl' 

where p E 

.... , L__j ) is an n-tuple 
n 

P and\L.._J., p) is a potential 
l 

- l. 70. -

p) 



case 

Convention 

Let < p, L..J 1 , .•. 

normally write 

(p 

Graphically: 

Example 

LJ 
n 

be a case frame then we 

for label ( <LJ. ,p ) ) 
1 

label. 
1 

Let (ACT agent time instrument place ... ) be a case frame 

then we represent this graphically as 

••• 

in trurnent 

On the relation between grammatical functions and cases 

If we compare the functional relation that holds between 

two words and then ~arallel to it the case relation we 

discover that there are two situations: 

(i) The grammatical function between filler and frame 

carrier is one between subordinate and head. This is the 

best known situation and it is often the only one take into 

account. 

Examples are "he gives a book to John", "a book" and "to John" 

both fill a slot in the case frame of 11 'jtves 11 and are 

functionally both subordinates of "gives 11 
• 

- 1.71. -



case 

(ii) The grammatical relation between filler and 

frame carrier is one between head and subordinate. 

So, the exact reverse ! An example is "the translated text" 

where "text" fills a slot in the frame of "translate 11
, 

although "translate" is a subordinate of"text''. 

This second sort has been considered in the past as 

less fundamental than the first one, some theories 

(particularly in a transformational context) express 

all case relations as relations of the first sort, where 

transformations are applied to bring the second sort in 

the format of the first We do .not see any reason for 

that. Both sorts are equally valid, although the strategies 

to parse the first sort are quite different from those of 

the second one. 

On the relation between case structures and surface phenomena 

In the next paragraphs we study the surface phenomena which 

the language producer is using to signal the presence of 

certain functional relations and certain case relations. 

These surface phenomena are: 

(i) Each potential case relation implies the occurrence 

of certain semantic properties for the candidate filling the 

slot; 

(ii) each potential case relation implies the occurrence of 

certain syntactic signals (case signs, morphological affi~e5 

word order) for the candidate filling the slot. 

Before we can discuss in detail how these two phenomena are 

determined we have to introduce the two factors which play 

a role in that. These two factors are 

(i) the communicative function of the predicate, 

(ii) the viewpoint by which the case frame is related 

to the rest of the semantic information. 

- 1.72. -



case 

{a) The communicative function of the predicate 

In a communication situation a predicate can be used 

for various purposes: it can be used to introduce an entity 

or a class of entities to the listener, to modify or 

amplify other predicates, to give more information about 

an already introduced entity, etc. As should be clear 

from the previous sections lin our linguistic theory 

communicative functions are studied under the heading 

of grammatical functions. 

We have indicated that with each of these grammatical functions 

there corresponds a number of surface phenomena. This section 

is a continuation of this discussion but the notion of case 

is now a supplementary factor. 

Recall that there are three main classes: objects, adjuncts and 

functionwords. As functionwords are words not introducing 

per definitionem any new semantic predicates they can be left out 

of the present discussion. 

{b) The viewpoint of the predicate 

The second factor is the viewpoint of the predicate (in 

some earlier publications we have called this the informative 

function of the predicate) . The viewpoint of a predicate 

is the way in which the predicate is related to the rest 

of the information. This differs slightly from one function 

to another. 

{i) When the function of the predicate is the introduction of 

entities (i.e. the predicate has the function object) then the 

viewpoint is the case relation that holds between the entity 

that is being introduced and the predicate. 

E.g. take the case frame of TRANSLATE with cases self, agent, 

source, result, then the viewpoint is 

self in "the translating of a text" 

agent in "the translator of a text" 

result in 11 the translation of a text". 

- 1.73. -



case 

Notice that each time the same predicate is used, 

namely translate and each time the same function: object, 

but the viewpoint has changed. 

Note that there is not necessarily a language word for 

each possible viewpoint in a case frame (e.-g. there is 

no single English word introducing the source of translate). 

Here is another example: take the case frame of TRAVEL 

with cases self, agent, destination, then the viewpoint is 

self in "the travelling of John" and "to travel is great fun" 

agent in 11 the traveller arrived earlier". 

(ii) When the function of the predicate is to provide 

more information about an already introduced object or 

predicate, then the viewpoint is the case slot that is 

filled by the object or predicate in the case frame of 

the predicate. 

Take first the case where a predicate provides more information 

about an already introduced entity, i.e. the predicate has 

the function of a qualifying adjunct, e.g. 

(a) the ~ranslated text 

(b) he translates the text 

(c) the text translated by him ... 

The viewpoint of translate in (a) is result (or source ! there 

is ambiguity here) because the entity introduced by "text" 

fills the result case of translate. The viewpoint of 

translate in (b) is agent because the entity introduced 

by "he" fills the agent slot. The viewpoint is again the 

result (or source) case in (c) because the object 

introduced by "text" fills the result slot of the frame 

associated with translate. 

Now take the other situation, a predicate provides mre 

information about another predicate, i.e. the predicate 

has the function of a modifying adjunct, then the viewpoint 

is the case slot filled by the predicate of the head. 

- 1.74. -



case 

Consider the abstract case frame for SLOW with cases 

self and patient and for WRITE with cases self, agent 

and result then in 
11 slowly written text 11 

the predicate of WRITE (i.e. the activity of writing itself) 

fills the patient slot in the case frame of slowly. 

In other words the viewpoint of slowly is patient. 

From the discussion it should be clear that although the 

notion of viewpoint differs slightly from one functiontype 

of the words to the other, a viewpoint of a word is always one of 

the cases of the case frame associated with the predicate of 

the word. The viewpoint indicates the relation by which the 

rest of the information is linked to the predicate having 

the viewpoint and this relation is always a case relation, 

i.e. a predicate-argument slot relation. 

In conclusion, we introduce a rule to relate a viewpoint to 

a word. 

Definition 

Let W be the set of words and L the set of case labels, then 

viewPoint; W ~ L is a function relating a viewpoint to a word. 

For the same predicate and the same function surface case 

signals (in particular affixes ) are 

often used to indicate a difference in viewpoint. 

Consider: 

and 

11 translator 11 
, predic: translate, viewpont: agent 

11 translation 11
, predic: translate, viewpoint:result 

11 the translated text", predic: translate, viewpoint:source or result, 

"the translating interpreter", predic: translate, viewpoint: agent. 

The active-passive d~stinction is another example where the 

viewpoint is changing but the predicate remains the same. 

-1.75.-



cass 

Important remark 

Just as there is for all predicates a literal and a 

nonliteral usageJa viewpoint can be used both literally 

and nonliterally. When you say"the author" then you 

introduce an entity by saying that it is the agent of 

a write act, but not necessarily literally at the moment 

of speaking. In general the viewpoint of an object is more 

often nonliteral than literal. What interests us are the 

syntactic repercussions of the viewpoint, literal or not. 

