
Computational Linguistics in the Netherlands Journal 11 (2021) 281-306 Submitted 10/2021; Published 12/2021

Automatic Detection and Annotation of Spelling Errors and
Orthographic Properties in the Dutch BasiScript Corpus

Wieke Noa Harmsen ∗ wieke.harmsen2@ru.nl
Catia Cucchiarini ∗ catia.cucchiarini@ru.nl
Helmer Strik ∗ helmer.strik@ru.nl

∗Centre for Language and Speech Technology, Nijmegen, The Netherlands

Abstract
Learning to spell in Dutch is a difficult task that children cannot learn autonomously. Essential for
developing good spelling skills is direct instruction of the spelling principles, enough practice, and
feedback. With respect to direct instruction, a qualitative overview of which spelling errors are
made by which type of children at which point in time can be very useful to design effective spelling
lessons. In addition, such an overview would enable large-scale, quantitative, research on children’s
spelling development. In an earlier study we presented an algorithm that can automatically detect
and annotate spelling errors in BasiScript, a corpus containing texts written by primary school
children. In the present study, we extended the functionality of this algorithm to make it capable
of annotating written words with their orthographic properties. In practice, this means that
correctly spelled letters are detected and annotated with the spelling principle that is applied
correctly. These additional annotations allow us to compute relative scores, which show how often
a spelling principle is applied incorrectly with respect to the total occurrence frequency of that
spelling principle.

Using this relative frequency measure, we found that spelling principles from the syntax and
semantics category are more problematic to learn for Dutch primary school children between
second and sixth grade than phoneme-to-grapheme conversion, context and morphology spelling
principles. Primary school children are especially bad at applying spelling principles concerning
capital letter use, the writing of present participles, and past participles ending in “d”, while you
hear a /t/ sound.

In this paper, we first describe the implementation of the algorithm, its evaluation, and the
computation of the relative frequency in more detail. We then discuss the results and possible
limitations of our study and address future avenues of research.

1. Introduction

1.1 Spelling in Dutch

The ability to express oneself in writing is an important skill that everybody should acquire to
fully participate in society. Essential for good writing skills is a good command of spelling. In an
alphabetical language like Dutch, this involves choosing the right letters (graphemes) to represent
the speech sounds (phonemes) a word consists of. However, knowledge of only phoneme-to-grapheme
conversion spelling principles (Nunn 1998), also known as “unmarked” spelling principles (Horbach-
Kleijnen 1992), is not sufficient to write flawless Dutch. Since Dutch is only a relatively transparent
language (Borgwaldt et al. 2004), a frequently occurring problem is that some phonemes can be
written in multiple ways. In these cases, a set of autonomous (Nunn 1998) or “marked” spelling
principles (Horbach-Kleijnen 1992) is necessary to obtain the correct spelling of a word. These
marked spelling principles are based on the context (the context of a letter or sequence of letters
determines how it is written), morphology (morphemes with the same meaning are written in the
same way), syntax (the function of a word determines the spelling of the suffix), and semantics
(the meaning of a word influences the spelling) of a word. Table 1 represents for each of these four
categories an example where the application of marked spelling principles is necessary.

©2021 Wieke Noa Harmsen, Catia Cucchiarini, Helmer Strik.



Table 1: Application of marked spelling principles is necessary for the spelling of some words. There
are four categories of marked spelling principles. This table shows for each category an
example. The computer phonetic alphabet used to write the phonemes is the same as used
in the Spoken Dutch Corpus 2.0 (Taalunie 2014).

Marked
Category Example Explanation

Phonemes Graphemes
English

translation

Context m a k @ n (wij) maken (we) make

While the /a/ is long, it is
written as “a” instead of
“aa”, because the vowel
occurs at the end of a syllable.
The context of a vowel
determines the spelling.

Morphology k A s j @ kastje little cupboard

While the “t” is not
pronounced, it is written, since
the word “kastje” contains the
morpheme “kast” (cupboard).

Syntax v E r b r A n t
(ik) verbrand,
(hij) verbrandt,
(ik ben) verbrand

(I) burn,
(he) burns,

(I am) burned

“verbrand” and “verbrandt” are
both pronounced in exactly the
same way. The function of the
verb (syntax) in the sentence
determines the spelling.

Semantics n EI m e x @ n Nijmegen Nijmegen

“Nijmegen” and “nijmegen” are
both pronounced exactly the
same. The semantics of the
word (Nijmegen is a city)
determines that it is written
with a capital letter.

1.2 Dutch spelling errors

In this study, we mark a word as spelled incorrectly, when it is written with incorrect orthography.
In addition, we define a spelling error as a Phoneme-Corresponding Unit (PCU) that is inserted,
deleted or substituted when aligning the current, incorrect spelling of a word with its target spelling.
The term PCU was introduced by Laarmann-Quante (2016) in her research on automatic detection
and annotation of German spelling errors and refers to a sequence of graphemes that corresponds
to one phoneme. In Dutch, this can be a sequence of only one grapheme (e.g., “k” or “p”), but
also of two (e.g., “oe” or “ch”) or even three graphemes (e.g., “sch”). An example of how the word
“automatisch” (automatic) is split into PCUs is visible in Table 2.

Table 2: Segmentation of the word “automatisch” (automatic) into PCUs. The phonemes are writ-
ten using the computer phonetic alphabet from Corpus Spoken Dutch 2.0 (Taalunie 2014).

Phonemes AU t o m a t i s
PCUs au t o m a t i sch

There are three types of PCUs: PCUs that are written using only consonants (e.g., “k”, “ph”,
“sch”), PCUs that are written using only vowels (e.g., “e”, “oe”, “eau”) and PCUs that are written
using a combination of vowels and consonants (e.g., “qu”, “ij”). In the PCU alignment, it is possible
to align vowel PCUs with vowel PCUs and consonant PCUs with consonant PCUs, even if they

282



do not correspond to the same phoneme. However, vowel PCUs cannot be aligned with consonant
PCUs and vice versa. In addition, for the combination PCUs that consist of both a vowel and
consonant, it depends on the phoneme they correspond to whether they are treated as a vowel PCU
or consonant PCU. For example, ”ij” corresponds to the phoneme /ei/, so this combination PCU is
treated as a vowel PCU. In Table 3 some alignment examples are shown.

Table 3: Four examples in which the PCUs of the target spelling (correct spelling) are aligned with
the PCUs of the original spelling (incorrect spelling). Each spelling error is marked as
insertion error (“i”), deletion error (“ d”) or substitution error (“s”).

