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Abstract
Pre-trained large-scale language models such as BERT have gained a lot of attention thanks to

their outstanding performance on a wide range of natural language tasks. However, due to their
large number of parameters, they are resource-intensive both to deploy and to fine-tune. Re-
searchers have created several methods for distilling language models into smaller ones to increase
efficiency, with a small performance trade-off. In this paper, we create several different distilled
versions of the state-of-the-art Dutch RobBERT model and call them RobBERTje. The distilla-
tions differ in their distillation corpus, namely whether or not they are shuffled and whether they
are merged with subsequent sentences. We found that the performance of the models using the
shuffled versus non-shuffled datasets is similar for most tasks and that randomly merging sub-
sequent sentences in a corpus creates models that train faster and perform better on tasks with
long sequences. Upon comparing distillation architectures, we found that the larger DistilBERT
architecture worked significantly better than the Bort hyperparametrization. Interestingly, we also
found that the distilled models exhibit less gender-stereotypical bias than its teacher model. Since
smaller architectures decrease the time to fine-tune, these models allow for more efficient training
and more lightweight deployment of many Dutch downstream language tasks.

1. Introduction

Large-scale pre-trained language models such as BERT (Devlin et al. 2019) have revolutionized many
natural language processing tasks thanks to their outstanding performance on downstream tasks.
Initially, a BERT model is pre-trained on a large corpus of text sequences to predict which words—
or more precisely tokens—are likely on masked positions in a sentence. This task, called Masked
Language Modelling (MLM), makes self-supervised learning possible on unlabeled text sequences.
Afterward, it only requires fine-tuning on relatively small labeled datasets to usually get (near)
state-of-the-art performance on a given language task, such as sentiment analysis, natural language
inference and token tagging tasks. However, such language models are difficult to deploy in produc-
tion environments due to the fact that these models are large and thus require a lot of storage, and
are slow and energy-intensive to perform inference on (Bender et al. 2021). Following the trend of
distilling the knowledge from neural network models (Hinton et al. 2015), many types of distillation
have been used to extract optimal parameters or extract the knowledge of larger language models
into smaller ones (Sanh et al. 2019, de Wynter and Perry 2020, Jiao et al. 2020). These smaller
models require fewer resources and time to run, at the cost of being slightly less accurate. Such a
distillation thus allows for a favorable trade-off between performance and ease of use at deployment.

In this paper, we distill the Dutch BERT model RobBERT v2 (Delobelle et al. 2020), and name it
RobBERTje1. We perform several distillations using a small unlabeled Dutch dataset and fine-tune
them on several language tasks to find the best processing of the dataset and target architecture
hyperparametrizations. The contributions of this paper are thus: (1) evaluating data processing for
distillation; (2) replicating studies on distillation architectures; and (3) creating a more lightweight
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version of RobBERT to enable more efficient fine-tuning and energy-efficient inferencing of Dutch
downstream language tasks.

2. Background & Related Work

2.1 BERT-like Models

The BERT model is a powerful pre-trained language model that is used for training a vast number of
more specific models for downstream natural language processing (NLP) tasks (Devlin et al. 2019). It
is a bidirectional language model that is implemented using a transformer encoder stack, which exists
of self-attention heads (Vaswani et al. 2017). By repeatedly applying these self-attention encoders, it
is able to learn highly contextualized embeddings for each word token. The insights learned during
the pre-training phase have proven to be useful for many other linguistic tasks when researchers
fine-tuned them on a wide range of other classification, regression and token tagging tasks, such
as sentiment analysis, part-of-speech tagging and named entity recognition (Devlin et al. 2019).
A BERT model is pre-trained with unlabeled data using the masked language modeling (MLM)
task and the next sentence prediction (NSP) task. The MLM task randomly masks tokens from a
sentence and asks the BERT model to fill in the masked token. The NSP task asks the BERT model
to predict whether two sentences follow each other or are randomly sampled in the text.

The RoBERTa model replicated the BERT model and robustly optimized it while still following
the same architecture as the BERT model (Liu et al. 2019). It found that the NSP training task
was redundant, and removed it from its pre-training regime. The RoBERTa model also further
improved the BERT architecture by changing its tokenizer to create a different vocabulary. These
optimizations increased its performance on most of the downstream NLP tasks. In all other aspects,
the RoBERTa model and the BERT model are usually mostly the same, and most findings on either
model tend to also apply to the other. An often used umbrella term for these types of models and
other similar optimized BERT models is “BERT-like models”.

