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Abstract

The correct use of Dutch pronouns die and dat is a stumbling block for both native and non-
native speakers of Dutch due to the multiplicity of syntactic functions and the dependency on the
antecedent’s grammatical gender and number. Drawing on previous research on neural context-
dependent dt-mistake correction (Heyman et al. 2018), this study constructs the first neural net-
work model for Dutch demonstrative and relative pronoun correction that specifically focuses on
die and dat. Several datasets are built with sentences obtained from the Dutch Europarl corpus
(Koehn 2005) - which contains the proceedings of the European Parliament from 1996 to the
present - and the SoNaR corpus (Oostdijk et al. 2013) - which contains Dutch texts from a variety
of domains such as newspapers, blogs and legal texts. Firstly, a binary classification model solely
predicts the correct die or dat. The classifier with a bidirectional long short-term memory architec-
ture achieves 84.56% accuracy. Secondly, a multitask classification model simultaneously predicts
the correct die or dat and its part-of-speech tag. The model consisting of a sentence and context
encoder with both a bidirectional long short-term memory architecture yields 88.63% accuracy for
die/dat prediction and 87.73% accuracy for part-of-speech prediction. More evenly-balanced data,
larger word embeddings, an extra bidirectional long short-term memory layer and integrated part-
of-speech knowledge positively affects die/dat prediction performance, while a context encoder
architecture raises part-of-speech prediction performance. This study shows promising results and
can serve as a starting point for future research on automated, fine-grained grammar correction.

1. Introduction

Following previous research on automatic detection and correction of dt-mistakes in Dutch (Heyman
et al. 2018), this paper investigates another stumbling block for both native and non-native speakers
of Dutch: the correct use of die and dat. Both words can function as demonstrative and relative
pronouns, while dat can also function as a subordinating conjunction. The choice between pronouns
die and dat is related to the choice between Dutch definite determiners de and het. Masculine,
singular nouns and all plural nouns take de and die, while het and dat can only be used with
neuter, singular nouns. Acquiring the target grammar for definite determiners is a slow process with
first-language learners of Dutch (i.e. not before the age of six) and an even slower process with
second-language learners (Cornips and Hulk 2006). Incorrect gender estimations of nouns can lead
to incorrect determiner-noun agreements. Analogous to this, wrongly used die and dat are often the
result of incorrect pronoun-antecedent agreements following incorrect antecedent gender estimations.
The multiplicity of syntactic functions and the dependency on the antecedent’s grammatical gender
and number thus make die/dat correction a challenging task for both human and computer.

The grammar concerning die and dat is threefold. Firstly, they can be used as dependent
or independent demonstrative pronouns (aanwijzend voornaamwoord), with the first replacing the
article before the noun it modifies (1-3) and the latter being a noun phrase that refers to a preced-
ing/following noun phrase (4-5) or sentence (6). The choice between die and dat depends on the
gender and number of the antecedent: dat refers to neuter, singular nouns (1, 5) and sentences (6),
while die refers to masculine, singular nouns (2) and plural nouns independent of their gender (3-4).
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1. “Ik zie dat meisje het huis binnengaan.” - antecedent: neuter, singular noun
“I see that girl entering the house.”

2. “Ik zie die jongen het huis binnengaan.” - antecedent: masculine, singular noun
“I see that boy entering the house.”

3. “Ik zie die kinderen het huis binnengaan.” - antecedent: plural noun
“I see those children entering the house.”

4. “Er lopen daar kinderen. Ik zie die het huis binnengaan.” - antecedent: plural noun
“There are children running over there. I see them entering the house.”

5. “Er staat daar een reuzenrad. Het pretpark heeft dat vorig jaar aangekocht.” - antecedent:
neuter, singular noun
“There is a Ferris wheel over there. The amusement park bought that last year.”

6. “Leen komt niet. Ik heb dat meermaals gezegd vandaag.” - antecedent: sentence
“Leen is not coming. I have said that several times today.”

Secondly, die and dat can be used as relative pronouns (betrekkelijk voornaamwoord) introducing
relative clauses, which provide additional information about the directly preceding antecedent it
modifies. Similar rules as for demonstrative pronouns apply: masculine, singular nouns (7) and
plural nouns (8) are followed by relative pronoun die, neuter singular nouns (9) by dat.

7. “Ik zie de jongen die het huis binnengaat.” - antecedent: masculine, singular noun
“I see the boy who enters the house.”

8. “Ik zie de kinderen die het huis binnengaan.” - antecedent: plural noun
“I see the children who enter the house.”

9. “Ik zie het meisje dat het huis binnengaat.” - antecedent: neuter, singular noun
“I see the girl who enters the house.”

Lastly, dat can be used as a subordinating conjunction (onderschikkend voegwoord) introducing a
subordinating clause (10). In contrast to the pronominal use of die and dat, dat as subordinating
conjunction does not depend on the gender and number of any antecedent. It is therefore less likely
that someone would then use die instead of dat. However, we do not omit subordinating conjunction
dat from the datasets, as not every dataset includes part-of-speech (POS) tags that can be used to
remove sentences with a subordinating conjunction dat from the training, validation and test sets.
We hypothesize that our model will be able to implicitly learn the syntactic functions or POS of die
and dat in a given sentence, and consistently predict dat in case of a subordinating conjunction. A
brief overview of the grammar is given in Table 1.

10. “Ik zie dat de jongen het huis binnengaat.”
“I see that the boy enters the house.”