Table 3a: The word “liep” written incor-
rectly as “loopte” (walked).

PCUs target l ie p - -
PCUs original l oo p t e

Error type s i i

Table 3b: The word “keek” written incor-
rectly as “kijkte” (watched).

PCUs target k ee k - -
PCUs original k ij k t e

Error type s i i

Table 3c: The word “lachte” written incor-
rectly as “lachde” (laughed).

PCUs target l a ch t e
PCUs original l a ch d e

Error type s

Table 3d: The word “chique” written incor-
rectly as “chic” (chic).

PCUs target ch i qu e
PCUs original ch i c -

Error type s d

1.3 Learning to spell in Dutch

Writing flawless Dutch requires knowledge of both marked and unmarked spelling principles
(Horbach-Kleijnen 1992, Nunn 1998, Schijf 2009). Since children are not very good in discover-
ing underlying spelling principles by themselves (Assink 1986), spelling instruction is required in
which spelling principles are explicitly taught. In these lessons, children also practice writing, which
appears to be essential for developing good spelling skills. As a matter of fact, Leerdam et al. (1998)
found that by only reading words and not writing them, it is not possible to develop good spelling
skills. In addition, Cordewener et al. (2016) have shown that it is important to write complete
words, because writing only parts of words or single letters does not support the development of
good spelling skills. As to feedback on spelling, children need to know what they did right and
wrong, so that they know where they can improve their spelling. Feedback can be given in many
forms and Harward et al. (1994) showed that immediate feedback on each written word is more ef-
fective for developing good spelling skills than delayed feedback given after a complete list of words
has been written.

1.4 The present study

Thus, learning to spell is a difficult task that children cannot learn autonomously. They need
help from a teacher who teaches spelling principles, stimulates them to practice, and corrects their
work. Quantitative knowledge about which spelling errors are made by which type of children at
which point in time can be very useful to design effective spelling lessons and enable quantitative
research on children’s spelling ability. So far, Dutch children’s spelling ability has only been research
qualitatively using dictations (Horbach-Kleijnen 1997, Keuning and Verhoeven 2008, Schijf 2009).

283



In a previous study, we reported on the development of an algorithm that makes automatic
quantitative analysis of spelling errors possible (Harmsen et al. 2021). This algorithm has the
functionality to automatically detect incorrectly written PCUs and to annotate them indicating
which spelling principle was violated. We applied this algorithm to the BasiScript corpus (Tellings
et al. 2018), a large corpus of texts written by primary school children, and found that most spelling
errors resulted from incorrect application of unmarked spelling principles, which are also called
phoneme-to-grapheme conversion principles. However, an important caveat to this result is that
unmarked spelling principles are also much more frequently applied than spelling principles from
other categories. For example, writing the word “hond” (dog) involves three applications of a
phoneme-to-grapheme conversion rule (for writing “h”, “o” and “n”) and one application of the
morphology rule “Final Devoicing” (for writing “d”).

The first aim of the current study is to overcome this limitation by expanding the spelling error
detection and annotation algorithm presented earlier (Harmsen et al. 2021), so that it is also capable
to annotate correctly written PCUs with their orthographic property. This property indicates which
spelling principle was applied correctly. The second aim of the study is to use both orthographic
property and spelling error annotations to compute relative scores that express how often a spelling
principle is applied incorrectly with respect to how often it is used in total (both spelled correctly and
incorrectly). This yields quantitative results that describe how well children have mastered specific
spelling principles, and thus how problematic to learn they are. The following research questions
describe these two aims:

1. Can we extend the rule-based algorithm developed by Harmsen et al. (2021) to also be able to
annotate each PCU from a correctly written Dutch word indicating which spelling principle
should be applied to spell this PCU correctly?

2. Can we use the developed algorithm to discover which spelling principles are relatively most
problematic to learn for Dutch primary school children from grade two (7-8 years old) to grade
six (11-12 years old)?

1.5 Annotating correctly written PCUs with spelling principles

For German, two algorithms have been developed that can detect and annotate both correctly and
incorrectly written PCUs indicating the spelling principle that is violated (Berkling and Lavalley
2015, Laarmann-Quante 2016). Because German is just as Dutch an alphabetical and relatively
transparent language (Borgwaldt et al. 2004), our hypothesis with respect to the first research
question is that it should be possible to extend the current spelling error detection and annotation
algorithm, so that the detection and annotation of correctly spelled PCUs is also possible.

Both German algorithms use a different method for the detection and annotation of correctly
and incorrectly written PCUs. Berkling and Lavalley (2015) first automatically derive the phonetic
transcription of both the original spelling (what the child wrote, including spelling errors) and target
spelling (a corrected version of the original text). After that, they align these two phonetic strings
using MARY (Schrödel and Trouvain 2003), an algorithm based on the articulatory features of
phonemes. Using this phonetic alignment, the graphemes of the original and target spelling can
also be aligned with each other. In this alignment, errors are detected as substitutions, insertions,
or deletions in the alignment. Subsequently, both the incorrectly and correctly spelled letters are
annotated so that both the spelling principles that are violated and those that are applied correctly
are shown using a set of rules. The spelling error annotations are saved in the “error” layer and the
annotations of correctly written letters in the “basis” layer.

In the second German spelling error study by Laarmann-Quante (2016), alignment of original
and target spelling is carried out differently. She first generates a lexicon containing all possible
misspellings of a target word that occur when one or more spelling principles are applied incorrectly.
For each possible misspelling, both the alignment with the target transcription and the violated

284



spelling principle that causes the error are saved in the lexicon. The lexicon also contains all
correct spellings of words, and the spelling principles that need to be applied to obtain this spelling.
After creation of this lexicon, each (misspelled) word achieved from an input text can be detected
and annotated by searching the words in the lexicon. When a match is found, alignment with the
target spelling, correctly applied spelling principles (“orthographic properties”), and violated spelling
principle(s) (“spelling errors”) can be derived from this lexicon. In comparison to the algorithm by
Berkling and Lavalley (2015), this method yields better alignment of target and original words,
because a complete search is done. However, this approach is computationally inefficient and time-
consuming. Since the algorithm by Berkling and Lavalley (2015) also yields good detection and
annotation results, we take this approach as the starting point in the current study.

1.6 The most problematic Dutch spelling principles

To investigate which spelling principles are relatively most problematic to learn for Dutch primary
school children (the second research question), we will compute for each spelling principle a relative
score. This score represents how often a spelling principle is applied incorrectly in relation to how
often this spelling principle is or should be applied.

