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Abstract

Classical hybrid models for automatic speech recognition were recently outperformed by end-to-
end models on popular benchmarks such as LibriSpeech. However, in many real life situations,
hybrid systems can prevail due to independent training, optimization and tuning of the acoustic
and language models. In this work, we implemented a state-of-the-art hybrid system for Southern
Dutch. For the acoustic model, we train a HMM-DNN on 155 hrs of the Corpus Gesproken
Nederlands (CGN) with a rather standard Kaldi recipe. As reference, we reused language models
developed during our N-Best 2008 evaluation. We further investigated the effect of language model
order and size on WER for a variety of test sets (held out data from CGN, N-Best dev and test
sets). Best results, 10.12% WER on the N-Best test set, are obtained with a 400k lexicon and a
4-gram language model (with 231M parameters). This new hybrid system outperforms our older
HMM-GMM based N-Best system by over 40%. Pruning away 90% of the LM parameters yields
a compact model suitable for small scale real-time apps while only taking a 10% relative hit on
performance.

1. Introduction

Hybrid models for automatic speech recognition (ASR) were recently outperformed by end-to-end
(E2E) models on popular benchmarks such as LibriSpeech. However, in many real life situations,
hybrid systems can prevail due to independent training, optimization and tuning of their components.
The classical hybrid ASR system is comprised of an acoustic model (AM) and a language model (LM).
The AM uses a Deep Neural Network (DNN) for estimating the observation probabilities (for each
phoneme or phonetic state) of the Hidden Markov Model (HMM). While these components require
separate training and don’t allow for joint optimization with a downstream objective, they do allow
for independent training, optimization and tuning. In many real life situations, the advantages
of independent training of the separate components (as in the hybrid setup) may outweigh the
advantage of having a global optimization objective (as in end-to-end systems). This is generally the
case with limited resources (a few hundred or fewer hours of data) or with significant language model
mismatch between train and test data, although self-supervised pre-training methods are alleviating
the need for labelled data. Current demands for our speech recognizer are exemplary of this need
as it often includes domain specific tasks such as lecture transcriptions, meeting transcriptions, etc.

In this paper we present our hybrid ASR model for Southern Dutch, implemented in Kaldi (Povey
et al. 2011). The aim is to create an acoustic model for Southern Dutch that is broadly applicable
and a global system that is adaptable to different use-cases through lexicon and language model
adaptations. To this end, we investigate the effect of language model order and size on word error
rate for held out data from the Spoken Dutch Corpus and the N-Best 2008 benchmark.
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2. Related works

Extensive results on the N-Best 2008 benchmark were obtained during the N-Best 2008 evaluation
campaign by van Leeuwen et al. (2009) and publications such as the ESAT 2008 system (Demuynck
et al. 2009) and SHoUT (Huijbregts et al. 2009). All these results were obtained with “classical”
HMM-GMM systems in which the observation probabilities of the HMM are computed via Gaussian
Mixture Models (GMM). Since then GMMs have been phased out in favor of DNNs. This has
already been the case for ESAT systems as used in the STON project (Verwimp et al. 2016) or for
the Code Switching system presented in Yılmaz et al. (2018). However, these systems used rather
simple multilayer perceptrons for the DNN which have also been replaced since by more complex
architectures. Neither did they present benchmark results on N-Best. In this paper we present a
state-of-the-art hybrid DNN and benchmark results on N-Best. Only a limited number of results
have been published so far with Dutch end-to-end systems. However, performance as pulished by
Röpke et al. (2019) is by no means competitive with the hybrid approach presented here.

3. Data

3.1 Speech corpora

3.1.1 Spoken Dutch Corpus

The Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN ) (Oostdijk 2000) is a manually
orthographically annotated speech corpus of around 900 hours of contemporary Dutch, of which 270
hours correspond to Southern Dutch. We only include Southern Dutch and exclude all narrowband
telephone speech and spontaneous conversational speech, which correspond respectively to compo-
nents C,D and component A of CGN. The resulting 155 hours of audio is randomly partitioned into
a training (90%) and development (10%) set, respectively called CGN-train and CGN-dev.