Notice that this situation often happens in the grammar. 

Consider e.g. the gender distinction male/female/neuter, 

as used in Dutch, German, French,etc. Although there 

may be a relation between the natural sex, more often 

this relation is no longer to be taken literally. 

On the relation between case frames and semantic processing 

As a final part in this introduction to case, we make the 

link to the semantic interpretation process. 

One of the main goals of a natural language communication is 

the exchange of information, To make this process operational 

one needs therefore a way to store information. This store 

is called a data base, a universe of discourse, a memory 

structure (such as a semantic network e.g.). The notion of 

case plays an important role in its construction. 

Let us describe very roughly how such a memory structure may 

be organized. Note that we will only deal with information from 

episodic memory, i.e. the properties of the objects in a particular 

universe of discourse or the factual knowledge rather than the 

communication of purely semantic knowledge which is still another 

problem. 

- 1.76. -



case 

A universe of discourse consists of a set of objects and 

particular properties (possibly relations) of the objects. 

Let us assign to each object a unique node and label it for 

ease of reference. Besides object nodes we must have a 

way of representing the properties. For this purpose we 

introduce other nodes and call them property nodes. We label 

these nodes with a signal indicating what property is 

contained in the node. The object rtodes are brought in contact 

with the concept nodes by connecting them by lines. As a 

particular object node has a particular relation to a property, 

we will label these lines also. The labels are called the 

case indicators. Finally we bring properties in contact with 

other properties by connecting their respective nodes by lines 

and labelling them also. 

Example 1 

Let P1, P2 and P3 be labels for properties, 01, 02, 03 labels 

for object nodes and A1, A2, A3, A4 the case indicators,then 

we can construct the following memory structure: 

Example 2 

Using English like words for the labels of properties 

one can construct the following example: 

agent 02~ n e 

JOHN prop 

arne 

8 ource TRANSLATE 

- 1.77. -



case 

Note 

(a) Although we use natural language words as labels 

for the properties, they should in no way be considered 

as such. Rather one should consider them as expressions 

in some coneptual language, e.g. as used in conceptual 

dependency graphs (Schank,l975). 

(b) Do not take these memory structures as a representation 

of the content of a sentence (In most linguistic 

systems [here is no difference between the memory 

representation and the representation used to specify 

what meaning will be conveyed in a particular sentence, 

a viewpoint which we strongly object). 

The extraction of information is guided by various processes, 

in particular cognitive or other psychological machinery 

(starting with a stimulus to communicate) pragmatic 

knowledge such as to whom the message is being addressed, 

what the speaker is supposed to know about the subject 

matter, etc. As a consequence the extraction process can only 

be made operational by embedding it in anothe·r task environment 

such as a question/answering system, where there is a 

need to communicate particular information. 

Roughly such an extraction process might go as follows: 

"Let us say something about the object node 02, first we 

decide how to introduce 02, let us do that by means of its 

proper name, then we decide about the basic topic to be 

discussed in connection with 02: WRITE. With WRITE several 

other case slots are connected, we decide to realize the 

result case. Also we realize the concept PAST. Now we have 

to choose a way of introducing 03. For this purpose we 

pick out one of the properties attached to 03 namely 

TRANSLATE. With 'translate' another case slot is being 

associated in which the object 04 is located. To introduce 

04 we use the concept LOVE. With LOVE we realize the patient 

case which yields 01. To realize 01 we use its proper name 

which is Marilyn. The sentence resulting from the whole process 

might be the following one:'John wrote a text which was translated 

by someone who loves Marilyn'. 

- 1.78. -



case 

Resulting from other extraction processes many other 

sentences are possible for the same piece of information, 

e.g.: 

'John wrote about Marilyn' 

'The translator of a text written by John loves Marilyn' 

'The author of a text about Marilyn is called John' 

'Marilyn is being loved by someone', etc; 

The association of a case frame with a concept consists of 

matching processes between a sequence of properties in the 

memory and a series of properties associated with a predicate.· 

Also the different case relations that occur in the memory 

are matched against the case relations found in the case 

frames and the various objects depending on these case relations 

are associated to their corresponding argument places or case 

slots in the case frame. 

The latter process can be compared to the process of lambda 

conversion (as it is used in Church's lambda calculus, Church,l941) 

and in the programming language LISP. Also here one starts 

from 'abstracted' forms or frames containing a function name 

and various slots for arguments (the bound variables). The 

bound variables are then brought into contact with the actual 

arguments by pairing the values of the actual arguments to the 

bound variables on the association list. 

r.toreover the analysis process might also be regarded as such 

a conversion process, so, we obtain a two-way convertibility 

of the deep case frames, one way from the memory and another way 

from the language input. Other tasks such as inference making 

need the same sort of process, i.e. the information has also 

to be bound to the abstract case frames in order for 

these systems to become active. Seen in this way the 

case frames are really the 'filter' through which all 

activities pass: 

- 1.79. -



case 

conversion 

store 

SEMANTIC 

,FRAMES 

and other 
cognitive 

operatio s 

conversion 

pro uction 

abstraction 

Another way to express what happens when the case 

frames are related to factual knowledge is to consider 

the memory structures as instantiations of the concepts 

in the abstract case frames and the main task is then 

to find frames such that particular information can be 

regarded as an instantiation. 

Schematically: 

factual knowledge 

n e 

frames 

yarue 

for 

ipst-arlti~tion 
- of 

_i.ns-t.-aiitiattnn 
of 

slot 

a ent 

_-- -rersu t 

ins tan t_i_?_ti.on.- -- -

of 

Value 

- ----- ---for---

- 1.80. -

slot 



case 

Although there is a lot more to say about semantic 

networks and case frames we trust that t~reader has at 

least some idea now about the way in which we see the 

further usage of case frames and the interrelations with 

semantic interpretation. 

- 1.81. -



case 

Discussion and further references 

Although the notion of case is very old (See Lyons 

1968, 289 ff for its use in Latin and Greek grammar 

theories) its reintroduction into modern grammar theories 

is normally credited to Fillmore (1968). 

Our own view on case has been more influenced by its 

use in artificial intelligence ( cf. Wilks (1977), 

Simmons (1973),Bruce(197S)) or cognitive psychology 

(see e.g. Norman and Rummelhart (1975)). The memory 

model introduced in the text is strongly related to 

the LNR memory structure (ibid.). 

Equivalents to the notion of a case frame as used here 

is that of case paradigm (Celce Muria, 1972) of formula 

and paraplate (Wilks, ibid.) and of units in the KRL 

representation language (Bobrow and Winograd, 1977). 

As far as we know the notion of viewpoint as used here 

is new. (Do not confuse this with the notion of perspective 

(Fillmore,1977), or topic/focus ) 

The idea that there are a fixed number of (universal) 

cases has been proposed by various authors (Fillmore, 

1968, see Samlowski(l975) however for an evolution of the 

cases, Schank(l975)). We do not follow it here. 