We hypothesize that spelling principles from the syntax category are relatively most problematic
to learn, since verb spelling is part of this category and primary school children’s verb spelling
performance is found to be relatively low, only just above chance level (Bosman 2005). In addition,
Schijf (2009) found that first-year secondary school students (12-13 years old) make more errors in
applying verb spelling principles than in applying spelling principles from other categories. Bosman
(2005) stated that even experienced spellers (i.e., university students) still make many verb spelling
errors.

One reason why verb spelling is difficult is that many Dutch verb forms are homophones (Assink
1985, Sandra 2010, Schmitz et al. 2018). For example: the verbs “beloofd” (promised) and “belooft”
(promises) are homophones, and their spelling differs depending on the function of the verb in
the sentence. To obtain the right spelling, the retrieval procedure (Sandra et al. 1999, Verhaert
et al. 2016), in which spellers obtain the right spelling from their mental lexicon, is not sufficient
and use of the computational procedure (Sandra and Abbenyen 2009), in which spellers actively
apply spelling principles, is necessary.

Assink (1985) found that writers are more likely to write a verb incorrectly if its homophone
counterpart is more frequent. In addition, the syntactical context of a verb influences the spelling.
This means that if the subject of the verb was written next to the verb (facilitating context), the
verb is more likely to be written correctly than when the subject and verb are separated by a few
other words (neutral context) (Assink 1985).

2. Methodology

In this section, we describe the algorithm that is capable of annotating both correctly and incorrectly
written Phoneme-Corresponding Units (PCUs) indicating which spelling principles are violated or
applied correctly. The developed algorithm consists of three parts: preprocessing of the texts,
detection of PCUs and spelling errors, and annotation of PCUs displaying (in)correctly applied
spelling principles. These three steps result in a multilayered analysis of each BasiScript word.
Figure 1 presents a schematic overview of these three steps together with their inputs and outputs.
In Table 4, on the next page, is an example visible of the word “scholen” (schools) and all its
annotation layers. The goal of the algorithm is to obtain these annotation layers for every analyzed
word. The complete algorithm was implemented and evaluated using Python 3 (Van Rossum and
Drake 2009). The code is made publicly available on GitHub (Harmsen 2022).

285



Table 4: The goal of the algorithm is to obtain for each analyzed input word a multilayered an-
notation scheme. This table shows an example of the annotations of the misspelled word
“sgoole”.

LAYER VALUE

word Scholen

target Scho-len

original s-goole-

author JurC

gender j (jongen, boy)

grade 6

date najaar 2014 (autumn 2014)

theme ThemaRarewoorden (Theme weird words)

fileName d389055.xml

morphemes [school, en]

lemma school

pos-tag N(soort,mv,basis)

punctEndSentence False

capitalBeginSentence True

homophones True

phon target s x o l @ -

pcus target S ch o l e n

pcus original s g oo l e -

error - UnSub1 CoVs1 - - MoEndN1

error capital SyCap1 - - - - -

basic Un Un CoVs1 Un Un MoEndN1

basic capital SyCap1 - - - - -

2.1 The input: texts from the BasiScript corpus

The written data used in this study are texts from the BasiScript corpus (Tellings et al. 2018).
These texts are handwritten by Dutch primary school children from grade 2 (7-8 years old) to grade
6 (11-12 years old). The data was collected in six consecutive rounds. Spread over three school years,
there was a data collection round every autumn and spring. In each round, the participating children
wrote maximally four texts with pen on paper: two texts about a given theme and two free-themed
texts. However, not all four items were written by all children and not all schools participated in
all data collection rounds they were invited to. The average length of the texts, measured in words,
increases over the grades, from 44.85 words on average in grade 2 to 109.97 words on average in
grade 6.

For each handwritten text, the BasiScript corpus contains two digitized (i.e., typed) versions:
the target text (the intended text, without spelling errors) and the original text (what the child

286



Figure 1: A schematic overview of the spelling error detection and annotation algorithm. The red
blocks and layers represent the preprocessing part, the purple blocks and layers the de-
tection part and the blue blocks and layers the annotation part.

actually wrote, including crossed-out words and spelling errors). Each target text contains lemma,
morphemes and part-of-speech tag annotations, that were automatically obtained using Frog 0.13,
which is an advanced natural language processing suite for Dutch (Bosch et al. 2007). In addition,
metadata is saved for each text. This metadata contains additional information about the text, like
the name and grade of the author, the theme of the text and the date on which the text was written.

For each BasiScript text, the target text, original text, Frog annotations and metadata are saved
in a FoLiA file (Gompel and Reynaert 2013). This is a practical format for XML-based linguistic
annotation.

287



2.2 Preprocessing

Several variables from the BasiScript FoLiA XML files constitute the input to the algorithm. These
variables are the original text (including spelling errors), target text (without spelling errors), meta-
data (e.g., grade, date, name, etc.) and additional Frog annotations (i.e., lemma, morphemes and
pos-tags of each word in the target text). These variables are first preprocessed, so that the data is
presented in the right format to detect PCUs and spelling errors.

2.2.1 Clean and align original and target texts

Each original text (i.e., the text with spelling errors) contains annotations to represent crossed-out
tokens that are still readable, letters written in mirror image, personal information, and unreadable
tokens. In the first preprocessing step, the algorithm removes all these tags, because they are not
written in the target text and would therefore complicate alignment of the original and target text.

After that, the algorithm aligns each target text with the corresponding original text using the
ADAPT algorithm (Elffers et al. 2013). This is a dynamic algorithm based on articulatory distances
between Dutch speech sounds that was originally developed for the alignment of phoneme strings
(Cucchiarini 1993, Cucchiarini 1996). However, the current algorithm employs an altered version
of ADAPT in which the feature matrices of the algorithm have been modified, so that alignment
of grapheme strings is possible. These modifications included extension of the two feature matrices
that were originally present in the ADAPT-algorithm: accented vowels (e.g., ë, é, and è) were added
to the vowel feature matrix and accented consonants (e.g. ñ and ç) to the consonant matrix. In
addition, the new version of the ADAPT algorithm now contains a third and fourth feature matrix,
one for numbers and one for punctuation marks. In this way, all feature matrices together contain
all possible characters that occur in the BasiScript texts.

The output of ADAPT includes an aligned target and original text. In the final alignment,
dashes (“-”) have been added to the target text to represent inserted symbols and to the original
text to represent deleted symbols.