In this paper, we aim at developing a classification model that automatically predicts and corrects
die and dat instances in texts. We approach the die/dat correction task as a highly specialized word
prediction task: the model takes as input a sentence in which a single die or dat is replaced by a
specific prediction token and returns the die or dat label with the highest probability. Subsequently,
we transform the classification model to a multitask classification model that jointly predicts the
correct die/dat label and its POS tag. We hypothesize that integrating the POS prediction task in the
original die/dat classification model will positively influence die/dat prediction. This paper reports
work conducted as part of a master thesis (Allein 2019). Our newly-proposed die/dat prediction
task has already been used as a downstream task for evaluating a Dutch language model (Delobelle
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Function Demonstrative Relative Subordinating
pronoun pronoun conjunction

Refer to antecedent
singular, masculine noun die die -

singular, neuter noun dat dat -
plural noun die die -

sentence dat - -

Introduce subordinating clause - - dat

Table 1: Grammar concerning die and dat.

et al. 2020), which benchmarks against our model as presented in a preprint version of this paper
(Allein et al. 2020). The remainder of the paper is structured as follows: we explore existing work
in scientific literature in Section 2, present the model architecture of the binary and multitask
classification models in Section 3, state the experimental setup and results in Section 4 and 5,
analyze those results in Section 6, perform an ablation study and error analysis in Section 7 and 8,
and finally conclude the paper in Section 9.

2. Related Work

Previous works on automatic Dutch language correction have differentiated between spelling and
grammar errors. Concerning spelling correction, the CLIN28 shared task challenged participants
to construct Dutch spell checkers that automatically correct common spelling mistakes in Dutch
Wikipedia texts (Beeksma et al. 2018). The list of spelling mistakes comprised of real-world confu-
sions, split/runon errors, missing/redundant words and punctuation, capitalisation errors, archaic
spelling and non-word errors. Tijhuis (2014) focused on forgotten diacritics, among others. Sevens
et al. (2016) found that internet users with intellectual disabilities profoundly make spelling errors
caused by phonetic confusion, and applied character-based fuzzy matching to correct those spelling
mistakes. While spell checkers tackle a range of spelling errors, grammar correction systems detect
and correct errors on a more fine-grained level. Stehouwer and van den Bosch (2008) and Heyman
et al. (2018), for example, strongly focused on context-dependent dt-mistakes, with the first apply-
ing a IGTree classifier and the latter an attention-based neural network to predict a verb’s suffix.
van den Bosch and Berck (2012) combined four classifiers to detect and predict correct prepositions
and determiners. Kloppenburg and Nissim (2016), on the other hand, used a linear SVM to detect
wrongly inserted and deleted prepositions and determiners, and trained a second linear SVM to
select the correct replacement.

In this paper, we construct a specialized grammar error detection and correction system that
automatically predicts die and dat labels for masked tokens. We are - to our knowledge - the first
to focus on this specific kind of error correction.

3. Model Architecture

We inspire the architecture of our binary and multitask models on the dt-correction model presented
in Heyman et al. (2018). We opt for a similar architecture, as it has proven to be highly effective for
the dt-correction task, in which the suffix of the finite verb depends on the number and position of
the subject. In the dt-correction model, a context encoder (bidirectional LSTM) and verb encoder
(LSTM) respectively encode a given sentence, in which the finite verb is replaced by its stem, and
the finite verb. The resulting context and verb representations are then concatenated and fused by
a feedforward neural network. Ultimately, the model returns the correct suffix for the finite verb.
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3.1 Binary Classification Model

For the binary classification model that predicts the correct die or dat for each sentence, a bidi-
rectional Long-Short Term Memory (BiLSTM) neural network is deployed. As the antecedent can
be rather distant from its modifying pronoun due to adjectives and sentence boundaries, an LSTM
architecture is chosen over a regular Recurrent Neural Network as the latter does not cope well with
learning non-trivial long-distance dependencies (Chiu and Nichols 2016). Furthermore, a BiLSTM is
chosen over a single left-to-right LSTM, because the antecedent can be either before or after the die
or dat. The architecture of the binary classification model is provided in Fig. 1. An input sentence
is first sent through an embedding layer where each token is transformed to a 100-dimensional word
embedding which has been initially trained on the dataset of sentences containing at least one die
or dat using the Word2Vec Skip-gram model (Mikolov et al. 2013). The weights of the embedding
layer are trainable. The word embeddings are then sent through a BiLSTM layer. The BiLSTM

concatenates the outputs of two LSTMs: the left-to-right LSTMforward computes the states
−→
h1..
−→
hN

and the right-to-left LSTMbackward computes the states
←−
hN ..
←−
h1. This means that at time t for input

x, represented by its word embedding E(x), the bidirectional LSTM outputs the following:

ht = [
−→
ht ;
←−
ht ]

1 (1)

−→
ht = LSTMforward(

−−→
ht−1, E(xt)) (2)

←−
ht = LSTMbackward(

←−−
ht+1, E(xt)) (3)

Next, the concatenated output is sent through a maxpooling layer, a linear layer and, eventually,
a softmax layer that generates a probability distribution over the die/dat labels. To prevent model
overfitting and co-adaptation, dropout regularization is implemented in the embedding layer and
the linear layer. In both layers, dropout is set to p = 0.5, which randomly zeroes out nodes in each
layer using samples from a Bernoulli distribution. During training, the binary cross-entropy loss is
minimized:

BCEp(q) = − 1

N

N∑
i=1

yi · log(p(ŷi)) + (1− yi) · log(1− p(ŷi)) (4)

where yi is the ground truth label (0 for dat and 1 for die) and p(ŷi) is the probability of the
predicted label for all N training examples.