It will become obvious in the applications later on that we 

take a very free position as regards the substantial claims 

about case. 

- 1.82. -



semantic features 

Now we start with a discussion of the rules which use 

as factors function and case. 

1.2.1. Semantic features 

We mentioned already that with each sl,ot in a case 

frame certain semantic properties are associated that 

the entity which is going to fill the slot is supposed 

to have. There are two problems in this context: 

(i) how do we represent and compare semantic features; 

(ii) how do we know what features become active in 

a certain matching process. 

The first question is quickly resolved. We \o~ill use 

the same representation construct as for syntactic 

features: a feature complex. The matching process 

is equal as the one for syntactic features and we refer 

to the formal definition already given. Moreover an 

inference tree for semantic features can be introduced 

and used during matching. 

The second question is more difficult. It will be treated 

in two parts: (i) first we define a formalism to associate 

semantic featUres with a certain case slot, and (ii) then 

we discuss how we can find the semantic feature complexes 

relevant to a certain match process. 

We relate the features to a case slot by a rule 

called value restriction assignment. 

De_f ini tion 

Let SF be the set qf semantic feature complexes then 

value-restriction: ~~ x P ~ SF is a function. 

We now update our definition of a case frame, such tha·t 

semantic features can be specified in the same formalism 

as we earlier defined 

This is done by presenting a generative grammar defining 

abstract case frames. Abstract case frames are case frames 

to which the value restriction has been added. 

- 1.83. -



semantic features 

Convention 

Let G =<[<abstract-case-frame) ,(predicatef,~sern .. feat. complex/, 

<case-list), (case-label)) , Vt, <abstract-case-frame> , P '> 
be a context-free grammar with 

p : 

(abstract-case-frame)~ (~predicate/ <case-list) ) 

.(case-list) _____. 

(case-label) ~ 

(caselabel) (sern. feat. complex> 

the case labels 

(sem.feat.cornplex) ____. .. . the sem.feature complexes 

(predicate) -----.. the predicates. 

Example 

(WRITE (SELF act) (AGENT person) (RESULT text) ) is 

an abstract case frame. 

We will graphically repre·sent abstract case frames as 

case frames to which the sem.features have been added: 

SELF 

Remarks: 

No claim is here made about there being a universal and 

definite list of semantic features, nor do we make a claim 

about a definite and universal list of cases. This all 

depends on the interpretation of the formal theory. For the· 

same reason no claim is made about the depth or conceptualness 

of the predicates and whether there should be a limited number of 

them. 

- 1.84. -



semantic features 

The semantic features test. 

Now we investigate in detail how this information about 

semantic properties can be used in the language system. 

The following points are relevant in this respect: 

(i) How do we know the semantic features that are to 

be satisfied, and 

(ii) how do we know the semantic features associated with 

the slot filler. 

(a) Situation 1: the slot filler is the head and the frame 

carrier the subordinate. 

Example 1 : "the edited translation", where translatioh fills 

a slot in the case frame of "edited", and "edited" is the 

adjunct of "translation". 

Example 2: "The slOwly written text 11
, where written fills 

a slot in the case frame of "slowly" and "slowly" is an 

adjunct of written. 

Question 1: How do we know the features to be satisfied? 

Answer: By means of the viewpoint of the case frame carrier. 

Recall that for adjuncts the viewpdlint denotes the case slot 

that is to be filled by the entity about which the predicate 

provides more information, it follows that this entity must 

have the features associated with this viewpoint. 

E.g. Given the frame: (EDIT (SELF act) (SOURCE text) ... ) 

and the words 'the edited translation .. , then with the viewpoint 

source, for edited, the semantic features to be satisfied are 

'text'. 

Question 2: How do we know the features to be associated with 

the slotfiller ? 

Answer:by means of the viewpoint of the slotfiller or by 

means of the SELF case. 

- 1.85. -



semantic features 

Recall the distinction we made between modifiers and qualifiers. 

A modifier 1 modifies 1 the predicate, used for whatever purpose, 

itself. Whereas a qualifier provides more information about 

the entity denoted by a predicate. 

Notice that adjuncts which are the sUbordinate of other 

adjuncts always modify the latter. 

So, if the slot filler is itself an adjunct, things are 

easy, the semantic features of the slot filler are those 

whtch are associated with the self~case in the case frame of 

the predicate. 

Consider: "slowly written ... ", "slowly" modifies the activity 

of writing itself. We- could call the viewpoint of slowly patient, 

then the features of the self-case of write must match with the 

features of the patient case of slowly. 

If the· slotfillei itself is an object, we have to take 

the modifier/qualifier distinction into account: 

(a) Qualifying adjuncts 

In this situation the adjunct provides more information about 

the entity introduced by the object. Bus as we Specified 

already, the entity denoted by the predicate of the object 

fills the case called the viewpoint ! Hence the semantic 

features of the slot filler are the semantic features 

associated with the viewpoint of this slot filler. 

E.g. "edited translation" with' (TRANSLATE (self act) (result text) ... ) 

and viewpoint of translate result, then the semantic features 

of the slotfiller are text. 

(b) Modifying adjuncts. 

But if the adjunct modifies the predicate used to introduce 

the entity, then obviously the self case again leads us 

to the semantic feature complex of the slot filler just 

as for adjuncts. 

- 1.86. -



semantic features 

Consider e.g. 11 slow writer'', where "slow .. can be modifying 

as well as qualifying (his writing goes slowly - he is 

a writer and he is slow). If modifying the activity of 

writing is the argument filling the patient slot of slowly 

if qualifying the person itself is the argument filling 

the patient case of slowly. 

(2) Situation 2: The slot filler is the subordinate and 

the frame carrier is the head. 

Example: "He translated a text 11
, where text is functionally 

an object of translated and at the same time it fills a 

slot in the frame of translate. 

Question 1: How do we know the features to be satisfied ? 

Now the answer is not so straightforward, the language under

stander has to find out himself what case the slot filler is 

filling. He does this largely on the basis of surface 

phenomena to be discussed in next section. For the time 

being let us assume that we know what case the object is 

filling, then it is obvious that the semantic features to 

be satisfied are those that are assigned to this case. 

Question 2: How do-we know the features of the slot filler? 

No complication arises here. We compute the semantic features 

of the object via the viewpoint of the object and the features 

that are assigned to this viewpoint in the case frame of 

the predidate associated with the object. 

Final remark: 

Note .that the semantic features of a word are NOT stored 

directly with the words of a language in the lexicon 

(as is usually the case) but computed in an active way 

from the case frames. The advantage of this method should 

be obvious. 