Before the ADAPT algorithm was applied to the text data, the data had to be converted into
the right format. In the first place, hyphens that occur naturally in the texts, for example in words
like “tv-toestel” (TV set) or “vrijdag- en zaterdagmiddag” (Friday and Saturday afternoon), were
replaced by the hashtag symbol (“#”). This was done to avoid confusion with the dashes in the
output of the ADAPT alignment. The hashtag symbol was hardly used by the children in their
written texts, therefore this symbol was chosen. Secondly, all spaces were replaced by pipe symbols
(“|”), because the ADAPT-algorithm interprets pipes as spaces. Thirdly, each text was split into
shorter strings of approximately 150 characters. These shorter strings served subsequently as input
to the ADAPT algorithm. This last step was necessary, because ADAPT is a dynamic algorithm.
This means that it is not capable of handling large strings of symbols, like whole texts, because
this costs too much memory. To make sure that the original and target texts were both split at a
corresponding location, the algorithm checked whether the five characters before and after the split
were the same.

2.2.2 Split aligned text into words

After these short strings of approximately 150 characters have been aligned with each other, the
algorithm splits them into tokens (i.e., words, digits, and punctuation marks). The spaces in the
target string are used to determine where a new token starts.

2.2.3 Add metadata and Frog-annotations to each word

Subsequently, for each token, the corresponding metadata was saved in a set of layers. The metadata
consists of the pseudonymized name of the author, the gender of the author, the grade that the author
is in, the date the text was written, the theme of the text, and the original file name.

288



The BasiScript corpus also contains lemma, morpheme and part-of-speech tag annotations of
each token that the target transcription consists of. These annotations have been automatically
obtained using Frog 0.13 (Bosch et al. 2007), an advanced natural language processing suite for
Dutch. The algorithm matched each token with the corresponding Frog annotations.

Unfortunately, it was in some cases not possible to match the Frog annotations correctly. This is
because some texts were split incorrectly into tokens in the previous step, which created non-existing
tokens (e.g., the token “!Hallo” does not exist). To avoid problems with missing annotations, texts
that contain non-existing tokens were removed from the analyzed data.

Additionally, because the tokens were still in the right order, it was possible to obtain information
about whether a capital letter is at the beginning of a sentence, whether a punctuation mark is at
the end of a sentence and whether two words are homophones of each other. For each token, we
added three layers that represent the value of these variables.

2.2.4 Remove digits and punctuation marks from data

In the last preprocessing step of the algorithm, the complete set containing all annotated tokens was
split into three subsets: one containing only words, one with punctuation marks, and one containing
digits. Because the current study was not focused on punctuation errors, only the set containing
words was selected for further analysis. In addition, the set with digits was not included, because the
use of ADAPT for aligning a digit representation of a number (e.g., 16) with a text representation of
a number (e.g., sixteen) yielded incorrect alignment. Finally, words with an empty target or original
transcription were removed from the data. These words were a result of incorrect alignment.

2.3 Detection of PCUs and spelling errors

In the second part of the algorithm, spelling errors were detected at Phoneme-Corresponding Unit
(PCU) level. A PCU is a sequence of graphemes that corresponds to one phoneme (Laarmann-
Quante 2016).

2.3.1 Obtain phonetic transcriptions

The algorithm starts this second part by creating a list of all unique target words from the BasiScript
corpus. The words in this list were cleaned and preprocessed by removing the dashes that represent
insertions and by converting the words to lowercase. This last step will reduce the size of the
list. For each word in this list, the phonetic transcription was automatically obtained using a
Dutch grapheme-to-phoneme converter webservice (Bosch n.d.). The phonetic transcriptions were
represented in a computer phonetic alphabet that was also used in the Spoken Dutch Corpus 2.0
(Taalunie 2014). The target words together with their phonetic transcriptions form a lexicon.

2.3.2 Phoneme-grapheme alignment

Subsequently, each target word in the lexicon was aligned with its phonetic transcription. To perform
this task, a rule-based sub-algorithm was developed. This sub-algorithm contains rules that describe
which combinations of graphemes can be used to write one phoneme. This is an example of two of
these rules: in Dutch, the phoneme /a/ can be written as “aa” as in “maan” (moon), or “a” as in
“maken” (to make). The resulting phoneme-grapheme alignments provide information about which
sequence of graphemes corresponds to each phoneme, these are the PCU-segmentations of each target
word. The algorithm uses this sub-algorithm to extend the lexicon with the PCU-segmentation of
each unique target word.

289



2.3.3 Deduce PCU segmentation

Next, the algorithm uses the created lexicon to derive the PCU-segmentation of the aligned orig-
inal and target word. Therefore, the PCU-segmentation of the target word is first obtained by
selecting the PCU-segmentation of the target word from the lexicon. Next, dashes are inserted to
the PCU-segmentation to represent inserted PCUs. The position of these dashes is derived from
the target alignment. After that, the PCU-segmentation of the original word is deduced from the
PCU-segmentation of the target word and the alignment of the original with the target word. This
is done by copying the PCU-segmentation boundaries from the target PCU-segmentation to the
original word. In this final alignment of target and original PCUs, spelling errors are detected as
inserted, deleted, or substituted PCUs.

2.4 Annotation of PCUs with spelling principles

In the third part of the algorithm, the PCUs are annotated with spelling principles. The goal of
this part is to annotate each incorrectly spelled PCU showing which spelling principle was violated
(error and error capital layers) and to annotate each correctly spelled target PCU with the spelling
principles that should have been applied to write that PCU correctly (basic and basic capital layers).
In the resulting multilayered annotation scheme, the error layers represent information about which
spelling principles are violated in the spelling errors, and the basic layers make it possible to put
this information into context.

2.4.1 Annotation scheme

To annotate the PCUs with spelling principles, an annotation scheme is necessary. The annotation
scheme adopted in the present study is largely based on the one by Horbach-Kleijnen (1992), because
this is a linguistic scheme that describes Dutch orthography. The complete annotation scheme used
in this study can be found in the Appendix. The annotation scheme consists of 38 different spelling
principles to annotate errors in the error layers (“error spelling principles”) and 33 spelling principles
to annotate orthographic properties in the basic layers (“basic spelling principles”). The majority
of basic spelling principles (32/33) is also used as error spelling principle. The spelling principles
are divided over five categories: Unmarked, Marked by Context, Marked by Morphology, Marked by
Syntax and Marked by Semantics. Table 5 shows the number of error and basic spelling principles
in each category, together with an example.