Monolingual BERT-like models frequently outperform multilingual models, which are trained
on many languages simultaneously, for most popular language tasks (Nozza et al. 2020) Therefore,
a large number of BERT-like models have been trained using monolingual corpora. A popular
dataset containing these monolingual corpora for training monolingual BERT-like models is the
OSCAR corpus. This corpus is automatically constructed by using language classification on the
web-crawled Common Crawl dataset. Other researchers opt for building their own collection of
training corpora, as this can allow them to perform better on tasks for their goal domain (Rasmy
et al. 2021, Gu et al. 2021). One monolingual Dutch BERT model is called BERTje, a model
using the default BERT architecture trained on 2.4B tokens of selected formal Dutch text (de Vries
et al. 2019). Another Dutch BERT-like model that was released around the same time is RobBERT,
which uses the improved RoBERTa architecture and was trained on a larger corpus of 6.6B tokens
of web text from the Dutch OSCAR dataset (Delobelle et al. 2020). This improved architecture
and larger training dataset allow it to outperform BERTje on most language tasks. The RobBERT
model also achieved state-of-the-art results on many Dutch NLP tasks compared to other types of
models and has been used by numerous Dutch NLP researchers and practitioners since its release.
RobBERT forms a good basis for replicating several BERT distillation studies for Dutch and also
allows us to investigate several properties of distilled models, for example by altering its distillation
dataset.

2.2 Knowledge Distillation

Knowledge distillation is the technique used for learning a simpler model (student) from a more
complex model (teacher). Initially, this technique was called model compression and used a large
ensemble model (as a teacher) to label a large unlabeled dataset for the student model to learn from
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(Buciluǎ et al. 2006). The main advantage thus came from the student having access to a larger
dataset, even if this leads to somewhat noisy labels due to mistakes made by the teacher model.
This student model can then be used instead of the teacher model in certain situations thanks to
being smaller and thus faster and less resource-intensive at the cost of lower accuracy.

The model compression technique was later further extended for neural networks in a process
called knowledge distillation. This distillation uses the fact that neural networks typically predict
probabilities for each possible label by producing class probabilities using a softmax output layer.
In a neural network setting the student can then learn from the probabilities assigned by the teacher
to the incorrect labels, thus learning to generalize the same way the teacher model does (Hinton
et al. 2015). These label probability distributions zi (also called soft targets) are estimated using the
softmax function in Equation 1, where T is a temperature controlling the soft target importance, as
higher values produce softer probability distributions (Hinton et al. 2015). This temperature T also
acts as a regularizer during training (Hinton et al. 2015).

p(zi, T ) =
ezi/T∑
j e

zj/T
(1)

The distillation algorithm then trains the student model using a dataset as a transfer dataset,
predicting the probabilities for each label using both the student and the teacher, and using cross-
entropy as loss function Lce between these predictions for the same data point (see Equation 2,
where ti and si are the predictions by the teacher and student respectively). This way, the student
learns to approximate the predictions for all labels from its teacher.

Lce =
∑
i

p(ti, T ) ∗ log(p(si, T )) (2)

While this method was initially introduced to compress ensemble models into simple neural
networks, it has been used for a wide variety of other similar distillations. For example, it was
later used to also distill neural networks to similar networks with fewer layers and neurons or with
more efficient basic operators, and it has been suggested as a means for discovering good student
architectures (Gou et al. 2021).

2.3 BERT Distillation

With the rise of large-scale pre-trained language models with hundreds of millions of parameters like
BERT-like models, there is an alarming trend towards bigger models to get even higher accuracy
on downstream tasks (Sanh et al. 2019). As these models are scaling exponentially, distilling such
large language models has received a lot of attention. BERT-like models have been distilled using a
wide range of distillation methods in order to make them more suitable for real-world applications.
These distilled BERT-like models are easier to deploy, less resource-intensive to train and/or less
time-consuming to perform inference on. The goal of these distillation is usually to make a much
smaller model without having to sacrifice much accuracy on the target downstream task.