3.2 Multitask Classification Model

We introduce POS knowledge in the die/dat classification model by transforming it to a multitask
classification model which performs two distinct prediction tasks: the binary classification of die and
dat, and the prediction of three POS tags, namely subordinating conjunction, relative pronoun and
demonstrative pronoun. We hypothesize that integrating this POS prediction task will positively
influence die/dat prediction performance, as the model will be more grammar-aware. We experiment
with two different model architectures (Fig. 2), with the second architecture laying more focus on
the immediate context surrounding the die/dat token. For the BiLSTM model, the first layer is
the embedding layer in which the weights are initialized by means of the 200-dimensional pre-
trained embedding matrix. The embedding weights are updated after every epoch. The second
layer consists of two bidirectional LSTMs where the output of the first BiLSTM serves as input to
the second BiLSTM. This layer has dropout regularization p = 0.2. The two-layer BiLSTM layer
concatenates the outputs at time t into a 64-dimensional vector and sends it through a maxpooling
layer. Until this point, the two tasks share the same parameters. The model then splits into

1. [ ; ] denotes concatenation
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Figure 1: Model architecture of the binary classification model.

(a) BiLSTM model (b) Context + Sentence Encoder

Figure 2: Overview of the two multitask classification model architectures.
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two separate linear layers. The left linear layer transforms the 64-dimensional vector to a two-
dimensional vector on which the softmax is computed. That softmax layer outputs the probability
distribution over the dat and die labels. The right linear layer transforms the 64-dimensional vector
to a three-dimensional vector to which a softmax function is applied. The softmax layer outputs
the probability distribution over the subordinating conjunction, relative pronoun and demonstrative
pronoun labels. The second multitask classification model takes the immediate context around the
‘PREDICT’ token (two tokens before and one token after) as additional input. Both the windowed
sentence and context are first transformed into their word embedding representations. They are
then sent through a sentence encoder and context encoder, respectively. The sentence encoder
has the same architecture as the second and third layer of the BiLSTM model, namely a two-
layer BiLSTM and a maxpooling layer. For the context encoder, we experiment with two different
architectures: a feedforward neural network and a one-layer BiLSTM with dropout p = 0.2, both
followed by a maxpooling layer. Both sentence and context encoder output a 64-dimensional vector
which are, consequently, concatenated to a 128-dimensional vector. As in the BiLSTM model, the
resulting vector is sent through two separate linear layers that output a probability distribution over
the die/dat and POS labels, respectively. For the die/dat prediction task, binary cross-entropy is
minimized. For the POS prediction task, cross-entropy is minimized:

CE(θ) = − 1

N

N∑
i=1

C∑
c=1

yi,clog(pi,c) (5)

where N is the number of training examples, C is the number of classes (in this case three), yi,c is
the binary indicator (1 or 0) marking whether class label c is the correct label for input sentence i
or not, and p is the probability of sentence i having class label c.

4. Experimental Setup

4.1 Datasets

The datasets used for training, validation and testing contain sentences extracted from the Eu-
roparl corpus (Koehn 2005) and SoNaR corpus (Oostdijk et al. 2013). The Europarl corpus is an
open-source parallel corpus containing proceedings of the European Parliament. The Dutch section
consists of 2,333,816 sentences and 53,487,257 words. The SoNaR corpus comprises two corpora:
SONAR500 and SONAR1. The SONAR500 corpus consists of more than 500 million words ob-
tained from different domains. Examples of text types are newsletters, newspaper articles, legal
texts, subtitles and blog posts. All texts except texts from social media have been automatically
tokenized, POS tagged and lemmatized. The SONAR500 corpus contains significantly more data
and more varied data than the Europarl corpus. Due to the high amount of data in the corpus,
only three subparts are used: Wikipedia texts, reports and newspaper articles. These subparts are
chosen because the number of wrongly used die and dat is expected to be low.

4.2 Preprocessing

The sentences in the Europarl corpus are tokenized and parsed using the Dutch version of TreeTagger
(Schmid 1994). Only sentences which contain at least one die or dat are extracted from the corpora.
Subsequently, each single occurrence of die and dat is detected and replaced by a unique token
(‘PREDICT’). When there are multiple occurrences in one sentence, only one occurrence is replaced
at a time. Consequently, a sentence can appear multiple times in the training and test dataset
- with the unique token for die and dat at a different place in the sentence. Each sentence is
paired with its automatically assigned ground-truth label for die and dat. The resulting datasets
consist of 103,871 (Europarl) and 1,269,091 (SoNaR) sentences. The Europarl dataset, on the one
hand, contains 70,057 dat-labeled and 33,814 die-labeled sentences. The SoNaR dataset, on the
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Dataset # sentences dat/ subordinating conjunction/
die relative pronoun/

demonstrative pronoun

Europarl 103,871 70,057/ -
33,814 -

SoNaR 1,269,091 736,987/ 407,848/
532,104 387,292/

473,951

Table 2: Overview of datasets.

other hand, has more than ten times the number of labeled sentences - with 736,987 dat-labeled
and 532,104 die-labeled. Considering the imbalance in both datasets, it may be argued that dat
occurs more frequently than die due to its syntactic function as subordinating conjunction and
not its use as demonstrative pronoun, as it can only refer to singular, neuter nouns. As for the
multitask classification model, the POS tags for die and dat present in the SoNaR corpus are
extracted and stored as ground-truth labels: 407,848 subordinating conjunction, 387,292 relative
pronoun and 473,951 demonstrative pronoun. From a brief qualitative assessment on the POS tags
for die and dat in both corpora, the POS tags in the SoNaR corpus appear to be more reliable than
the POS tags generated by TreeTagger in the Europarl corpus. Therefore, only the SoNaR dataset
is used for training and testing the multitask classification models. An overview of the datasets after
preprocessing is given in Table 2.