The spelling principles in the annotation scheme are named using a naming strategy. The first
two/three letters always represent the category, which is Context (Co), Morphology (Mo), Syntax
(Sy), Semantics (Sem) or Unmarked (Un). After that, an abbreviation of the theme is written
down, for example Apostrophe (Ap) or Consonant Doubling (Cd). This subcategory is followed by
a number (i.e., 1, 2, 3, etc.), which indicates the different spelling principles within a subcategory.

In some cases, it is possible to split a spelling principle into several sub-principles. These sub-
principles are marked with the suffix a, b, c, etc. For example, spelling principle MoFd1 is the first
final devoicing (Fd) spelling principle from the morphology (Mo) category (see Appendix). This
principle can be split into MoFd1a (voiced obstruent “d” is written as unvoiced “t”) and MoFd1b
(voiced obstruent “b” is written as unvoiced “p”). The sub-principles always depend on the value
of the target PCU and original PCU, therefore they cannot be used as basis spelling principles.
The focus of this research is on the spelling principles, and not on the sub-principles. However, the
sub-principles are often used to detect whether a PCU should be annotated with a spelling principle.

There are six error spelling principles that have a different basic spelling principle name. In case
of UnDel1, UnSub1, UnSub2, and UnSub3 it is only possible to annotate PCUs in the basic layer
with the main category (“Un”), since the value of the original PCU is necessary to determine whether
the error is a deletion or specific type of substitution. For CoAc2, this also holds, because this rule
checks the insertion of an accent on a vowel (e.g. writing “opticien” (optician) as “opticiën”). Since

290



this can literally happen on any vowel, we annotate PCUs where this happens in the error layer
as “Un” in the basic layer. So, “Un” actually means application of a basic phoneme-grapheme
conversion rule.

The error spelling principle “UnIns1” is used when the incorrectly written original PCU is aligned
with an empty target PCU, so the writer inserted a PCU. It is not possible to use this annotation
without the original spelling. Therefore, the corresponding basic error spelling principle in “Ins”.
This annotation only serves as a placeholder in this case, and is only used in combination with
“UnIns1” in the error annotation layer.

Table 5: This table represents an overview of the annotation scheme used to annotate both incor-
rectly spelled PCUs (in the error layer) and correctly spelled PCUs (in the basic layer).
The spelling principles in the annotation scheme can be subdivided over five categories.
For each category is represented how many spelling principles it contains, and one spelling
principle used to annotate errors is shown as example.

Category
Number of
Spelling
Principles

Example Spelling Principle
(used for error annotation)

Error Basic Name Description
Example
(original/
target)

Marked by
Context 9 8 CoCd1

Consonant Doubling: A consonant
is doubled if it is written after
a short vowel (excluding sjwa)

and if it is not at the end
of the word.

joken /
jokken

Marked by
Syntax 13 13 SyVt1

When the stem of a verb ends
in an unvoiced sound (the sounds

in ”’t exkofschip”), the past
tense suffix starts with an unvoiced

/t/ sound (”t”).

hij krasde /
hij kraste

Marked by
Morphology 10 10 MoFd1

Final devoicing: voiced
consonants are pronounced as

unvoiced at the end
of a word.

hont /
hond

Marked by
Semantics 1 1 SemCap1

Every proper name, title
and some abbreviations start with

a capital letter.
nijmegen /
Nijmegen

Unmarked 5 1 UnSub2
A PCU is substituted with
another PCU that does not

correspond to the same phoneme.
kiefde /
liefde

Total 38 33

2.4.2 PCU annotation process

For each spelling principle, the algorithm contains a Boolean rule that gets as input the target PCU,
original PCU, and some extra information from the annotation layers (e.g., lemma, morpheme(s),
and the position of the PCU in the word). Using these inputs, each rule is able to determine whether
the spelling principle it represents was violated (in case of error annotations) or should have been
applied (in case of basic annotations). The annotation scheme contains two spelling principles that
involve capital letters. These are SemCap1 (every proper name starts with a capital letter) and
SyCap1 (every sentence starts with a capital letter). When one of these two annotations are used,
they are written down in separate layers, called error capital and basic capital. This was done
because a PCU can contain both a capital letter error and a lowercase letter error (e.g., compare
“America” and “aamerica”).

291



3. Results

3.1 Evaluation of the algorithm

After we applied the algorithm to texts from the BasiScript corpus, we evaluated the developed
algorithm on two aspects. In the first place, we verified that the original and target texts had been
properly aligned and split into words and PCUs. Therefore, 1000 incorrectly spelled words were
generated (0,016% of all correctly and incorrectly spelled words from the BasiScript corpus) and
checked on these aspects. The results show that from this sample of 1000 words from the BasiScript
corpus, 97.9% of the words were aligned and split correctly into words and PCUs. An overview of
the most frequent alignment errors was presented in an earlier study in which we reported about
this algorithm (Harmsen et al. 2021).

The second aspect on which the algorithm is evaluated is the correctness of spelling principle
annotations with which the PCUs have been labeled. All target PCUs should have been labeled with
a basic annotation that indicates the spelling principle that was applied correctly, and all incorrect
original PCUs (i.e., spelling errors) should have been labeled with error annotations that indicate the
spelling principle that was violated. To verify whether the target PCUs and incorrect original PCUs
had been annotated correctly, for each of the 38 spelling principles used for error annotation and
the 33 spelling principles used for basic annotation, 20 random words were generated that contain
at least one PCU that is annotated with this principle (respectively in the error layer or in the basic
layer). In these generated random words, it was checked whether the spelling principle annotation
was used correctly to label a PCU. Subsequently, the precision (see Equation 1) was computed for
each basic and error spelling principle by dividing the number of correctly used annotations by the
total number of annotations (=20). This yields a number between 0 and 1 that indicates to what
extent the spelling principle was used correctly to label PCUs. The higher the precision, the better
the algorithm is in annotating PCUs with that spelling principle.

Precision(X) = True Positives

True Positives + False Positives
= PCUs truely labeled with X

PCUs truely labeled with X + PCUS falsely labeled with X
(1)

In the first place, we found that for 32 out of 38 spelling principles used for error annotation, the
precision was 1.0. For the other six error spelling principles, the precision scores were between 0.6
and 0.95 (see Table 6). Secondly, the computed precision of the basic spelling principles was 1.0 for
28 out of 33 basic spelling principles. The five remaining basic spelling principles had a precision
between 0.2 and 0.95. Table 6 shows an overview of all spelling principles with a precision that is
not equal to one. What stands out from this table is that spelling principles with low precision for
basic annotation also have a low precision for error annotation. In addition, SyCoN1 has a really
low basic precision, which is only 0.2 and MoAs1 has a low basic and error precision (respectively,
0.55 and 0.6).