BERT-like models have two different training phases, namely a large, general pre-training phase
and a small, specific fine-tuning phase. Model distillation can happen after either training phase.
Depending on whether the model is distilled after pre-training or after fine-tuning, the distilled
model functions either still as a BERT-like model (i.e. general BERT distillation), or just as a
model for this particular task (i.e. task-specific BERT distillation). Sometimes these approaches are
mixed in a two-stage distillation model, such as TinyBERT, which first performs general transformer
distillation, and then fine-tunes the model via task-specific distillation (Jiao et al. 2020).
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2.3.1 Task-Specific BERT distillation

In task-specific BERT distillation, a large BERT-like model is fine-tuned for a particular task, and
then afterward distilled into a much smaller student network that can then only perform this specific
downstream task. This smaller student network is often a completely different type of neural network
architecture than BERT, e.g. an LSTM-based classifier. It has been shown that fine-tuned BERT-
like models can be distilled to a BiLSTM with the number of parameters cut to 1/100 and inference
time to 1/15 of the original model’s values and still achieve comparable results on language tasks
such as paraphrasing, natural language inference and sentiment classification (Tang et al. 2019).

2.3.2 General BERT distillation

General BERT distillation distills a pre-trained BERT-like model and aims to still retain the same
properties as the original pre-trained model. The resulting student model is usually a similarly
structured but smaller BERT-like architecture and thus can then still be fine-tuned for other down-
stream tasks, just like its teacher (Sanh et al. 2019). One of the reasons why distilled general BERT
models still have similar accuracy on downstream tasks is because the BERT model is significantly
overparametrized (Kovaleva et al. 2019). Most heads in the same layer contain self-similar attention
patterns (Clark et al. 2019). Due to BERT containing a lot of redundant heads given the rest of
the model, 20% to 40% of the heads can be pruned without noticeable negative impact (Michel
et al. 2019). In fact, disabling attention in certain heads of the BERT model can even lead to
performance improvement (Kovaleva et al. 2019).

DistilBERT employs knowledge distillation by learning the probability distribution for tokens in
the MLM task. Its student model is created by removing the token-type embeddings and pooler (for
the NSP task) from BERT, and halving the number of layers, while the rest of the BERT architecture
is kept identical. The distillation uses three loss functions, namely the LCE (Equation 2), the
masked language modeling loss Lmlm (Devlin et al. 2019) and cosine embeddings loss Lcos (Sanh
et al. 2019) to align student and teacher hidden state vector directions. The resulting model had
40% fewer parameters and still retained 97% its language understanding while being 60% faster
(Sanh et al. 2019).

Determining the size and architecture of the student model is a non-trivial task. Researchers
found optimal sizes for the student architecture, both experimentally (Turc et al. 2019) and using
formal optimal parameter extraction methods such as Bort (de Wynter and Perry 2020). Bort
was proposed as an optimal subset of BERT’s architectural parameters, and it is architecturally
similar to BERT and uses the RoBERTa tokenizer. Instead of deciding the architecture parameters
arbitrarily, the authors of Bort attempted to discover optimal parametrizations. These Pareto
optimal architectural parameters are supposed to balance the inference speed, parameter size and
error rate. The Bort parameters specify a model that is 16% the size of its BERT-large teacher
and 20 times faster than BERT-large on a CPU on a wide range of language tasks (de Wynter and
Perry 2020). While the found Bort hyperparametrizations are known (D=4, A=8, H=1024, I=768),
its finetuning algorithm Agora is not publicly available.

3. RobBERTje Distillation Experiments

There are several types of choices when performing distillation on a BERT-like model. While previous
research has explored several distillation algorithms and architectural parameters, little studies have
evaluated the importance of the transfer dataset. For example, there has been some disagreement
whether training on the non-shuffled or shuffled versions of the OSCAR training dataset influences
the performance of a pre-trained BERT-like model positively or negatively (Wouts 2020, Delobelle
et al. 2020). The same question can be raised about the transfer dataset in BERT distillation. Simi-
larly, no research has tried to replicate the Bort research by using its found optimal hyperparameters
for a language other than English.
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To perform our distillation experiments, we distill several smaller models from the Dutch Rob-
BERT model. Since this model achieves state-of-the-art results on many downstream Dutch language
tasks (Delobelle et al. 2020), distilling these models allows us to not only evaluate our hypotheses but
also provide the Dutch NLP community with smaller, near state-of-the-art Dutch language models.
As RobBERT uses the RoBERTa architecture (Liu et al. 2019) and the OSCAR corpus (Ortiz Suárez
et al. 2019), we decided that the distilled RobBERT models should also use smaller versions of both
for its architecture and transfer dataset. We then experimented with the influence of order and the
length of the transfer dataset and replicated studies of the DistilBERT and Bort architectures.