- 1.87. -



semantic features 

Discussion and further references 

In the first generation of recent linguistic theories 

and AI systems which made use of semantic fea .tures the 

role of these features was located after syntactic processing, 

i.e. right before the process of semantic interpretation 

(and some even thought that this was the semantic interpretation 

process itself (Katz, 1973)). 

In the second generation of systems (so called semantics directed 

parsers) semantic features are applied immediately in 

connection to the input itself (cf.Wilks(l977) ,Riesbeck(l975)) 

We believe to have made some improvements about how -that 

should be done. The main improvement is the notion of viewpoint 

which enables us to treat several generalizations not 

captured by semantics directed systems, such as the usage 

of the same frame for different surface frames (active/ 

passive, nominalization, adjective forms). In the syntax 

based systems this generalization is obtained by transforming 

all these surface forms into one format that can then be 

matched with one single deep pattern. 

We do not need to do that because we actively compute the 

features from the same abstract case frame without changing 

the structures of the representation. 

A second improvement is the usage of a global inference 

tree over the whole system and of feature complexes instead 

of simple features. 

Just as Wilks(l977) we would like to allow case frames 

as value restriction and we will build this into the system 

as soon as possible. 

- 1.88. -



order 

1.2.2. Order 

It was mentioned in a previous paragraph that it is 

necessary for- the language user to find out exactly what 

case a slot filler fills on the basis of surface case signals 

if the slot filler is the subordinate of the frame carrier. 

These signals are: 

(i) a priori restriction 

(ii) order 

(iii) surface case affixes and prepositions. 

We will introduce a new representation construct called 

a surface case frame or semantic network in whtch information 

about ( i) (ii) and (iii) can be expressed. It will turn 

out that viewpoint and function are the major decision factors 

in the process of computing the surface caSe frame of a given 

abstract case frame. 

(1) A priori restriction 

Not neeessarily every case slot that occurs in the case 

frame is a candidate for being filled in a given situation. 

In particular there will never be an object filling the 

case of the viewpoint of the predicate. But other cases may 

be missing as well. 

Consider: 

"The harruner broke the window" (the agent case is missing). 

This restriction is function and viewpoint dependent because 

if we take the same function but change the viewpoint 

from instrument to patient we can express the agent case: 
11 The window was broken by John". 

We conclude that the first thing which is to be specified in 

a surface case frame is what cases are allowed. 

- 1.89. -



order 

(2) Order 

Although the order of the cases in an abstract case frame 

is considered to be irrelevant, the order in a surface 

case frame is indeed relevant. 

Consider e.g. 

"He gives John the book" 

and not 

" He gives the book John". 

Note that this is a similar situation to one already 

discussed, namely the phenomenon that the occurrence of 

one subordinate may restrict the linking of other subordinates. 

Here the occurrence of one case influences the structural 

property of the predicate to such an extent that only 

certain other cases are allowed or conversely that other 

cases shourld occur. 

Let us now decide on a representation construct expressing 

order and a priori restriction. Let us use for this purpose 

completion automata already introduced earlier. 

Although we will now use the system in a different context, 

the formal concept remains the same. 

Recall that a completion automaton is a 5-tuple 

CA = (.V, Q, A, S , F / with V the alphabet, Q a set of 

states, A the initial state assignment function, S the 

transition function and F the set of final states. 

In this application we interpret the alphabet not as 

grammatical functions (as done earlier) but as cases. 

Initially when no cases have been processed, the initial 

state (defined by the initial state assignment function) 

will be associated with the predicate. Whenever we fill a 

new case slot, a new state (or more than one new states) is 

associated with the predicate. If we want to see whether an 

object fills a slot in the frame, it will not be sufficient 

to check whether the semantic features match, in addition 

the appropriate state should be associated at that moment with 

the word. Moreover at the end, i.e. when no more objects 

occur, there should be a final state linked with the predicate. 

- 1.90. -



order 

Examples 

abstract frame: 

(GIVE (self act) (agent person) (patient thing) (addressee person) ) 

Some surface case frames (we underline the final states) 

with viewpoint agent and function adjunct: 

8 
pa nt 

p 

E.G.: "He gives John the book 

II II 
addressee patient 

give/1 II give/2 II give/4 

Note that for "he gives John" with John the addressee, 

no final state is reached. 

E.g. "He gives the book to John" 
II II 

patient addressee 

give/1 II give/3 II give/4 

Note that "He gives the book" would equally well be accepted. 

- 1.91..-



order 

With viewpoint addressee and with function adjunct: 

8 
E.g.: "John was given a book (by Peter) " 

II II 
patient agent 

give/1 
II 

-----< .. give/t 
II 

---give/3 

With viewpoint patient and with function adjunct: 

addressee 

8 
E.g.: A book was given to John 

II 
(by Peter)" 

II 
addressee 

II 
give/l-'-----_...give/2 

agent 

II 
-----i .. give/3 

- 1.92. -



government 

1.2.3. Government 

The next phenomenon in relation to case is that of 

surface case signals. 

A surface case signal is a syntactic feature that is 

associated with an object which is a candidate for filling 

a slot in the frame. 

There are 2 types of si als: 

featur~which are associated already via morphological 

processes to the object, e.g. genitive, objective, dative, etc; 

- prepositions which are subordinates of the object with 

the function case sign. We can treat the latter as being 

equal to the former by means of the earlier introduced 

send-through rule: the preposition sends a signal, usually 

we will take for this the name of ·the preposition itself, 

to the feature complex of its head. In other languages 

the preposit.ion can be said to 1 cut out 1 a subset of the 

feature comPlex of the object. In any case the surface 

case signals: are syntactic features and they are resident 

in the syntactic feature complex of the object; indeed they 

should be because the case features may play a role in the 

concord phenomenon. 

Again the question raises whether there is only one type 

of syntactic feature complex for each slot of the frame or 

whether there are more, and so, depending on what factors. 

The answer is that there are more and in particular that 

there is a feature complex for each case depending on 

the viewpoint AND on the function AND on the path in the 

case network associated with the predicate. So the condition 

of a transition in the surface case networks introduced 

earlier is not a case but a feature complex. 

- 1.93. -



government 

In the case network it is indicated what particular case 

signal should be present. So in the analysis process we 

will compute (on the basis of the viewpoint and the function) 

what the surface case frame is of a given predicate. Then we 

will try to make transitions for the objects on the basis 

of the surface case signals. If a transition can be made 

we know irnrnrnediately what case this object is filling 

(and we can start computing the semantic features). 

We can use the matching process defined earlier to see whether 

the signals are present in the extension of the feature complex 

of the object. Note again the importance of the relevance 

logic underlying the matching process. 