3.2 Most problematic spelling principles

3.2.1 Relative Spelling Error Frequency

Spelling principles of some categories are much more frequent than others. For example, rule SyCap1
(every sentence starts with a capital letter) is applied once in every sentence, while rule SemCap1
(every proper name is written with a capital letter) is used less frequently, since not every sentence
contains a proper name. In this study, we will refer to the frequency of incorrect applications of a
spelling principle in relation to the frequency of both incorrect and correct applications using the
Relative Spelling Error Frequency (RSEF). The RSEF is computed for each spelling principle X and
grade G as follows:

292



Table 6: Precision scores for the six error spelling principles that have a precision lower than 1.0.
Five of them also have a precision lower than 1.0 when used as basic annotation. See the
Appendix for more examples of the spelling principles.

Spelling Principle Precision

Name Description Example
(original/target) Error Basic

SyCoN1 Between -n needs to be written between
two morphemes in some composition words.

bijekorf /
bijenkorf 0.8 0.2

MoAs1 Assimilation of stem (unvoiced consonant
is pronounced as voiced or vice versa).

zeldsame /
zeldzame 0.6 0.55

MoMi1 Miniaturization achtien /
achttien 0.95 0.7

MoAsMi1 Assimilation of stem followed by miniaturization. opod /
opbod 0.8 1.0

MoCoS1 You write a “between s” between two parts of a
composition word if you hear that “s”.

dorpstraat /
dorpsstraat 0.95 0.95

MoCoS2 If you don’t hear a “s” between two parts of
a composition word, you don’t write one.

hoofdsstraat /
hoofdstraat 0.75 0.75

RSEF(G, X) = Nr. of PCUs in grade G labeled with error spelling principle X

Nr. of PCUs in grade G labeled with basic spelling principle X
× 100% (2)

In Equation 2, variable X can also represent a category instead of a spelling principle. The RSEF can
only be computed on the basic spelling principles, which is a subset of the error spelling principles.

3.2.2 Categories of spelling principles

In total, we labeled 22,220,072 PCUs (of which 896,636 PCUs are written incorrectly). These PCUs
form together 6,028,023 words and are extracted from 70,593 different BasiScript texts written
by children from grade 2 to grade 6. To determine which category of spelling principles is most
problematic to learn, we compute the Relative Spelling Error Frequency (RSEF; see formula 2
in section 3.2.1). This is a measure that represents the error frequency of a spelling principle in
relation to how often that spelling principle should be applied. The RSEF scores of each grade and
category (Figure 2), show that spelling principles belonging to the Marked by Semantics category
were relatively most frequently violated and appear to be most problematic to master in all grades.
Secondly, spelling principles from the Marked by Syntax category were problematic. In all categories,
the RSEF score decreased with increasing grade. The smallest decrease is found for spelling principles
from the Marked by Syntax category.

3.2.3 Individual spelling principles

The Marked by Semantics category only consists of one spelling principle: SemCap1 (every proper
name, title, and some abbreviations should start with a capital letter). Thus, the RSEF score of
this spelling principle is represented by the Marked by Semantics category in Figure 2. This figure
shows that there was almost no awareness of SemCap1 in grade 2, because the principle was applied
incorrectly 88.89% of the times. This percentage decreased over the grades, but in sixth grade, the
rule is still applied incorrectly in more than one third (36.51%) of the times that sixth graders have
to use this rule.

After that, the RSEF scores of the individual spelling principles from the Marked by Syntax
category were inspected (Figure 3). In the first place, these scores show that children became better

293



Figure 2: The Relative Spelling Error Frequency (RSEF) per category and grade. The higher the
score of a grade, the more problematic to learn the spelling principles belonging to that
category are. The bars for the category Marked by Semantics also represent the RSEF
scores for spelling principle SemCap1, because this is the only spelling principle that the
Marked by Semantics category consists of.

in applying all these spelling principles, because the RSEF scores decreased when children got older.
Additionally, there were three spelling principles that had in all grades the highest RSEF score and
were still applied incorrectly in more than 30% of the times that they should have been applied in
sixth grade. These spelling principles are SyVd2 (past participles ending in a voiced PCU should
get “d” as a suffix, and not “t”, while the suffix is pronounced with a /t/ sound), SyOd1 (every
present participle should end in a “d”, while a /t/ sound is heard) and SyCap1 (every sentence
should start with a capital letter). Thus, these three spelling principles were most problematic to
learn for the children. In Figure 3, the spelling principles are addressed using their abbreviated
names. A description of the spelling principles can be found in Table 10 and 11 of the Appendix.

The necessity to apply a spelling principle is for some spelling principles more frequent than for
others. For example, the principle “each sentence starts with a capital letter” (SyCap1) should be
applied every sentence, while the principle “write every proper name with a capital letter” (SemCap1)
is less often necessary to apply, since not every sentence contains a proper name. Therefore, we also
computed the normalized absolute error frequencies of the four spelling principles with the highest
RSEF, which are SemCap1, SyVd2, SyOd1 and SyCap1 (see Figure 4). To compute this absolute
score, we count for each grade the total number of times a specific spelling principle is applied
incorrectly. We normalize this absolute score by dividing this score by the total number of PCUs
(both correct and incorrect) in the respective grade. From the absolute scores in Figure 4 we can
conclude that not having mastered the principles SyCap1 and SemCap1 results in more errors than
not having mastered SyVd2 and SyOd1.

294



Figure 3: The Relative Spelling Error Frequencies (RSEFs) of the Marked by Syntax spelling prin-
ciples.

Figure 4: The normalized absolute spelling error frequencies of spelling principles SemCap1, SyCap1,
SyVd2 and SyOd1.

295



4. Discussion

The first aim of this research was to investigate whether it is possible to extend the spelling error
detection and annotation algorithm that we presented in an earlier study (Harmsen et al. 2021)
so that it is also capable of annotating each PCU of a correctly written Dutch word indicating
which spelling principle should be applied to spell this PCU correctly (i.e., orthographic property
annotation). We found that this is possible, which confirmed our hypothesis for the first research
question.