As there are many choices to make when distilling a model, we test out several choices for the
data and target distillation architecture. More specifically, we test whether it matters if the training
corpus is shuffled (§ 3.1), the influence of the length of the training sequences (§ 3.2) and what
distillation architecture hyperparametrization works best for the distilled model (§ 3.3).

3.1 To Shuffle Or Not To Shuffle?

The OSCAR 2019 corpus (Ortiz Suárez et al. 2019) is one of the most used datasets to train large
language models and is publicly available in a shuffled form for obfuscation purposes. It is constructed
by automatically classifying the language of the web-crawled CommonCrawl dataset. The original,
non-shuffled variant is also available upon request. While some hypothesized that using a non-
shuffled version could allow the model to learn dependencies spanning multiple sequences (Wouts
2020), the order itself might also not be important for pre-training because each input sequence is
used individually. Since RoBERTa dropped next-sentence prediction due to it being an ineffective
pre-training task, models using this optimized training regime also lack these longer connections
across separate training sequences (Liu et al. 2019). It is possible that not shuffling the dataset
could hurt the training performance due to less diverse training sequences in every batch. These
batches could then potentially be less representative of the true gradient over the whole dataset,
thus pushing the gradient into less desirable directions. To get more insights on the advantages
and disadvantages of shuffling the transfer datasets, we set up an experiment where we distilled
two models (Shuffled and Non-shuffled) using the DistilBERT regime, where only the nature of the
transfer dataset was different.

3.2 Sequence Merging for Increased Sequence Length

Another unexplored question is the impact of the length of the unlabeled text sequences of the
transfer dataset on the performance of the resulting distilled models. For example, the Dutch
OSCAR corpus has mostly relatively short sequences (< 40 tokens, Figure 2), which may or may
not comprise multiple sentences. However, since the OSCAR corpus marks the start and end of the
documents, these short sequences arise from using newlines and it is possible to concatenate these
related text sequences into valid longer ones. We thus derive a new transfer dataset by concatenating
two sequential lines from the same document into one training sequence with a probability p = 0.5.
We hypothesize that using longer sequences allows later input positions of the distilled model to
see more actual data instead of padding tokens. This is important, as up to 512 input token
positions are uniquely encoded with a positional encoding. Given the fact that OSCAR mostly has
short sentences, later positions do not have as many training examples as earlier positions, which
might affect tasks containing important information at the end of the input positions. Merging
subsequent sequences from the same documents could thus theoretically improve the performance
of downstream tasks that involve processing long sequences. An additional benefit is that merging
sequences compacts the dataset into fewer sequences, thus decreasing training time and energy for
pre-training and distillation. Since a BERT-like model always processes all input tokens anyway,
the longer lengths do not influence training time. One downside is that this leaves relatively less
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training data for the initial input positions of the model compared to the original version using a
non-merged corpus (e.g. Non-shuffled).

Activiteiten vinden plaats op het menpark Monnikenbos te Wapenveld. In overleg …
In overleg op een andere locatie.

Voor de onderhoudswerkzaamheden zijn we op zoek naar een klusjesman …
We zoeken een of meerdere vrijwilligers die kunnen helpen met allerlei …
Het betreft een vrijwilligersfunctie. Eventuele reiskosten kunnen worden …

Append sequence with probability p

1
2
3
4
5
6
7

Figure 1: Excerpt from the Dutch section of OSCAR (Ortiz Suárez et al. 2019) to highlight how dif-
ferent sequences, stored and represented as different lines, are merged within a document.

We created a new dataset from the non-shuffled Dutch OSCAR dataset by randomly merging a
sequence with its following sequence with a probability of 50% if they are from the same document.
This resulted in a smaller corpus with generally longer sequences (Figure 2), thus reducing the time
required to perform the distillation. After the sequence merging, we shuffled the sequences from the
resulting, merged corpus before using it as a transfer dataset.