4.3 Experimental Setup

Each dataset is randomly divided into a training (70%), validation (15%) and test set (15%). The
data is fed to the model in batches of 128 (binary classification model) or 516 (multitask classification
model) samples, and is reshuffled at every epoch. For the die/dat prediction task in both the binary
and multitask classification models, model weights are optimized using Stochastic Gradient Descent
with learning rate = 0.01 and momentum = 0.9. For the POS prediction task in the multitask
classification model, model weights are optimized using Adam optimization with learning rate =
0.0001. The data is fed to the model in 24 epochs (binary classification model) and 35 epochs
(multitask classification model).

5. Results

5.1 Binary Classification Model

An overview of the performance results is given in Table 3. We compare model performance when
trained and tested on the two corpora individually and experiment with different settings of the
two corpora in order to investigate the effect of dataset alterations on model performance. There
are three settings: full in which the datasets contain full sentences, windowed in which sentences
are windowed around the unique prediction token without exceeding sentence boundaries (max.
five tokens before and after the token, including token), and windowed no boundaries in which the
windows can exceed sentence boundaries. When limiting the input sentences to windowed sentences
in the Europarl corpus (2), model performance increases significantly on all metrics, especially for
die prediction performance. As a consequence, we start training and testing the model on the
SoNaR dataset using the windowed sentences (3) instead of the full sentences, as we assume that
similar performance differences would be reported for the SoNaR dataset. This assumption is later
supported by the performance differences for die/dat classification between full and windowed SoNaR
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sentences in the multitask classification model (Table 4). The difference in model performance when
trained and tested on the Europarl (2) and SoNaR (3) windowed datasets is particularly noticeable
in the precision, recall and F1 scores. Model performance for dat prediction is better for the Europarl
dataset than for the SoNaR dataset, while model performance for die prediction is notably better
for the SoNaR dataset than for the Europarl dataset. Lastly, a change in windowing seems to have
a positive impact on the overall model performance: the model trained and tested on the SoNaR
dataset with windows exceeding sentence boundaries (4) outperforms the model trained and tested
on the SoNaR dataset with windows within sentence boundaries (3) on every metric.

Binary Classification Model

Dataset Accuracy Balanced Precision Recall F1
Accuracy dat/die dat/die dat/die

Model 1: BiLSTM

Europarl, full (1) 75.03% 68.49% 78.11%/ 87.45%/ 82.41%/
65.68% 49.54% 56.05%

Europarl, windowed (2) 83.27% 80.70% 87.19%/ 88.14%/ 87.58%/
74.97% 73.26% 73.83%

SoNaR, windowed (3) 82.34% 81.72% 85.35%/ 84.94%/ 85.06%/
77.94% 78.50% 78.05%

SoNaR, windowed 84.56% 84.18% 87.71%/ 86.16%/ 86.85%/
no boundaries (4) 80.13% 82.20% 80.99%

Table 3: Performance results of the binary classification model on the Europarl dataset containing
full sentences (1), the Europarl dataset containing windowed sentences within sentence boundaries
(2), the SoNaR dataset containing windowed sentences within sentence boundaries (3) and the
SoNaR dataset containing windowed sentences exceeding sentence boundaries (4).

5.2 Multitask Classification Model

An overview of the performance results for die/dat prediction is given in Table 4. The same dataset
settings as for the binary classification model are used: full in which the datasets contain full sen-
tences, windowed in which sentences are windowed around the unique prediction token without
exceeding sentence boundaries (max. five tokens before and after the token, including token), and
windowed no boundaries in which the windows can exceed sentence boundaries. As mentioned in
section 4.2, we only use the SoNaR dataset. The multitask classification models generally perform
better with the windowed and windowed no boundaries dataset settings for die/dat prediction. Con-
cerning the model architectures, it can be argued that altering the model architecture has no large
impact on model performance for die/dat prediction. However, changing the model architecture from
an architecture with merely a sentence encoder (Model 2) to an architecture with both a sentence
and a context encoder (Model 3 and 4) does have a stronger positive impact on model performance
for POS prediction (Table 5). For the POS prediction task, the multitask classification model with a
BiLSTM context encoder (Model 4) trained and tested on windowed SoNaR sentences reaches best
performance results on almost all evaluation metrics.

6. Discussion

Overall, the best performing multitask classification model (Model 4) is able to predict die and dat
more accurately than the binary classification model (Model 1). We can draw several conclusions
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Multitask Classification Model

Dataset Accuracy Balanced Precision Recall F1
Accuracy dat/die dat/die dat/die

Model 2: BiLSTM

SoNaR, full 78.52% 77.56% 81.59%/ 82.60%/ 82.06%/
73.87% 72.52% 73.14%

SoNaR, windowed 86.36% 85.08% 86.26%/ 91.73%/ 88.89%/
86.53% 78.44% 82.25%

SoNaR, windowed, 88.36% 88.15% 91.05%/ 89.24%/ 90.12%/
no boundaries 84.59% 87.06% 85.77%

Model 3: Feedforward Context Encoder

SoNaR, windowed 88.16% 87.79% 90.37%/ 89.70%/ 90.02%/
84.93% 85.88% 85.37%

SoNaR, windowed, 88.36% 88.14% 90.99%/ 89.31%/ 90.13%/
no boundaries 84.66% 86.97% 85.77%