Some examples: 

viewpoint: agent 

function: object 

(AND OF OBJECTIVE) 

[Yatient 

example: the giver of a book (to John) 

viewpoint: agent 

function: adjunct 

OBJ IVE 
(Patient] ~ddressee) 

OBJECT I 

ECTIVE 

Giddressee] 

- 1.94. -

(AND TO OBJECTIVE) 

@ddressee 



government 

One may wonder that such a detailed information will soon 

lead to extraordinary databases all filled with surface 

case networks. But this need not be so, if we assume that 

there is a limited, finite number of 'conceptual' predicates 

and that many different words which have the same implications 

as regards case frames (that means the same surface case signals, 

the same order restrictions AND the same value restriction 

determining the semantic features) then we need only one abstract 

and surface case frame for a whole c~ass of words. 

Discussion and further references 

Several investigators currently working on semantics directed 

parsers are trying to apply some sort of network formalism 

to regulate the order(Wilks, personal communication). It turns 

out that the completion automata introduced earlier for order 

restrictions of subordinates constitute a very interesting and 

powerful solution. Mainly for the following reasons: 

(i) A completion network is called by an input element whereas 

in normal network systems you go from the network to the input, 

via 'nonterminals' which call each other. 

(ii) In a completion automaton the networks are 'local' 

in the sense that each network takes care of its relevant 

surroundings without bothering about other networks running 

parallel to it. 

(iii) The condition for a transition has nothing to do 

with categorial information but with surface case signal tests. 

(iv) In fact the networks here are transducers because they 

process a sequence and yield as output the cases. 

- 1.95. -



government 

Another major improvement is the following that 

instead of transforming the surface structure representations 

we compute actively the surface consequences of a given 

case frame on the basis of viewpoint and function. 

In this way we are able to relate case frames to the surface 

format directly. 

- 1.96. -



summary 

SUMMARY AND EXTENSIONS 

In the preceding paragraphas we have introduced a 

modular grammar as a formalism to ex~~ess linguistic 

knowledge. The most peculiar feature of this grammar is the 

modularity of the description: each phenomenon is investigated 

on its own and is assigned a special rule and it is not at all 

clear (i.e. determined by the grammar) how the rules interact 

to produce or analyse a complete natural language sentence. 

This is in contrast to most available models where all the 

phenomena are incorporated in an integrated description. The 

reader will have noticed that this attitude change is leading 

to a fundamental re-thinking of the properties of natural language. 

We have investigated two important factors: grammatical function 

and case. In relation to these factors we dealt with the following 

phenomena: 

(i) The relations environment 

We have seen two situations where a certain grammatical relation 

can only occur if other gD_arrlrnclitical relations are present: 

1.1. The first situation is that the head of a relation should 

itself have a certain relation for the relation to hold 

The two rules introduced in this context are: 

FUNCTION -OF-HEAD specifying explicitly for adjuncts and 

functionwords what the function of their head should be 

TAKING-OBJECTS specifying whether a certain word with a certain 

function may have a word with the function object as its subordinate. 

1.2. The second situation is that the subordinate should itself 

be the head of another relation. This is regulated by the 

syntactic networks (cf. infra). 

(ii) The ordering 

The next phenomenon is the role of order made possible by 

the time dimension of language. There are two aspects here: 

ordering of the head and the subordinate and internal ordering 

of the subordinates of the same head. 

- 1.97. -



summary 

2.1. Ordering of head and subordinate 

Again we needed two rules: one for adjuncts and functionwords 

and one for objects: 

POSITION specifies where a word having the function adjunct 

or functionword stands as regards its head; 

OBJECT-POSITION specifies where the objects of a given 

word come. 

2.2. Internal order of the subordinates 

Again we need two rules one for adjuncts and functionwords 

and one for objects: 

SYNTACTIC NETWORKS associates with each function a transition 

network of a completion automaton, where each subordinate will 

induce a transition in the network and thus restrict the 

possible subordinates left. 

CASE NETWORKS: associates with each function for each 

viewpoint of a predicate a transition network. Each case induces 

a transition in the network and thus restricts the cases left. 

(iii) Features 

We introduced a r~presentation construct for representing 

complexes of features that showed to be of great use in the 

language system. It can be used as well for processing syntactic 

as semantic features. 

3 .1. Synta c tic features 

Syntactic features are associated directly with the natural 

language word or result from the SEND-THROUGH operation which 

dynamically chang:es the feature 

of 

complex 

them: 

of a head. 

The following rules make use 

CONCORD specifies whether the features of a subordinate 

should match with those of the head of a relation 

GOVERNMENT:to make a transition in a case network a 

sequence of features should match with those of an object 

ready to fill the case slot. 

3.2. Semantic features 

Semantic features result from active computation on the basis 

of case networks. Th _.r use is based on the assumption that to 

fill a slot in a case frame, a value restirction must be 

satisfied. Two rules are necessary here: 

- 1.98. -



summary 

SEM-FEAT-ADJUNCTS: specifies whether the head should 

fill a case slot in the frame of the subordinate and 

so if this is by a modifying, or qualifying relations. 

SEM-FEAT-OBJECTS: specifies that the object filling 

the slot should satisfy the value restriction of the case. 

EXTENSIONS 

It is obvious that the lisU of rules given here is far 

from complete and more research is needed before all 

linguistic phenomena will be covered. We will now very 

briefly indicate in what directions the current research 

is going. This will give the reader an idea about the extendibility 

of modular grammars~ 

(i) The problem of sentence structure 

At the moment the grammar itself does not deal explicitly 

with the structure of a whole sentence. 

What is clearly needed here is some superimposed control 

structure for sentences which evolves in parallel with the 

rest. 

In order t.o represent sentence structures such that they can be 

consulted easily during parsing and producing we are thinking 

about a new set of networks, this time called sentence networks. 

The sentence networks come into action right from the beginning 

of the input , and the condition for a transition is the 

presence of a particular function. The idea is that when going 

through a sentence you also go through a network and when a 

certain path has been successful, a certain type of 

sentence (affirmative, imperative, question,etc;) is recognized. 

- 1.99. -



summary 

Similarly for language production, you organize 

the elements of the sentence in the format of such 

a path. 

(ii) Interconnection of sentences 

This brings us to a second problem namely intersentential 

relationships realized by relative pronouns or conjunction 

words. It seems that such words depart from the axiom of 

functional structures that one word can be the subordinate 

in only one other structure, because they play a role in 

both sentences. Thus in the sentence 'he left when she 

carne in','when' would be the subordinate of a relation to 

'come' but also of a relation to 'left'. The implications 

of this viewpoint should be seriously considered. In particUlar 

it would no longer be possible to consider functional structures 

as trees and some other aspects (especially for the parsing 

process) should be reworked. 

(iii) Coordination 

Another aspect on which we are working at the moment is coordination. 

It is hoped that due to (i) the fact that our representation level 

is that of functions and (ii) the modular character of the grammar, 

a powerful start position for the investigation and processing 

of coordination will be found. Rather than introducing 

extra extensions of the existing grammar rules, we are looking 

for some general principles that underly coordination. 