3.3 Target Architecture

There are several choices when it comes to choosing the student architecture and its hyperparametriza-
tion for distillation, as we discussed in § 2.3. For the earlier two experiments, we used the DistilBERT
architecture hyperparametrizations (Sanh et al. 2019), which roughly halves the number of param-
eters and keeps the general properties of the teacher (RobBERT). As mentioned earlier, the Bort
model recently emerged with a claim to have found an optimal hyperparametrization, balancing in-
ference speed, parameter size and error rate (de Wynter and Perry 2020). The Bort model also uses
only 56M parameters, while its teacher BERT-large uses 340M (for reference, the BERT-base model
uses 110M parameters). We aim to replicate this study using the same student architecture with the
same hyperparameters and test whether these parametrizations are still optimal when used on this
Dutch RobBERT model. However, we kept the hidden size to 768 to allow for hidden distillation,
which is the same hidden size as the teacher model. We used the Merged subsequences transfer
dataset to distill this Dutch Bort model from its RobBERT teacher. Since the specialized code used
for fine-tuning in the Bort paper is not publicly available, we use the same fine-tuning procedures
as Sanh et al. (2019) to fine-tune the resulting distilled model.

4. Experimental setup

In this section, we provide an overview of the Dutch language tasks and the corresponding datasets
we used to evaluate our models. We also give a detailed overview of our distillation and fine-tuning
setup.

4.1 Benchmark Task Datasets

We evaluated the performance of the distilled models described in the previous section on six types of
language tasks. This wide range of downstream language tasks allows us to gain insights into which
models perform better on what types of tasks. These tasks overlap with evaluation tasks in the
original RobBERT paper, which are described in more detail in that paper (Delobelle et al. 2020).
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Figure 2: Distribution of the sequence length of non-shuffled OSCAR with and without merging
sentences, and the sequence lengths of several task datasets.

4.1.1 Sentiment Analysis (SA)

Sentiment analysis is a language task in which the model needs to predict subjective information of
a text, e.g. whether a given article has a more positive or more negative sentiment. To evaluate the
sentiment analysis performance, we use the Dutch Book Reviews Dataset (DBRD) (van der Burgh
and Verberne 2019), which is a binary classification sentiment analysis dataset. It contains 22K
book reviews with a label denoting whether the review was a positive (4-5 stars on the Hebban.nl
book reviews website) or a negative review (1-2 stars). The text sequences are generally rather long,
with 20.8% of the reviews longer than the maximum input size of the RobBERT and RobBERTje
models (Figure 2). For these long reviews, we use the last 512 tokens of the sequence, as these were
also used instead of the first 512 tokens as in Delobelle et al. (2020), which found that this choice
leads to better performance in the RobBERT evaluation.

4.1.2 Co-reference Resolution (CR)

Co-reference resolution is a language task in which the model predicts which parts of a sentence
reference the same entity, e.g. matching pronouns with the named entity earlier or later in a
sentence. To evaluate the performance of the distilled models on this type of task, we make the
models predict whether a sentence needs to be filled with die or dat on a given position, as the
choice depends on which word it refers to. We use the EuroParl dataset (Koehn et al. 2005), which
contains the proceedings from the European Parliament, to predict the pronouns in. This corpus
was also used when this die-dat-disambiguation task was initially introduced by Allein et al. (2020).
In the dataset, 947k training sentences are used for training the model to predict whether “die” or
“dat” should be inserted in a position in the sentence, 237k sentences are used as validation and 305k
for testing.

4.1.3 Named Entity Recognition (NER)

In a named entity recognition task, a model needs to predict which parts of a text sequence are
named entities, and often also what type of named entity. In our experiments, we evaluate the
named entity recognition capabilities by using the CoNLL-2002 dataset (Tjong Kim Sang 2002). In
this dataset, words from sentences are tagged as starting or continuing a named entity, and also
what type of entity (person, organization, location or miscellaneous). The training data contains
15.8K sequences, with 2.8K validation sequences and 5.1K test sequences.
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4.1.4 Part-of-Speech Tagging (POS)

Part-of-speech tagging is a language task in which a model predicts the part-of-speech tag (e.g.
adjective, noun, etc) for each word of a text sequence. For our experiments, we used the universal
dependencies version of the Lassy dataset (Van Noord et al. 2013). This dataset contains sentences
where each word is tagged as the beginning or continuing a certain part-of-speech tag and contains
5787 training examples, 676 examples for validation and 875 examples for testing.