Model 4: BiLSTM Context Encoder

SoNaR, windowed 88.63% 87.93% 89.58%/ 91.58%/ 90.55%/
87.15% 84.28% 85.66%

SoNaR, windowed 88.85% 88.51% 90.95%/ 90.29%/ 90.60%/
no boundaries 85.83% 86.73% 86.25%

Table 4: Performance of the three multitask classification models for die/dat prediction.

following an analysis of the performance metric results for die/dat prediction. Firstly, the model
consistently predicts dat more precisely than die. This could be due to the higher number of dat
instances in both corpora: 67.45% dat labels in Europarl, 58.07% dat labels in SoNaR. When
taking into account the different label distributions of the two corpora, we can argue that the
binary classification model’s performance differences between die and dat prediction are inversely
proportional to a dataset’s label distribution: the differences are considerably smaller when the
model is trained on a more evenly balanced SoNaR-based dataset than when it is trained on a
more imbalanced Europarl-based dataset. Secondly, die/dat prediction performance increases for
the binary classification model (Model 1) and the BiLSTM multitask classification model (Model
2) when the window over the sentences is not limited to sentence boundaries (SoNaR windowed
no boundaries). It could be argued that the model is able to detect antecedents in the preceding
or following sentence, while it is not able to do so when it is trained and tested on boundary-
constraint windowed sentences (SoNaR windowed). Nonetheless, this argument does not hold for
the other multitask classification models (Model 3 and 4), as the performance differences between
the two windowed datasets are not considerably large. Concerning the POS prediction performance
in the multitask classification model, it appears that the relative pronoun tag is the hardest label to
predict. In order to answer the hypotheses stated earlier in this paper, we need to conduct further
fine-grained analyses. We first perform an ablation study, in which we not only examine the effects
of the POS prediction task on the die/dat prediction task (“We hypothesize that integrating this
POS prediction task will positively influence die/dat prediction performance”), but also benchmark
our binary and multitask approaches against a pipeline approach and explore the effects of model
architecture alterations on die/dat prediction performance (Section 7). We then check whether the
model consistently predicts a subordinating conjunction as dat (“We hypothesize that our model will
be able to implicitly learn the syntactic functions or POS of die and dat in a given sentence, and
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Multitask Classification Model

Dataset Accuracy Balanced Precision Recall F1
Accuracy sc/rp/dp sc/rp/dp sc/rp/dp

Model 2: BiLSTM

SoNaR, full 70.72% 70.66% 71.99%/ 73.92%/ 72.88%/
63.34%/ 68.29%/ 65.65%/
75.30% 69.76% 72.38%

SoNaR, windowed 83.15% 82.68% 84.35%/ 86.98%/ 85.61%/
79.42%/ 76.92%/ 78.09%/
84.53% 84.15% 84.31%

SoNaR, windowed 85.69% 85.42% 88.78%/ 87.09%/ 87.90%/
no boundaries 79.88%/ 82.49%/ 81.11%/

87.24% 86.68% 86.93%

Model 3: Feedforward Context Encoder

SoNaR, windowed 86.46% 86.14% 89.00%/ 87.80%/ 88.37%/
80.24%/ 82.88%/ 81.49%/
88.71% 87.75% 88.20%

SoNaR, windowed 84.79% 84.76% 88.58%/ 86.23%/ 87.35%/
no boundaries 77.04%/ 83.73%/ 80.19%/

87.48% 84.31% 85.84%

Model 4: BiLSTM Context Encoder

SoNaR, windowed 87.73% 87.38% 90.12%/ 88.47%/ 89.26%/
82.63%/ 84.12%/ 83.31%/
89.27% 89.55% 89.39%

SoNaR, windowed 85.51% 85.48% 87.99%/ 86.98%/ 87.45%/
no boundaries 78.90%/ 84.41%/ 81.51%/

88.31% 85.04% 86.61%

Table 5: Performance results of three multitask classification models for POS prediction: subordi-
nating conjunction(sc), relative pronoun (rp) and demonstrative pronoun (dp).
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consistently predict dat when the instance is a subordinating conjunction”), and conduct an error
analysis to distinguish linguistic patterns in the prediction errors (Section 8).

7. Ablation Study

In this section, we analyze which model alterations contribute to the performance gains in the
multitask classification model, and compare our approaches to a pipeline approach. The multitask
classification models differ from the binary classification model in terms of batch size, embedding
dimension, number of LSTM layers in the sentence encoder, number of tasks, and input. We start
with the influence of the increased batch size and word embedding dimension. We first retrain the
multitask classification model and feed the data in batches of 128 (used for binary classifier training)
instead of 512 samples. We then retrain the multitask classification model and let the embedding
layer transform the input data to 100-dimensional word embeddings instead of 200-dimensional word
embeddings. Table 6 shows that there is little consistent difference in performance when batch size
is 512 or 128. Therefore, it can be suggested that an increased batch size has no directly positive
influence on model performance. Concerning the word embedding dimension, it appears that an
increase in word embedding dimension indeed causes a slight increase in model performance.

Ablation study: batch size and embedding dimension

Model Accuracy Balanced Precision Recall F1
Accuracy dat/die dat/die dat/die

Batch size-128 87.46% 88.73% 89.43%/ 91.45%/ 90.37%/
86.94% 84.02% 85.33%

Batch size-512 88.36% 88.15% 91.05%/ 89.24%/ 90.12%/
84.59% 87.06% 85.77%

Embedding-100 86.94% 87.77% 88.54%/ 91.29%/ 89.88%/
86.54% 82.58% 84.48%

Embedding-200 88.36% 88.15% 91.05%/ 89.24%/ 90.12%/
84.59% 87.06% 85.77%

Table 6: The influence of batch size and embedding dimension on performance of the SoNaR-based,
sentence-exceeding windowed trained multitask classification model (Model 2, SoNaR windowed
no boundaries).