3.1.2 N-Best 2008

N-Best 2008 is a Dutch benchmark for Large Vocabulary Speech Recognition (Kessens and van
Leeuwen 2007). We evaluate only on Southern Dutch broadcast news and use the corresponding
evaluation (2h) and development materials (1h), further called Nbest-test and Nbest-dev. Note the
development materials of N-best were taken from CGN and Nbest-dev is thus included in the training
data.

3.2 Language and pronunciation model

As reference language model, we use the ESAT 2008 N-best n-gram language model (Demuynck
et al. 2009) without further adaptations. The training material for the LM was obtained from two
resources: the Dutch publisher PCM (360 million words) and the Flemish Mediargus (1,436 million
words) (Kessens and van Leeuwen 2007). The pronunciation model or lexicon is based on Fonilex
(Mertens and Vercammen 1997), which provides multiple Southern Dutch phonemic transcriptions
for 170k common Dutch words. For missing words, the lexicon is supplemented with automatically
generated phonetic transcriptions based on rule-based inflection, acronym handling and a grapheme-
to-phoneme module (Demuynck et al. 2009). Two version of the lexicon are considered, a 400k and
100k version, each with a corresponding LM. The words in both lexicons are chosen based on word
frequency in the LM training material. Their lexical coverage over the evaluation sets expressed as
out-of-vocabulary (OOV) rate can be found in Table 1.
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OOV
Lexicon CGN-dev Nbest-dev Nbest-test
100k 5.46 2.27 2.72
400k 2.80 1.38 1.75

Table (1) OOV-rates (%) for lexicon sizes 100k and 400k

4. Hybrid ASR system

We consider a standard hidden Markov model (HMM) based hybrid ASR system, comprised of an
acoustic model, pronunciation lexicon and n-gram language model. For the acoustic model, we train
a time delayed neural network (TDNN) with the Lattice-free Maximal Mutual Information crite-
rion (Povey et al. 2018) on CGN-train. A HMM-GMM system is used to compute the alignments
and build a phonetic-context decision tree needed for training the neural network. The remaining
components of the ASR system are represented in a decoding graph. For tuning some of the hy-
perparameters we used CGN-dev. The model implementation is done in Kaldi, using the NNET3
library for the TDNN, and is similar to the Switchboard recipe1.

4.1 HMM-GMM system

The purpose of the HMM-GMM system is to build a phonetic-context decision tree and to com-
pute alignments over the datasets. The HMM-GMM uses 13-dim mel frequency cepstral coefficents
(MFCC) features extracted with a 25ms window, a 10ms shift, 23 mel frequency bins, DCT trans-
formation and truncation to 13 coefficients. We train the HMM-GMM in several stages, the final
stage being speaker-adaptive training of a triphone model on MFCC+LDA+MLLT features as in
the standard Kaldi pipeline (Rath et al. 2013). This results in 3065 triphone states.

4.2 TDNN architecture

We train a sub-sampled time delayed neural network (TDNN) triphone model on 40-dim MFCCs
and delta’s. Again, MFCCs are extracted with a 25ms window and a 10ms shift, but now with 40
mel frequency bins and without cepstral truncation. We did not apply i-vector adaptation, since
in our experience i-vectors are not effective in scenario’s with short speaker fragments. We do
apply cepstral mean normalization (CMN) on a per-speaker basis over a 6 s window. The TDNN
has 14 TDNN-F layers (Povey et al. 2018) and each TDNN-F layer is 1536 dimensional, with a
160 dimensional low-rank weight factorization, ReLU activation and batch normalisation, as shown
in Figure 1a. We splice frames at offset {-1, 0 1} for the first three TDNN-F layers, {0} for the
next one and {-3, 0, 3} for the remaining, as shown in Figure 1b. Between the TDNN-F layers,
skip connections occur with a probability of 0.66. Last layers are a 256-dim fully connected layer,
followed by a 3065-dim output layer. The resulting TDNN has a 700ms receptive field and 17M
parameters. To reduce computation, we use a frame-subsampling factor of 3, meaning the network
outputs are evaluated every third frame, both during training and inference.