4.1.5 Natural Language Inference (NLI)

Natural language inference is a language task in which a model needs to predict for two statements
whether the second statement is a consequence, contradiction or neither of the first statement. We
use SICK-NL (Wijnholds and Moortgat 2021) as the natural language inference dataset for our
experiments. This dataset is a semi-automatically translated version of the original SICK natural
language inference dataset (Marelli et al. 2014), which contains sentence pairs annotated with their
relatedness (score from 1 to 5) and entailment (entailment, contradiction and neutral). We modified
the SICK-NL dataset by adding a period at the end of the sentences, as this significantly improves the
performance for BERT models due to the fact that these models are generally trained on well-formed
sentences with complete punctuation.

4.1.6 Pseudo-Perplexity (PPPL)

Perplexity is a metric for evaluating language models and is defined as the exponentiated average
negative log-likelihood of a sequence, thus indicating how well a model can predict the right token.
Since BERT models are generally not well suited for this metric, an alternative pseudo-perplexity
(PPPL) was proposed for measuring how well the MLM models a corpus of sentences (Salazar
et al. 2019). For each input sentence, the PPPL algorithm creates all possible versions of this
sentence with one masked token and then multiplies the probabilities for all sentences. We used the
last segment of the non-shuffled OSCAR corpus as the evaluation data. While our previous language
tasks all measure the performance of fine-tuned versions of the distilled models, the PPPL metric
allows us to measure the MLM quality of the distilled model itself2.

4.2 Setup

After distillation, we fine-tune all 4 distilled model variants on the trainable tasks (SA, CR, NER,
POS, and NLI) discussed in § 4.1. For each of the 5 fine-tuning tasks, we train 5 models with random
hyperparameters (a full list is provided in Table 3), resulting in 100 fine-tuned models in total. We
select the best-performing model on the validation set and evaluate this on the test set, of which
the results are reported.

All fine-tuned models were trained on 1 Nvidia 1080 Ti GPU with a batch size of 8. Because
the distillation objective required loading both the teacher model and the smaller trainable model,
the batch size was slightly lower, namely 5. To improve stability during distillation, we accumulated
gradients for 128 steps, giving an effective batch size of 640. We perform these experiments using
the first 1GB of the non-shuffled Dutch OSCAR dataset using one Nvidia 1080 Ti. For the MLM
perplexity evaluation, we use 50k sequences from the last shard of the non-shuffled dataset.

To aid reproducibility and to promote further fine-tuning on these smaller but effective lan-
guage models, we release our distilled RobBERT models, as RobBERTje, as well as the training
configurations, on https://github.com/ipieter/robbertje and on HuggingFace’s Hub under the
“DTAI-KULeuven/robbertje-” prefix.

2. We used a script at https://github.com/iPieter/universal-distillation#evaluating-language-models.
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5. Results

We present the results of our experiments in Table 1, where we also include some hyperparameters
and the size of the training corpora. For comparison, we also included another Dutch BERT model
called BERTje (de Vries et al. 2019). We discuss the results of each experiment separately.

5.1 Shuffled versus Non-Shuffled

In the first experiment, we tested the influence of shuffling the transfer dataset on the performance of
the resulting distilled model. This is achieved by distilling two RobBERTje models, which only differ
in the fact that Shuffled uses the shuffled OSCAR corpus, and Non-shuffled the original OSCAR
corpus. The differences between these two models are very small for most downstream language
tasks. Not shuffling the training data appears to give rise to a better MLM head in the distilled
pre-trained model, as its pseudo-perplexity (PPPL) is much lower and thus better. Thee Shuffled
model performs much better on sentiment analysis.

Compared to both RobBERT and BERTje, we observe that the performance trade-off varies
between tasks. On most tasks, like NLI and POS tagging, there is only a slight decrease compared to
the teacher model. Interestingly, the distilled Non-shuffled model even performs slightly better than
the larger BERTje on co-reference resolution. The performance of both Non-shuffled and Shuffled
on the NER and PPPL tasks are in contract much lower compared to their teacher RobBERT.