The BiLSTM multitask classification model (Model 2) contains two BiLSTM layers opposed to
the binary classification model that has only one layer. Table 7 shows the influence of the number of
layers on the performance of the binary classification model. When the binary classification model
is retrained with an additional BiLSTM layer, all the evaluation metrics rise with approximately
2%. However, when the binary classification model has three BiLSTM layers, model performance
drops significantly. It appears that the doubled number of layers is indeed one of the reasons why
the multitask classification models perform better than the binary classification model. However,
not every rise in number of layers necessarily influences a model’s performance in a positive manner:
performance drops significantly when we add a third BiLSTM layer.

Concerning the influence of the POS prediction task on die/dat prediction performance, a com-
parison between a two-layer BiLSTM binary classification model (Model 1) and the two-layer BiL-
STM multitask classification model (Model 2) is made and displayed in Table 8. It seems that the
integration of POS knowledge positively influences die/dat prediction performance, as all evalua-
tion metrics have increased. This supports our hypothesis about the positive influence of the POS
prediction task on die/dat prediction performance.

29



Ablation study: number of layers

Layers Accuracy Balanced Precision Recall F1
Accuracy dat/die dat/die dat/die

BiLSTM-1 layer 84.56% 84.18% 87.71%/ 86.16%/ 86.85%/
80.13% 82.20% 80.99%

BiLSTM-2 layers 87.21% 86.83% 89.62%/ 88.82%/ 89.15%/
83.76% 84.84% 84.16%

BiLSTM-3 layers 75.75% 76.89% 80.01%/ 81.54%/ 80.74%/
72.02% 69.97% 70.93%

Table 7: The influence of number of layers on performance of the SoNaR-based, sentence-exceeding
windowed trained binary classification model (Model 1, SoNaR windowed no boundaries).

Ablation study: integrated POS knowledge

POS Accuracy Balanced Precision Recall F1
Knowledge Accuracy dat/die dat/die dat/die

Yes 88.36% 88.15% 91.05%/ 89.24%/ 90.12%/
84.59% 87.06% 85.77%

No 87.21% 86.83% 89.62%/ 88.82%/ 89.15%/
83.76% 84.84% 84.16%

Table 8: The influence of integrated POS knowledge on die/dat prediction performance. Comparison
between Model 1 with an extra BiLSTM layer (No) and Model 2 (Yes), both trained and tested
using the SoNaR windowed no boundaries dataset.
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Next, we examine the influence of a context encoder on die/dat performance. The similar per-
formance results of the three multitask classification models suggest that the addition of a context
encoder has little to no influence on die/dat prediction performance. Moreover, the encoder ar-
chitecture does not cause a considerable difference in die/dat prediction performance between the
model with a feedforward context encoder (Model 3) and the model with a BiLSTM context encoder
(Model 4). It can thus be suggested that the multitask models do not necessarily profit from a dif-
ferent architecture and that an extra focus on immediate context is not additionally advantageous
for the die/dat prediction task.

Lastly, we benchmark our binary and multitask approach against a pipeline approach in which
a dedicated POS tagger first predicts the ‘PREDICT’ token’s POS tag and a die/dat classifier then
predicts die/dat labels in case it is a pronoun. In case of a predicted subordinating conjunction tag,
the model automatically yields the dat label. As POS tagger, we take a pretrained Dutch language
model, BERTje (de Vries et al. 2019), add a linear and softmax layer on top, and fine-tune the
model on predicting three POS tags: subordinating conjunction, relative pronoun and demonstrative
pronoun. The BERTje tokenizer preprocesses the windowed no boundaries SoNaR sentences in the
SoNaR training set, which are then used as input to the POS tagger. During fine-tuning, the linear
layer is trained while the other layers are frozen. We apply the following hyperparameters for fine-
tuning BERTje on the POS tagging task: number of epochs [30], batch size [512], learning rate
[2e-5], optimization [Adam], loss function [cross-entropy]. The POS predictions will be used as a
mask over the die/dat predictions yielded by the die/dat classifier. For the die/dat classifier, we
use the trained SoNaR, windowed no boundaries model from Section 5.1. Results can be found in
Table 9. Overall, the multitask model outperforms the other two approaches on every performance
metric.

Ablation study: Pipeline Approach

Model Accuracy Balanced Precision Recall F1
Accuracy dat/die dat/die dat/die

Binary 84.56% 84.18% 87.71%/ 86.16%/ 86.85%/
80.13% 82.20% 80.99%

Multitask 88.85% 88.51% 90.95%/ 90.29%/ 90.60%/
85.83% 86.73% 86.25%

Pipeline 80.46% 82.15% 82.42%/ 89.08%/ 85.60%/
81.60% 71.84% 76.36%

Table 9: Performance results of a binary classification model (Model 1: SoNaR, windowed
no boundaries), a multitask classification model (Model 4: SoNaR, windowed no boundaries) and
a pipeline approach (POS tagger + Model 1: SoNaR, windowed no boundaries) for the die/dat
prediction task.