4.3 Data augmentation

We augment the training data by applying speed and volume perturbations (Ko et al. 2015, Rath
et al. 2013). Both augmentation methods result in mean shifts in the MFCC domain, similar to
vocal tract length normalisation. Speed perturbation is achieved by resampling the audio with speed
factors 0.9, 1.0 and 1.1, effectively tripling the training data. For volume perturbations, audio is
scaled by a factor drawn from a uniform distribution [ 18 , 2].

1. https://github.com/kaldi-asr/kaldi/tree/master/egs/swbd/s5c
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(a) (b)

Figure (1) Time delay neural network with (a) a single TDNN-F layer and (b) a depiction of the
sub-sampling procedure with activate time steps at each layer colored dark blue.

4.4 Neural network training

The TDNN is trained with the Lattice-free Maximal Mutual Information (LF-MMI) criterion (Povey
et al. 2018). MMI is a discriminative objective function which aims to maximize the probability
of the reference transcription, while minimizing the probability of all other transcriptions. Because
sequence level training tends to overfit (Povey et al. 2016), two regularization methods are used.
Firstly, a separate output layer with a standard cross-entropy objective is introduced. The cross-
entropy objective is scaled by a constant factor 0.1 to compensate for it’s larger dynamic range
compared to the LF-MMI objective. Note the separate output layer is not used during inference.
Secondly, we use a leaky HMM, which allows transition probabilities from each state in the HMM
to every other state, with a leaky-hmm-factor of 0.1. Dropout is varied during training: none occurs
for the first 20% of training, the dropout fraction increases linearly to 50% at 50% of training and
then linearly drops to zero again by the end of training.

4.5 Decoding graph

The decoding graph can be interpreted as a composed weighted finite state transducer (WFST) of
cascade H ◦ C ◦ L ◦ G. These components represent the HMM definition’s (H), context-dependent
phones (C), a pronunciation lexicon (L) and a language model (G). During decoding, a search graph
is constructed for each utterance, where each path through the graph corresponds to a different
hypothesis. Due to the sub-sampling of the AM outputs, the effective frame shift during decoding
is 30ms. Beam pruning is used to keep the search graph (or lattice) tractable. We use a beamwidth
of 15 and keep the number of active states minimally 200 and maximally 7000. Upon saving the
lattice, an additional pruning is performed to limit the number of hypotheses per time step to 8.

4.6 Evaluation

We report Word Error Rates based on the Levenshtein distance after normalizing both the reference
transcription and hypothesis. Normalization consists of number substitutions according to writing
conventions, decapitalization, and decompounding on hyphens. Compounding errors are ignored, as
are non-speech sounds when the recognizer identified them as such. We report single-pass decoding
results for the three evaluation datasets, but ultimately compare systems based on Nbest-test, since
CGN-dev was used for designing the TDNN and Nbest-dev is contained in the training data.

5. Language model optimization

In real-world systems, optimizing the language model with respect to practical constraints is neces-
sary. In a real-time system one preferably performs single-pass decoding to prevent latency issues
due to rescoring. Since larger LMs are able to generate a more accurate lattice (provided a good
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match between train and test data), the LM size is a limiting factor on the performance due to
memory constraints. Moreover, memory constraints can also prohibit the compilation of the decod-
ing graph HCLG, especially because the compilation cannot be parallelized. In our experience, 400
GB RAM is insufficient to successfully compile a decoding graph with a 400k 5-gram LM. In both
scenario’s, we want to maximize the language model size within the memory constraints. To this
end, we investigate how we best reduce the LM size by pruning.

5.1 Pruning methods

We consider two pruning methods: reducing the order and entropy-based pruning. Entropy-based
pruning aims to minimize the ‘distance’ between the distribution embodied by the original model
and that of the pruned model (Stolcke 2000). This is achieved by scoring each n-gram according
to the relative perplexity (or entropy) increase when it is removed and pruning all n-grams with
an increase below a threshold θ. Note that back-off weights are recomputed after pruning. All
adaptations to the reference language model are made using the SRILM toolkit (Stolcke 2002).