There are still other factors and syntactic phenomena that will 

deserve attention. The point is however that a modular grammar 

is per definitionern extendl,ble with whatever sort of rules that 

may turn out to be necessary. 

- 1.100. -



lexicon 

1.3. The structure of the lexicon 

When discussing the rules of the grammar it cquld be 

noticed that for several rules we need information that 

is uniquely associated with tie words of the language. In thils 

section we investigate what information exactly is to be 

associated with the words. This association is considered 

to be an explicit assignment, i.e. wo do not deal with 

morphological processes that would enable us to economise 

on the explicit information. 

Because the same word form can have many different functions 

or ~eanings, it should be logically possible to assign more 

than one information sequence to the same word. 

(i) function. 

The first item in an information sequence is a subfunction. 

If there is more than one subfunction and the rest of the 

information is exactly the same, we will allow there to be 

a list of possible functions instead of just one. 

( ii) predicate 

The second item is the name of the predicate denoted by 

the word. This predicate should be seen as 'conceptual' 

as possible, because it will be the key to the abstract 

case frame relevant for the word. 

(iii) subpredicate (or concrete predicate) 

In addition to the predicate we assign a subpredicate 

which can restrict the general concept stated in the 

predicate to a narrower application. We need this sub

predicate because otherwise semantic information is lost. 

At this moment the subpredicate is optional. We therefore 

often define it to be NIL. 

- 1.101. -



lexicon 

( i v) viewpoint 

The next item is the viewpoint of the predicate in the 

case frame associated with the predicate. From the 

discussion of the grammatical rules which involve the 

notion of case, it must be clear that there is a viewpoint 

for each word except for those having as subfunction some 

kind of functionword (but these words have no predicate either). 

(v) syntactic feature's 

In contrast to the semantic features which are computed 

from the case frames, the syntactic features are immediately 

assigned to each word for obvious reasons. As we 

explained earlier, for adjuncts there may be two 

feature complexes: the external and internal feature complex. 

These two feature complexes are then brought together in 

a list and thus associated with the word. 

(vi) send-through feature 

Finally we need a specification of what kind of feature 

complex is sent to the head if indid.ated so by the 

•send-through 1 rule. 

This brings us to six information i.tems in a sequence. 

We summarize this in the following definition. 

Definition 

lexicon: W __... -(r) is a function relating words with 

sets of information sequences where an information sequence 

I =(al,a2,a3,a4,a5,a6) with 

al a function or a list of functions 

a2 a predicate 

a3 a subpredicate 

a4 a viewpoint 

a5 a syntactic feature complex 

a6 the send-through feature. 

- 1.102. -



lexicon 

Example 

for 'father' : 

((nom: object 

fun~tion 
fam. relation 

.II 
pred1cate 

male-parent 

II 
subpredic. 

- 1.103. -

self 
II 

viewp. 

(AND MALE SING) 

II 
synt.feat 

NIL)) 

II 
send-through 



semantic structuring 

1.4. SEMANTIC STRUCTURING 

Although our investigations have not yet reached the 

level of semantics as such we will deal in this section 

with some topics situated on the borderline between syntax 

and semantics. In particular we will present a representation 

construct that should serve as the basis for semantic 

interpretation. Later we will show how this construct can 

be computed from a natural language sentence and how it 

can be translated back into natural language. 

Many important and interesting problems will remain outside 

the scope of the present discussion. What we present here 

is again the essential ground work: How function and case 

relate to the structures we will present. First we introduce 

our viewpoint on semantics wfiich will of course be relevant 

before we start with the treatment of the representation constructs 

themselves. 

1.4.1. Introduction to semantics 

The whole area of semantics is somewhat unclear at the moment and 

it is is therefore not wholly unnecessary to formulate an 

overview of the field as we see it. 

(a) The representational viewpoint. 

The first "school" of thinking about semantics assumes that the 

final result of a semantic investigation should be the definition 

of semantic structures in which the meaning of a piece of language 

is represented in a nonarnbiguous and fully explicit way. The 

task of a semantic theory consists then in the definition of 

a formal language in which semantic structures can be specified. 

To be meaningful it should also be made explicit how the formal 

language relates to natural language sentences. Moreover the 

formal language itself should be defined completely: not only 

the syntax of the expressions but also the (so called form~l) 

semantics, that is how the semantic structures themselves are 

to be interpreted. 

- 1.104. -



semantic structuring 

Let us call this conception of semantics representational 

semantics. It has been the main interest of linguists (cf. 

generative semantics) and logicians (cf. predicate calculus 

modal logic, etc.) .Formal semantics is the specialty of 

logicians and Frege's method of interpretation is an obvious 

example of their results. 

One could say that the intuitive basis for representational 

semantics is the idea that a meaning structure is the end

product of language understanding, cf. Searle (1976,49): 

'understanding a sentence is knowing its meaning'. 

(b) The procedural viewpoint 

The second more recent 11 school" of thinking about semantics 

claims that the final result of a semantic investigation 

should be the execution of processes. This is based on the 

idea that meaning is not a representational structure but 

a process (that uses representational structures as 

byproduct) . The basic processes during interpretation are 

about the storing and retrieval of facts, the planning and 

execution of commands, problem solving in order to resolve 

inferential problems or answer input questions, etc. 

Let us call this kind of semantics procedural semantics . 

It is the specialty of the computational linguists. Just as 

for syntax computational linguists started with applying 

existing linguistic models before they turned to a development 

of their own syntactic theories, the first attempts within 

procedural semantics consisted in the application of (basically 

logical) theories of representational semantics. It seems that at 

the moment important developments are going on in the procedural 

semantics world. For one think the theory of programming 

language semantics is currently reaching a state where 

important results are corning out, for another thing, it 

becomes more and more clear that fundamental problems of 

semantics will only find a satisfactory solution within 

a 'process' environment. 

- 1.105. -



semantic structuring 

Thus e.g. the formal semantics methods used in logic (i.e. 

hierarachical control structure from bottom to top) are being 

replaced by more flexible control structures, where results of 

the evaluation of a part are spread over the other parts 

of the structure. Thus also another conception of the 

representation of the language input itself emerges: instead 

of being the representation of the meaning the representations 

are now seen as the control structure of the process of semantic 

evaluation. 

This final point will be of particular importance for the 

rest of our investigation. The structures we are proposing are 

seen as useful information for the semantic evaluation but they 

are by no means the only information necessary (think about 

episodic information resulting from previous text or world 

knowledge). Moreover the actual meaning of the words, which is 

a program stating how the evaluation goes, is called on the 

basis of the information structure rather than that the information 

structure itself contains already the meanings. 

It was not the aim of this thesis to put forward results on 

the level of semantics. It will therefore not be possible to 

discuss these controversial issues in any level of detail. 