8. Error Analysis

In this section, we analyze incorrectly predicted die/dat-POS combinations in a qualitative manner.
From all correctly predicted POS tags, we take a random subset of 100 test sentences for which the
model predicts die instead of dat, and 100 test sentences for which the model predicts dat instead
of die. We then look for error patterns in the random subsets. The qualitative analysis is conducted
on the errors yielded by the multitask classification model with BiLSTM context encoder (Model
4), trained and tested on the SoNaR windowed no boundaries dataset.
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8.1 Die/dat as relative pronouns

The model yields a correct relative pronoun tag but an incorrect die/dat label. We analyze 200
sentences with a relative pronoun, of which 100 sentences are labeled with dat instead of die, and
vice versa. Firstly, antecedents containing more than one noun appear to be a source of confusion
for the model (42 sentences). In Dutch, the antecedent is always mentioned before the relative
pronoun, but the distance between the two can vary: the relative pronoun immediately follows the
antecedent in sentences 1 and 2, while the distance between the antecedent and the pronoun is larger
in sentences 3 and 4. As a result, the model cannot simply rely on position and has to choose the
most plausible antecedent of the two preceding nouns given the context. However, both nouns are
plausible in sentence 2 and 3, so the model does not necessarily make a wrong prediction given the
input. It is also possible that the model is able to detect the correct antecedent, but merely fails to
estimate its grammatical gender.

1. “...bij het schilderij van Franciscus, die het kruis omhelst uit hetzelfde...” (predicted: dat)

2. “...initiatief van de seniorenraad, die de senioren tot meer beweging...” (predicted: dat)

3. “...nichtje van Lily Allen, dat dan uit het hoofd van...” (predicted: die)

4. “...instituut voor de voeding, dat het terrein gebruikt voor zijn...” (predicted: die)

The phrase “het/een aantal + plural noun” occurs eight times in the error subset. This is a rather
large number, as it is a very specific combination. Although it is grammatically correct to refer to
it with either die or dat, they cannot be used interchangeably. The number of the finite verb in the
relative clause signals whether the writer regards the antecedent as a group (singular verb, sentence
5) or individual members (plural verb, sentence 6). In the first case, the pronoun agrees with the
gender of “aantal” (neuter), so only dat is correct. In the latter case, the pronoun agrees with the
gender of the plural noun, so only die is correct. These errors indicate that the model does not rely
on the number of the finite verb in the relative clause.

5. “...maar het aantal mensen dat hulp nodig heeft, is...” (predicted: die)

6. “...Nederland een aantal creaties mee die gemaakt zijn op basis van...” (predicted: dat)

The model does not deal well with proper names. In the relative pronoun error subset where die
is predicted instead of ground-truth label dat, 47 of the 100 sentences have an antecedent that
denotes either a sports club that is referred to by a city name (7-8), or an organisation (9-10). These
nouns are generally neuter, so only dat is correct. However, if the name of an organisation is an
abbreviation and has a meaningful keyword (11-12), the antecedent’s grammatical gender depends
on the keyword’s gender. We found that for the latter two sentences the ground-truth label is
incorrect: “sp.a” means “socialistische partij anders”, while “VVD” is “Volkspartij voor Vrijheid
en Democratie”. Both keywords are meaningful, and thus the grammatical gender of the complete
antecedent relies on the grammatical gender of the keywords - in this case, masculine. The model
indeed provided correct predictions. However, it is highly unlikely that the model is aware of this
rule and knows the abbreviations in full. Consequently, the model might have predicted the correct
label by chance.

7. “...jeugdwerking showen tegen Oudenaarde, dat eveneens een aardig jeugdpotentieel heeft.”
(predicted: die)

8. “Hij verwees naar Moeskroen, dat geen licentie kreeg omdat de...” (predicted: die)

9. “Academic Sofia, dat de Russiche olieraffinaderij Lukoil als...” (predicted: die)

10. “Nike, dat afgelopen maand nog zijn topman...” (predicted: die)
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11. “De huidige coalitiepartner sp.a, dat* met de 28-jarige Simon Bekaert...” (predicted: die,
correct)

12. “...van de liberale VVD, dat* een strenger asielbeleid bepleitte.” (predicted: die, correct)

Lastly, the model has not learned to refer to people with die (13-14). In fourteen sentences, the
model predicts an incorrect dat label. We assume that the names did not occur frequently enough
in the training set for the model to learn its grammatical gender, and that the model was unable to
generalize over the various names and detect that these words refer to people.

13. “...gewassen tegen Delphine Verburgh, die de drie wedstrijden won.” (predicted: dat)

14. “Hilaire Van der Schueren, die VDB voorlopig uit competitie houdt...” (predicted: dat)

8.2 Die/dat as demonstrative pronouns

The model outputs a correct demonstrative pronoun tag but an incorrect die/dat label. We analyze
200 sentences with a demonstrative pronoun, of which 100 sentences are labeled with dat instead
of die, and vice versa. The windowed sentences approach shows its disadvantages when a die/dat
is an independent demonstrative pronoun referring to a distant noun or a previous sentence (82
sentences). As the window is limited to five tokens before and after the prediction token, only a
part of the antecedent is given (15-16). Sometimes, the antecedent is not given at all (17-20). As a
result, the model is unable to detect the entire antecedent and its grammatical gender.

15. “...computer op de zolderkamer. Dat zorgde voor een hevige rookontwikkeling...” (predicted:
die)

16. “...nieuwe vriend. Ik las dat ook in de krant...” (predicted: die)

17. “Het wordt tijd dat ze dat ernstig gaan nemen.” (predict: die)

18. “...wil Xandee niet prijsgeven. Die heeft ze, samen met...” (predicted: dat)

19. “...overslaat op mensen, is die in bijna de helft van...” (predicted: dat)

20. “...in het Groot-Hertogdom Luxemburg. Die begon al van op enige...” (predicted: dat)

The model appears to struggle with demonstrative pronouns in combination with the adjective
“laatste”: “dat laatste”, “die laatste” (six sentences). In this case, the pronoun depends on the
grammatical gender of the omitted noun. The model thus needs to infer which noun is omitted
and what its grammatical gender and number are. The omitted noun could be “recreatiedomein”
or “recreatiepark” in sentence 22, which are both neuter, singular nouns, while it could be neuter,
singular noun “product” in sentence 23. The yielded model predictions indicate that the model
based it predictions on the noun closest to the prediction token. These errors are not surprising, as
inferring an omitted noun requires a broad vocabulary and extensive world knowledge.