5.2 Effect of Sequence Merging

We distilled a model called Merged that only differs with the Shuffled model in that it first concate-
nates some subsequent sequences of the transfer dataset (as explained in § 3.2). We hypothesized
that merging data into longer subsequences is advantageous to tasks using long sequences as input,
as the later input tokens see relatively more input. We also hypothesized that merging subsequent
sequences would likely be detrimental for tasks that deal with shorter sequences as they processed
fewer training sequences than without merging. We see that the Merged model acts according to
our hypotheses compared to its non-merged counterparts. It performs better than both on the sen-
timent analysis task, which uses the long movie reviews of the DBRD dataset that often use all
input tokens (Figure 2). Similarly, it performs worse on tasks that have shorter sequences such as
SICK-NL, which has the shortest sequences of all tasks (as can be seen on Figure 2). Similarly, there
is another large trade-off for co-reference resolution, which also uses more of the early input tokens.
Thus, we recommend this model only for downstream tasks that require the full input token length.

5.3 Target Architecture Hyperparametrization

We evaluated the performance when using the Bort hyperparametrizations on the Dutch RobBERT
model by distilling a model with these architecture sizes. Our distilled Bort model is much smaller
and faster than the other DistilBERT-based models. For example, fine-tuning to SICK-NL is 4
times faster than RobBERT and 2.2 times faster than our merged sequence distillation. However,
while it might be much smaller, it is significantly outperformed by its DistilBERT counterparts on
all tasks. It also has a much worse performance on the tasks compared to its teacher than one
might expect from the results of the original English Bort (de Wynter and Perry 2020). As this
set of hyperparameters was found to be optimal for the English RoBERTa model (de Wynter and
Perry 2020), these results are quite surprising. One possible explanation is that we had to use
default fine-tuning algorithms instead of the specialized Bort fine-tuning algorithm called Agora
because this algorithm was not made public. Regardless, we were thus unable to find evidence that
their calculated optimal hyperparameters also work for Dutch BERT models.
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Table 1: Overview of all pretrained models and benchmark results and number of decoder layers
D, number of attention heads A, hidden size H and intermediate layer size I. We report
accuracy and 95% CI for all benchmark scores, except NER, which uses the F1 score.
PPPL results for RobBERT are indicative, since we could not guarantee the pre-training
data was not seen before. (Results indicated with ∗ are reported by Delobelle et al. (2020),
∗∗ by Wijnholds and Moortgat (2021) and ∗∗∗ by de Vries et al. (2019).)

Hyperparameters Benchmark scores

Model Data D A H I Params SA CR NER POS NLI PPPL

RobBERT v2 39 GB 12 12 768 3072 116 M 94.4± 1.0∗ 99.2± 0.03∗ 89.1∗ 96.4± 0.4∗ 84.2± 1.0 7.76
BERTje 12 GB 12 12 768 3072 109 M 93.0∗∗∗ 98.3∗ 88.3∗ 96.3∗ 83.94∗∗ 12.22
Non-shuffled (§ 3.1) 1 GB 6 12 768 3072 74 M 90.2± 1.2 98.4± 0.1 82.9 95.5± 0.4 83.4± 1.0 12.95
Shuffled (§ 3.1) 1 GB 6 12 768 3072 74 M 92.5± 1.1 98.2± 0.1 82.7 95.6± 0.4 83.4± 1.0 18.74
Merged (§ 3.2) 1 GB 6 12 768 3072 74 M 92.9± 1.1 96.5± 0.1 81.8 95.2± 0.4 82.8± 1.1 17.10
Bort (§ 3.3) 1 GB 4 8 768 768 46 M 89.6± 1.3 92.2± 0.1 79.7 94.3± 0.4 81.0± 1.1 26.44

6. Limitations and fairness

Delobelle et al. (2020) also presented an in-depth fairness analysis of their model, investigating
both intrinsic and extrinsic forms (Blodgett et al. 2020) of gender bias. Because stereotypes, biased
language and even hate speech all occur in the datasets on which many language models are trained,
including OSCAR for RobBERT and RobBERTje (Caswell et al. 2021), these models are capable
of replicating these input patterns. This results in many observed problematic correlations (May
et al. 2019, Blodgett et al. 2020, Webster et al. 2020, Delobelle et al. 2020). This sparked the creation
of metrics to quantify these correlations in LMs like BERT, some based on previous works on bias
in word embeddings (Bolukbasi et al. 2016). For an overview and comparison of such metrics, we
refer the reader to Delobelle et al. (2021).