What we will do here is define structures which contain 

every information that the grammar can offer to the semantic 

evaluation process. 

We call such structures SR-constructs and the whole set of 

possible structures, or the language of SR-constructs, the 

SR-language or SRL. 

Although we will give a provisional formal semantics for SRL 

(provisional because it still follows Frege's method of 

interpretation) , the issue of effective interpretation will 

not be dealt with here (although work in this connection is 

already going on at the moment in our computational linguistics 

laboratory, in particular work about memory representations.) 

Let us now give a definition of SRL. 

- 1.106. -



semantic structuring 

1.4.2. The definition of SRL 

The semantic representation language we will define in 

this section consists of (recursive) trees. It is tailored 

to logical representation languages such as the predicate 

calculus or extensions of it. The use of trees instead of 

linear symbolic expressions is justified by the internal 

complexity of the constructs which are easier processed 

by humans as well as computers if the internal structure 

is apparent from the formal outlook. For didactic purposes, 

we gradually introduce the components of the structures 

until we have the full power of the language. For the 

definition of the syntax of SRL we will use a context-free 

grammar. A complete definition of the language is given at 

the end of this section. 

(1) Predicates and their arguments. 

Let us call the objects in the semantic representation 

language semantic representation constructs or briefly 

SR-constructs. 

-i-

The first notion of importance is that of a variable familiar 

from logic or mathematics. In this context a variable will 

mean two things: (a) on the level of syntax of SRL the 

variable will be the topnode of an SR-construct such that 

it can serve in another (or the sarne)tree to call the SR

construct again (in other words we allow recursive trees). 

(b) on the level of a semantic interpretation, a variable is 

a place address which receives the values of evaluating (i.e. 

interpreting) the SR-construct. 

The second notion of importance is that of a predicate. 

A predicate is the name of a function or a relation in the 

logical sense. Predicates can after interpretation have 

as value an entity, a class of entities, a list ~f entities, 

a truthvalue, etc. 

- 1.107. -



semantic structuring 

We formalize this in the following rules (the nonterminal 

(pred-constr/ is an auxiliary symbol that will simplify the 

grammar as will become obvious soon.) 

1. ( SR-construct ) -+ ( 

2. ( var ) -+ Xl I X2 I X3 

< var ) ( pred-constr ) 

... names of variables 

3.<pred-construct > -+ (PRED <pred 

4. <pred) -+ AND, FATHER, ... names of predicates. 

-ii-

Some predicates may take arguments in the usual logical 

sense. If this is the case we add them to the SR-construct 

with an explicit label for the argument slot and a variable 

referring to another SR-construct in which the se·mantics of 

the variable are specified. The label for the argument slot 

is in linguistic theory called J:he case label. It denotes the 

particular relation of an argument to its predicate. In order 

to incorporate arguments we extend the grammar as follows: 

Rule 3 becomes 

2. < pred -construct ) ~ (PRED ( pred ) 

[ARGS ( ( case-label) < var ) )+ 

and 

5. < case-label ) ~ agent,patient, ... case labels 

Example: 

1. < SR-construct) 
1,2,3,4,5,5,2,2 

~ 

(Xl (PRED GREATERTHAN) 

(ARGS (ARGl X2) 

(ARG2 X3) ) ) 

or as a tree (according to our standard conventions) : 

- 1.108. -

l] 



semantic structuring 

Xl 

pred args 

I I I 
GREATER THAN ARGl ARG2 

I I 
X2 X3 

<sR-construct';> 
1,2,3,4,5,5,2,~ 

(X2 (PRED SUM) 

(ARGS (ARGl X4) 

(ARG2 XS) ) ) 

or as a tree 

X2 

I 
pred 

I 
SUM ARGl ARG2 

I I 
X4 xs 

etc; 

2. 

(SR-construct ') 1,2,3,4,5,2-:.:::::!> 

(Xl (PRED NOVEL) 

(ARGS (AGENT X2))) 

or 

Xl 

pred 
a rigs 

N1L AGENT 

I 
X2 

- 1.109 0 -



semantic structuring 

and 

(Sr-construct) 

or 

(X2 

X2 
I 
I 

PRED 

1,2,3,~ 

(PRED JAMES-JOYCE) 

JAMES-JOYCE 

Semantics 

The semantic rule associated with the syntax so far is 

called predicate application, it can be stated as follows: 

The value of the variable on top of the construct is obtained 

by first evaluating the variables of the arguments and by then 

applying the predicate to these resulting values. 

Example 

For example 2 to know the value of Xl, we first evaluate X2. This 

yields us a pointer to the entity named James-Joyce, then we 

apply this result to the predicate NOVEL and obtain a pointer 

(or a set) to the entities defined as the novels of Joyce. 

(2) Elaborating the basic structure 

(a) Viewpoint 

It should be well known by now that the notion of viewpoint 

is a fundamental aspect of our thinking about language. It is 

a way to treat many of the relationships between surface case 

frames of the same abstract case frame and an alternative to the 

transformational treatment. Due to its importance we will there

fore incorporate viewpoints in the semantic structures themselves. 

- 1.110. -



semantic structuring 

If the structure is introducing an entity, the viewpoint 

will indicate what case slot the entity is filling infue 

case frame of the predicate, i.e. in what way the entity is 

related to the information contained in the predicate. If 

the structure is introducing more information about an 

already introduced entity, the viewpoint will indicate the 

relation to the rest of the information in particular via 

which concepts the predicate is brought into the expression. 

To incorporate this aspect in the grammar, we change rule 

3. as follows: 

3. (pred-constr) __, (FRED (caselabel) (pred> ) 

~ARGS ( (caselabel> (var) ) + l] 

(b) Concrete predicate 

It may be of interest to divide the predicate itself into two 

parts: the abstract predicate; which is the call name of the 

abstract case frame used to externalize the predicate, and the 

concrete predicate, which is the call name of the semantic 

procedures of the predicate, i.e. a pointer to the "meaning 11 

of the predicate. Because we are not yet involved in 

effective interpretation, this concrete predicate is sometimes NIL. 

This yields another extension of the grammar for rule 3: 

3. (pred-constr ) -(FRED <viewpoint) (pred> (pred) 

EARGS (case-label> (var) ) + lJ 
The just mentioned extensions have no implications directly 

for the formal semantics rule stated before , but the following 

extension has, although we do not see very clear in the situation 

at the moment. 