We found that by extending the algorithm, it is possible to determine for each spelling principle
how often it is violated with respect to how often it could potentially be applied (i.e., the relative
frequency). This is a measure to express how well children have mastered specific spelling principles,
and thus to determine how problematic to learn they are. We found that spelling principles from the
semantics and syntax category have the highest relative frequency in all grades of primary school
and are therefore most problematic to learn.

Within the syntax and semantics category, there are four spelling principles that are still applied
incorrectly by sixth graders in more than 30% of the times that they are used. Two of these spelling
principles concern capital letter use and the other two concern verb spelling (i.e., the writing of
present participles and the writing of past participles ending in “d”, while you hear a /t/ sound).
Thus, the hypothesis of research question 2 is partially confirmed, since not only verb spelling is
found to be problematic (a finding in line with Bosman (2005) and Schijf (2009)), but also capital
letter spelling.

Primary school children do not use present participles (SyOd1), like “dansend” (dancing) or
“werkend” (working), and proper names and titles (SemCap1), like “Nijmegen” (Nijmegen), very
frequently. This can be deduced from the fact that words of which at least one PCU is marked
with “SyOd1” or “SemCap1” in the basic layer are very infrequent in the analyzed texts from the
BasiScript corpus. The infrequent necessity to apply these principles can be a possible explanation
for the fact that these spelling principles have a high relative frequency. Writers forget about these
principles or don’t learn to apply them correctly, because they almost never write words for which
they need to apply them (Assink 1985). Since the rules that describe capital letter use and present
participle writing are quite straightforward and do not have many exceptions, we believe that more
attention to direct instruction of these spelling principles during spelling lessons could considerably
improve the spelling proficiency of Dutch children.

4.1 Limitations

4.1.1 Limitations to the algorithm design

First, three limitations with respect to the design of the algorithm will be discussed. A problem
that occurred while applying the algorithm to the BasiScript texts is that it could not align the
target text and original text of some of the files correctly, which resulted in the fact that splitting
the aligned target and original texts into tokens (i.e., words and punctuation marks) was not always
successful. The result is that some original tokens are aligned with empty target tokens, and thus
cannot be matched with the lemmas, morphemes, and POS-tag annotations that each BasiScript file
contains at word level. This problem occurs for example often when aligning uncommon sequences
of punctuation marks, like “!?!”. To solve this problem, all texts in which this phenomenon occurred
were removed from the data. This is a substantial loss of data (16,075 texts; 18.5% of all texts).
A better way to overcome this problem would involve changing the method of splitting texts into
words, for example by using a Dutch word and punctuation mark tokenizer function provided by
the Python package UCTO, which is also incorporated in Frog (Bosch et al. 2007).

Another limitation with respect to the design of the algorithm concerns the grapheme-phoneme
alignment process, in which the graphemes of the target word are aligned with their phonemes, which
results in a PCU-segmentation. The problem is that this phoneme-grapheme alignment algorithm is

296



not perfect. For example, some rules are missing, such as “b” is only defined with a /b/ sound, and
not with a /p/ sound. Moreover, the algorithm has problems with the alignment of some foreign loan
words, like “Youtube” and “Wiien”, in which graphemes are pronounced with sounds that are not
common in Dutch (and thus are not defined as rules in the algorithm). In the current study, all words
for which a correct alignment of the graphemes and phonemes of the target word was not possible
were deleted. A better way to overcome this problem would be to extend the phoneme-grapheme
alignment algorithm with extra rules.

The third limitation concerns the low precision scores for six spelling principles used for error
annotation, of which five also have low precision for annotation of target PCUs. This means that
some spelling errors or target PCUs are labeled incorrectly with these spelling principles. The
algorithm can be improved by changing the functions that recognize these errors and target PCUs
in the data, so that a higher precision is achieved.

4.1.2 Limitations to the algorithm evaluation method

There are also two limitations with respect to the method that was chosen to evaluate the algorithm.
The major concern is that the automatic annotations are not compared with manual annotations.
This comparison would allow computation of the recall metric next to the precision metric. The
recall metric is useful, because it provides insight into the number of false negatives, which are
spelling errors that are annotated with an unmarked spelling principle, while they should actually
be annotated with a marked spelling principle. False negatives are currently defined in this way,
because the algorithm first checks for all marked spelling principles whether they are present, and if
this is not the case, the algorithm uses an unmarked annotation. This means that all spelling errors
that do not fit into a marked category are annotated with an unmarked spelling principle.

In addition, the currently computed precision scores are for each spelling principle based on a
sample of only twenty words, containing at least one PCU that is annotated with the currently
selected spelling principle. This is a small sample, especially for high-frequent spelling errors, and
makes it possible that certain incorrect annotations are not detected. To increase the reliability of
the algorithm in a follow-up study, it is recommended that evaluation of the algorithm encompasses
the comparison of automatic annotations with manual annotations and the computation of both
precision and recall.

4.2 Possible future directions

4.2.1 Improvement and extension of the algorithm

The current algorithm already performs well on detecting and annotating both correctly and incor-
rectly written PCUs in the BasiScript corpus, but the performance can still be improved on several
aspects, so that the earlier described limitations are overcome. These improvements involve that all
texts are split correctly into words, the grapheme-phoneme alignment algorithm is also able to align
words with foreign roots, and all spelling principles have a high precision and recall, when used as
error annotation, but also when used as basic annotation.

The developed algorithm contains 38 spelling principles to annotate spelling errors and 33 spelling
principles to annotate target PCUs. They cover most spelling principles, but not all. For example,
there are currently no spelling principles in the annotation scheme concerning the spelling of strong
verbs in the past tense. For example, if someone writes “loopte” instead op “liep” (walked), this is
currently recognized as an “oo”-“ie” substitution (UnSub2) and insertion of “t” (UnIns1) and “e”
(UnIns1). Adding these spelling principles would make the algorithm more detailed and better able
to recognize all types of errors.

The annotation scheme also does not contain spelling principles to annotate punctuation marks.
Therefore, punctuation marks are currently not analyzed. The same applies to tokens that contain
or are digits. In a future study, the annotation scheme can be extended, so that punctuation use

297



can be analyzed automatically. This can yield very interesting insights, because this has not been
done before on such a large scale for Dutch writing by children.

Another way to extend the algorithm is by changing the output format. In the current algorithm,
the output containing over six million annotated words is saved in one csv file. A disadvantage is
that this file is very large. A better output format would be to add new spelling error annotation
layers to the BasiScript FoLiA files (Gompel and Reynaert 2013) of each text.