The Word Embedding Association Test (WEAT) (Caliskan et al. 2017) is one such metric that
was later extended to the Sentence Embedding Association Test (SEAT) using templates (May
et al. 2019). Kurita et al. (2019) observe that using WEAT for the learned BERT embeddings fails
to find many statistically significant biases, which is addressed in the presented log probability bias
score. This score computes a probability ptgt for a target token t (e.g. ‘He’ or ‘She’) from the
distribution of the masked position Xm following

ptgt = P (Xm = t | x; θ) ,

for a template sentence, e.g. “<mask> is a nurse” with <mask> indicating the masked position Xm.
Since the prior likelihood P (Xm = t) can skew the results, the authors correct for this by calculating
a template prior pprior by additionally masking the token(s) with a profession or another attribute
xp, following

pprior = P (Xm = t | x\{xp}; θ) .

Both probabilities are combined in a measure of association log
ptgt

pprior
and the bias score is the

difference between the association measures for two targets, like ‘He’ and ‘She‘. Kurita et al. (2019)
applied their method on the original English BERT model (Devlin et al. 2019) and found statistically
significant differences for all categories of the WEAT templates. We use this metric in combination
with the translated list of professions by Delobelle et al. (2020) to evaluate gender stereotyping in
our distilled models, as shown in Table 2.

The bias evaluations in Table 2 do show that the original RobBERT model was exhibiting some
gender stereotyping with regards to professions, as noted before by Delobelle et al. (2020). The
distilled models do seem to correct this stereotyping and all except the Bort model even overcom-
pensate. Webster et al. (2020) noted that regularization methods, in their case dropout, are effective
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Table 2: Log probability bias score for RobBERT and our RobBERTje models. Positive scores
indicate higher correlations with gender stereotypes of professions.

Bias score

Teacher (Delobelle et al. 2020) 1.10

Non-shuffled (§ 3.1) -0.52
Shuffled (§ 3.1) -0.50
Merged (§ 3.2) -0.67
Bort (§ 3.3) 0.04

in attenuating stereotypes. Since knowledge distillation with soft targets can be considered a form
of regularization (Hinton et al. 2015), we suspected that our distilled models would show a decrease
in stereotypes. The results in Table 2 confirm this.

7. Future Work

In this paper, we focused on general BERT distillation to create distilled versions of RobBERT that
can still be fine-tuned in the same way. It would be interesting to perform task-specific distillation
or even two-stage distillation like TinyBERT on RobBERT and compare the performance against
the general RobBERTje models. Since models distilled from task-specific distillation do not need
to be BERT-like models, they can be orders of magnitudes smaller and possibly more accurate on
the target task. In this paper, however, we focused on general BERT distillation as we believe
this lowers the threshold of fine-tuning Dutch BERT-like models thanks to the lower computational
requirements and faster inference times. We hope that the Dutch NLP community can benefit
from these models by fine-tuning a suitable RobBERTje model for their own downstream task with
significantly less computing power and storage.

8. Summary and Conclusions

In this paper, we created multiple distilled versions of the state-of-the-art Dutch RobBERT model
and called this family of models “RobBERTje”. In doing so, we found that the influence of using a
shuffled dataset is small for distillation. We also found that randomly merging subsequent sequences
of the non-shuffled dataset improves the performance of the distilled language model for tasks using
longer input sentences. We replicated the Bort approach and found that while the model is much
smaller than its DistilBERT counterpart, its performance was significantly worse on all tested tasks.
Interestingly, we found that in distilling the RobBERTje models, they all show less stereotypical bias
than their teacher RobBERT due to the soft labels acting as a regularizer. The overall results suggest
that our new distilled RobBERTje models can be used for making a large number of downstream
Dutch natural language processing tasks much more efficient while still achieving close to state-of-
the-art results.
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Appendix A. Hyperparameter space

Table 3: The hyperparameter space used for fine-tuning.
Hyperparameter Value

adam_epsilon 10−8

fp16 False
gradient_accumulation_steps i ∈ {2, 4, 8, 16}
learning_rate [10−6, 10−4]
max_grad_norm 1.0
max_steps -1
num_train_epochs 3
per_device_eval_batch_size 8
per_device_train_batch_size 8
max_sequence_length. 512
seed 1
warmup_steps 0
weight_decay [0, 0.1]
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