- 1.112. -



semantic ~tructu~ing 

(c) Determinators 

There are many problems of semantic representation having 

to do with effects on the usual evaluation processes caused 

by determiners and related words: Are the.predicates to be 

interpreted extensional (i.e. with reference to the universe 

of discourse) or intensional ? Should the number of entities 

be further restricted bo an arbitrary element of the set defined 

by the predicate, only one of them, to the whole class 

collectively or individually, etc. This kind of determination 

is a well known problem area of semantics and the reader 

should not expect us to find solutions here. Instead we put 

all determinators in a sort of garbage can and hang it under 

the label DETERMINATION. By doing so we can go on with our 

investigations without needing to resolve all the problems involved 

For the same reason we will be silent about the formal semantics 

of determination. Let us just assume that it invOlves 

indicators which play a role in the evaluation. It is hoped 

that later developments will bring more clarity in 

the issue. 

We extend the grammar then as follows: 

rule 3 becomes : 

3. zpred -construct) -+(PRED (viewpoint) (pred) (?pred> J ) 
[{DETERMINATION (feature>+ ) } 

U ARGS (caselabel> (var> )+ U 

6. (£ea ture '> _____,. distrib, •.. features 

(ln practice we will allow feature complexes instead of 

simple features) . 

(3) Combination of predicates 

It is possible to relate in two important ways one predicate 

to a particular SR-construct: 

(a) Qualifying: The predicate may introduce a new property 

of the entity introduced by the main predicate in the construct. 

E.g. in the sentence 'he had a French gardner', we introduce 

an entity by the predicate 'gardner' and then we relate this 

entry with the property 'being from France'. In a predicate 

calculus notation one combines the two predicates via a conjunction; 

- 1.113. -



semantic structuring 

e.g. given Pl and P2 then it is said that Pl(x)~ P2(x). 

{b) Modifying: Second it is possible to modify the 

other predicate itself {without direct consideration of 

the entity). E.g. in 11 the early riser woke up late", 

"early" modifies the "rising" and is_ not given as a 

property of the entity introduced by the predicate riser. 

In a predicate calculus notation one represents this as 

composition of predicates: Given predicates Pl and P2, then 

inP2(Pl (x)), P2 'rnodifies'.£'1. 

Now if we want to incorporate the distinction in the semantic 

structures, we will need two different rules, one 

incorporating qualifiers and one incorporating modifiers. 

But there is a small problem here. Sometimes the syntactic 

information alone is not enough to make the distinction 

properly. Hence we add a third type of structure where it 

is undetermined. 

We will attach qualifiers in an SR-construct by hanging each 

of them on the top level variable with the label qualifier. 

A qualifier can be another pred-construct. E.g. for the 

phrase 'a novel by James Joyce translated by Franqois Turlot' 

we have 

Xl 

ARGS QUAL IF 

I 
result write fiction agent PRED ARGS 

I 
X2 

I 
I I 

source MTRANS 

translate 

r 
pred 

X3 

I 
pred 

I 
person name J.Joyce person name F.Turlot 

- 1.114. -

agent 

I 
X3 



semantic structuring 

(Notice how the label at the top of the SR-construct is 

used to introduce the entity in the frame of the qualifier). 

Now for modifiers, we incorporate them in an SR-construct 

directly under the predicate node and the viewpoint here 

will have as slot filler the predicate itself. 

Example: "early riser" 

Xl 

PRED 

I 
agent become awake 

lcoate loc4time early 

i.e. the'becoming awake' fills the slot 'locate' in the 

predicate lac* time (= locate in time) . 

Finally if it is undetermined whether a predicate is modifying 

or qualifying; we will hang the structure under the topnode 

of the SR-construct with the label UNDET. 

We extend rule 3 of the grammar to deal with all these aspects 

as follows: 

3. (pred-construct) - (PRED <viewp) <pred> [ (J?red';>] 

[<MODI!'lER (pred-construct)) +] ) 
[DETERMINATION (feature l lo) 

Semantics 

[fARGS ( (case-label) (var';>) +)j 
UQUALIF (pred-construct) )+J 

UUNDET (pred-construct> ) + J 

The semantic rule associated with the extensions just provided 

goes as follows: 

To evaluate a predicate with a modifier node, first evaluate 

the arguments of"the topnode and the arguments of the modifier 

then apply the result to the combination of the modifying and 

the main predicate. 

- 1.115. -
•. 



semantic structuring 

To evaluate a qualifier, evaluate the predicate construct 

hanging under the qualifier node. 

Complete syntax of SRL 

l. (SR-construct) -- ( <var/(pred-construct) 

2. (var) ~ Xl,X2, ... names of variables 

3. (pred-construct) ~ (PRED (viewp> (pred) (pred) 

gMODIFIER (pred-construct/ ) +]) 

if DETERMINATION \feature)+)] 

[ARGS ((case-label) (var> ) + >J 
[QUALIF <pred-constr7 ) +) 
rrUNDET <pred-constr) )+] 

4. (pred) --AND, FATHER, names of predicates 

5. (case-label'>~ agent, patient, . . . case label 

6. (feature) ........._ distri, . . . features 

On the relation between SRL and natural language 

In next chapter we discuss a system that will enable us to 

relate natural language sentences to SR-constructs. We here 

discuss Very briefly the principles on which this relation will 

be based. 

In the foregoing we discussed two important factors of 

language: function and case. When introducing the notion of 

factor we mentioned that a factor has a double role, on the 

one hand it induces a number of surface phenomena; on the other 

hand it has an i~ct on the semantic processes. This impact is 

such that with each grammatical function there corresponds a 

particular process of structure building. It follows that the 

linguistic knowledge necessary to construct structures from 

functions is essentially procedural knowledge. We will see 

clearcut examples of this in next chapter. 

The second basis for the construction process is the application 

of a number of so called 'optimalization rules', i.e. rules 

which expand the bare structures by decomposing the predicates 

by spreading local information over the whole structure, etc. 

- 1.116. -



semantic structuring 

E.g. For 'French wine', 'French' will be decomposed in 

a predicate (e.g.'out-of') and an entity node introducing 

'France'. Or for 'he hammered nails into wood' we expand 

'hammer' with a caseslot for the instrument and a new 

entity node introducing the entity 'hammer'. 

Again more information about this will be provided in 

the next chapter when we come to a detailed discussion 

of the parsing process. 

- 1.117. -



semantic structuring 

Discussion and further references 

There is an enormous literature with examples and 

discussions of semantic representation languages and it 

would lead us too far to review it here. 

The procedural viewpoint is as the moment not yet very 

widespread in linguistics. The term procedural semantics 

is due to Woods (1965). A very strong example is provided 

by Winograd (1972). For an example of the approach 

followed in the theory of programming language semantics, 

the formal basis for the procedural viewpoint, see Milney 

and Strachey (1976) . 

A typical semantic representation language from a procedural 

viewpoint was designed by the Philips research team 

(see Landsbergen (1976) and Scha(1976)). For further 

references about the process of constructing semantic 

structures see the notes after its detailed discussion in 

next chapter. 

- 1.118. -


	PhD_Steels_1977_Aspects of modular theory of language_volume1a
	PhD_Steels_1977_Aspects of modular theory of language_volume1b