21. “...fruit kost. Al is die laatste vooral water en amper...” (predicted: dat)

22. “...Leen en de Blaarmeersen (dat laatste is van de stad...” (predicted: die)

23. “...de kindershampoo de konijnenshampoo. Dat laatste blijkt een zachte shampoo...” (pre-
dicted: die)

Lastly, the model performs poor on predicting dat in combination with a plural copula and a
plural predicate nominal (seven sentences). In this special case, there is no agreement between
subject (“dat”) and verb (“zijn”), but between verb and the plural predicate nominal (“jongens”,
“mensen”). Our model might have learned that prediction tokens followed by plural verbs usually
take die, so that the subject-verb agreement is respected. It arguably failed to learn this special
case.
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• “...Vanendert , Vanavermaet en Cornu dat zijn toch geen kleine jongens” (predicted: die)

• “Waarschijnlijk zijn dat mensen met een heel groot...” (predicted: die)

8.3 Dat as subordinating conjunction

We found that the model always predicts a subordinating conjunction label in combination with dat.
In other words, it has learned that it should never assign the subordinating conjunction POS tag
to a jointly-predicted die label. This confirms our hypothesis that our model will have learned to
consistently predict dat when it is a subordinating conjunction. However, we found 217 sentences
in the entire dataset - of which nine in the test set - that had die instances with a subordinating
conjunction label as gold standard. This indicates that the ground-truth POS tags are not highly
accurate. An evaluation of the POS tag quality in the SoNaR corpus would therefore be interesting.
As this is beyond the scope of this work, we leave this for future work. We manually correct the
ground-truth POS tags for the nine test sentences and compare the multitask classification model’s
die/dat and POS predictions with the corrected POS ground-truth labels. The model predicts for
seven sentences the correct die label, while it predicts the corrected ground-truth POS tag for five
sentences.

9. Conclusion and Future Work

Deciding which pronoun to use in various contexts can be a complicated task. The correct use of
die and dat as Dutch pronouns entails knowing the linguistic class of the antecedent and - if the
antecedent is a noun - its grammatical gender and number. We experimented with neural network
models to examine whether die and dat instances in sentences can be computationally predicted and,
if necessary, corrected. Our binary classification model reaches a promising 84.56 % accuracy. In
addition, we extended the model to a multitask model which simultaneously predicts die/dat and its
POS (demonstrative pronoun, relative pronoun and subordinating conjunction). By increasing the
word embedding dimension, doubling the number of bidirectional LSTM layers and integrating POS
knowledge in the model, the multitask classification models raise die/dat prediction performance
by approximately 4 %. Concerning POS prediction performance, the multitask classification model
consisting of a sentence and context encoder performs best on all evaluation metrics and reaches
87.78 % accuracy.

There are ample opportunities to further analyze, enhance and/or extend the die/dat prediction
model. A qualitative study of the learned model weights, for example, could provide more insight in
the prediction mechanism of the models. We already obtain excellent results with a simple neural
architecture comprising relatively few parameters. We believe that more complex architectures such
as a transformer architecture (Vaswani et al. 2017) with multihead attention will improve results.
It might also be interesting to look at the possibility of integrating a language model such as BERT
(Devlin et al. 2018) in the classification model (e.g., as pretrained embeddings). Moreover, the
binary classification task could be extended to a multiclass classification task to predict not only die
and dat labels, but also respectively equivalent deze and dit labels. The difference between die/dat
and deze/dat, however, entails a difference in time and space: while die/dat indicates a physically
distant or earlier mentioned antecedent, deze/dit implies that the antecedent is physically near or
later mentioned in the text. Moreover, die/dat and deze/dit are preferably used for anaphoric and
cataphoric reference, respectively. The difference in reference (1-2) and spatial understanding (4)
between dat/dit and die/deze is demonstrated below.

1. “Je bent gek. Dat heb ik je al gezegd.” (VRT Taal 2020)
“You are crazy. I have told you that already.”

2. “Ik heb je dit al gezegd: je bent gek.”
“I have told you this already: you are crazy.”
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3. “Ik heb je al gezegd dat je gek bent.”
“I have told you already that you are crazy.”

4. “Lees eerst deze boeken, dan die andere.” (Taaltelefoon 2020)
“First, read these books, than those other.”

Dat in example 1 indicates an anaphoric reference to the previous sentence. The same message
is conveyed in example 2, but the sentence is referred to cataphorically using dit. Example 3 is
very similar to example 2 in terms of sequence in which the information is provided. However, dat
and dit differ in POS: dit is an independent demonstrative pronoun and functions as direct object
(2), whereas dat is a subordinating conjunction and the entire subordinate clause ”dat je gek bent”
functions as direct object (3). In addition, the word order differs in both examples. Finally, deze
(4) indicates that its antecedent is spatially close to the speaker, whereas die is spatially distant.
In order to learn the difference between dat/dit and die/deze, the model may need to focus more
on the antecedent’s position with respect to the pronoun, POS, word order and other tokens in the
sentences such as colons, and it will need to infer the spatial (and temporal) relation between the
speaker and the antecedent.
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