Entropy-based pruning removes n-grams that contribute less in terms of relative perplexity first,
thus higher order n-grams will naturally be pruned first as they have low probabilities. Note that
aggressive pruning, with a pruning threshold below 10−8, results in LMs with roughly the same
amount of bi- and trigrams, as shown in Figure 2.

Figure (2) The effect of entropy-based pruning of the number of n-grams for different LMs.

5.2 Optimal pruning strategy

The effect of different pruning strategies on ASR performance is shown in Table 2. We also report the
LM sizes in terms of number of n-grams (or equivalently, parameters) and their perplexity (PPL) on
the evaluation datasets. The large WER differences among the different evaluation sets is striking
and needs some clarification. As already remarked by Demuynck et al. (2008) the development
(Nbest-dev) and evaluation (Nbest-test) parts of the N-Best 2008 benchmark are very different.
While Nbest-test contains mainly spontaneous speech, dialogues, speaker turns and speech with
low quality acoustics, Nbest-dev contains more highly intelligible fragments from newsreaders. Also
CGN-dev, taken randomly from the CGN corpus, contains by design plenty of very short utterance
that are hard to recognize by themselves.

Comparing the language models based on Nbest-test, we find the largest improvement in perfor-
mance, a relative gain of almost 6% for the 3-gram, when using a 400k lexicon. We also find the
performance of the 400k 3-gram and 400k 4-gram are on par for moderate pruning. Overall we may

31



conclude that 400k performs consistently better than 100k and 4-gram better than 3-gram, except
in extreme pruning circumstances.

LM CGN-dev Nbest-dev Nbest-test
Lex. Order θ # n-grams WER PPL WER PPL WER PPL
100k 3g - 129 M 14.02 171 4.44 242 10.99 213
100k 3g 10−10 103 M 14.06 172 4.50 215 11.04 215
100k 3g 10−9 59 M 14.18 177 4.56 252 11.18 220
100k 3g 10−8 14 M 14.53 192 4.69 280 11.83 241
100k 3g 10−7 3 M 15.65 236 5.27 361 12.41 298
400k 3g - 161 M 12.58 212 3.46 368 10.26 272
400k 3g 10−10 103 M 12.64 214 3.48 370 10.36 274
400k 3g 10−9 72 M 12.75 221 3.58 382 10.58 282
400k 3g 10−8 17 M 13.17 242 3.87 425 11.10 311
400k 3g 10−7 3 M 14.47 302 4.49 564 12.01 390
400k 4g - 231 M 12.40 198 3.25 337 10.12 257
400k 4g 10−10 103 M 12.48 203 3.27 347 10.15 262
400k 4g 10−9 78 M 12.71 214 3.33 370 10.45 274
400k 4g 10−8 18 M 13.26 247 3.94 437 11.09 314
400k 4g 10−7 3 M 14.62 323 4.65 605 12.42 407

Table (2) Number of n-grams, perplexity (%) and Word Error Rate (%) for different pruned strate-
gies. Note that comparing perplexities only makes sense for a given lexicon size and dataset.

6. Conclusion

ASR technology has advanced greatly over the last 10 years by the introduction of DNN technology.
In our work, we find a relative gain in performance of 40% compared to the ESAT 2008 HMM-
GMM system. Since the decoding techniques remained similar, we can attribute this improvement
to the acoustic modelling. We also conclude that the best strategy for optimizing a language model
for a HMM-TDNN system used for single pass decoding in a scenario with memory constraints
is using entropy-based pruning of the 400k 4-gram language model up to the desired size, rather
than reducing the order. However, the most significant improvement in performance is due to a
larger lexicon. This all confirms that adapting lexicon and language model to the use-case is of
primary importance. Moreover, we should be able to do this with limited amounts of data if we
want to deploy many different small applications. Finally, looking forward, we are developing our
hybrid system further in a direction where we meet end-to-end systems halfway. In this we want to
replace the phonetic lexicon, which we believe to be the weakest component of the current system.
Therefore we are currently investigating lexicons using canonical graphemic transcriptions instead of
canonical phonemic transcriptions, where we are using transformers to automatically generate these
grapheme-2-grapheme conversions.
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