4.2.2 Further analysis of the BasiScript corpus

This study yields a multilayered analysis of more than six million words extracted from the BasiScript
corpus. These layers include information about the child that wrote the word, but also about each
word’s orthographic properties, phonemes, PCUs, and spelling errors. Using these layers, the spelling
errors in the BasiScript corpus can be explored in more detail than was done in this study.

In a possible future study, the spelling development can, for example, be analyzed in greater detail
by involving information from the layer “date”. This layer states whether the text was written in
spring or autumn, which makes it possible to split each grade into two grades, for example “grade
5 autumn” and “grade 5 spring”.

In addition, the spelling errors in the BasiScript corpus could be analyzed in greater detail.
For example, several studies (Sandra et al. 1999, Bosman 2005, Schmitz et al. 2018) have analyzed
d/t-errors in Dutch verb spelling and found that spellers are more likely to write “d” instead of
“t” at the end of a verb than writing “t” instead of a “d”. These studies were based on adults or
older children and the results observed appear to be an effect of frequency and exposure. In future
research, it would be interesting to investigate whether we find this preference in children in primary
school who, by definition, have received less exposure.

Another direction for further exploration of the BasiScript corpus is research into the development
of individual spelling performance. Such a longitudinal study is possible, because many children that
wrote the BasiScript texts participated in subsequent data collection rounds.

In addition, it is possible to extract statistical information from the BasiScript corpus, like
the most frequently misspelled words and PCUs and why these words and PCUs are misspelled.
Especially in combination with metadata, like gender and grade of the author, the part-of-speech
tag of a word, and the theme of the text the word belongs to, it is possible to improve the spelling
lessons, so that they better fit the needs and perceptions of the children.

Another corpus, BasiLex (Tellings et al. 2014), consists of Dutch texts that are specifically
written for children. From these texts, word frequencies can be obtained of all words that children
from a specific grade are exposed to. Using these word frequencies, it is possible to investigate the
relationship between how often a child is exposed to a word and the spelling errors made in that
word. This is another route that could be explored in a future study.

4.2.3 Machine learning applications

Using the multi-layered annotations of each word, it is also possible to extract certain features from
each text, like the number of errors in a specific category, the rate at which nouns are used, or the
occurrence of certain phonemes. These text-based features enable the training of machine learning
algorithms on texts written by children.

Possible supervised applications of these algorithms are authorship identification or grade predic-
tion. In addition, a possible unsupervised application is to cluster the texts to discover similarities
and differences between texts that tell something about the spelling performance of the writer and
whether the writer is a weak, normal or strong speller.

298



4.2.4 Other applications of the algorithm

Next to automatic analysis of written, digitized texts, like the texts in the BasiScript corpus, the
spelling error detection and annotation algorithm can also be used in other applications. For ex-
ample, in combination with an automatic spelling error correction system, the algorithm can be
implemented in a computer application that provides detailed online, real-time feedback on writing.
Next to marking the PCU that is written incorrectly, the computer application can also explain why
the PCU is written incorrectly by giving information about the violated spelling principle. Because
direct instruction of the spelling principles of the Dutch orthographic system Assink (1986) and
immediate, not-delayed, feedback on writing Harward et al. (1994) are essential for developing good
spelling skills, it is expected that this computer application could have great potential for improving
the writing skills of Dutch children.

Another possible application of the algorithm would be in research on children with spelling
problems, like dyslexia. The algorithm can for example help to design tests in which freely-written
texts of children are analyzed, instead of dictations. These new tests can, for example, support the
measurement of children’s spelling proficiency, so that the effectiveness of certain treatments can be
assessed more easily. Another advantage of these tests is that they can help to identify children with
dyslexia at an early stage. This is necessary, because a recent study on the spread of dyslexia in the
Netherlands has found that in 2019, 7.5% of the children were in possession of a dyslexia statement
after the last year of primary school and 14% after the last year of high school (Inspectie van
Onderwijs 2019). These numbers show that dyslexia is a common disorder among Dutch children,
and that almost half of the children suffering from it are not diagnosed during primary school. This
means that the spelling problems of many children are recognized too late, which makes it harder
to help them.

5. Conclusions

The present research shows that it is possible to develop an algorithm that automatically detects
spelling errors in the BasiScript corpus and annotates them with the spelling principle that is
violated. In addition, the algorithm is able to annotate correctly written PCUs with the spelling
principle that was applied correctly. This algorithm, applied to the BasiScript corpus, facilitates
automatic quantitative research to spelling errors made by Dutch primary school children in freely
written texts.

Analysis of spelling errors in more than six million words from the BasiScript corpus shows that
spelling principles concerning knowledge about Dutch syntax and semantics are the most problematic
to learn. These quantitative results are very useful to improve direct spelling instruction, which is
essential for developing good spelling skills (Assink 1986).

In future studies, further analysis of spelling errors in the BasiScript corpus can provide more
detailed insights into which spelling errors are made by which type of children. In addition, it is
possible to employ the algorithm in a computer application that provides support on spelling. Using
the algorithm together with an automatic spelling checker, the application can provide immediate
feedback on written text, indicating not only which letters are written incorrectly, but also what
the underlying reason is why these letters are incorrect by displaying the violated spelling principle.
Such an application can support direct and immediate feedback on writing, which is essential for
becoming a proficient speller (Harward et al. 1994).

References

Assink, E. M. H. (1985), Assessing spelling strategies for the orthography of Dutch verbs, British
Journal of Psychology 76, pp. 353–363.

299



Assink, E. M. H. (1986), Verkennen kinderen spontaan orthografische regels?, Tijdschrift voor Taal-
beheersing 8, pp. 106–118.

Berkling, K. and R. Lavalley (2015), WISE: A web-interface for spelling error recognition for German:
A description and evaluation of the underlying algorithm, Proceedings of the International
Conference of the German Society for Computational Linguistics and Language Technology
40A, pp. 87–96.

Borgwaldt, S.R., F. Hellwig, and A.M.B. de Groot (2004), Word-initial entropy in five languages:
Letter to sound and sound to letter, Written Language and Literacy 7, pp. 165–184.

Bosch, A. van den, B. Busser, S. Canisius, and W. Daelemans (2007), An efficient memory-based
morphosyntactic tagger and parser for Dutch, Computational linguistics in the Netherlands:
Selected papers from the seventeenth CLIN Meeting pp. 99–114.

Bosch, L. ten (n.d.), Grapheme to phoneme converter. Available at:
https://webservices.cls.ru.nl/g2pservice/ (Accessed: 19 Jan. 2021).

Bosman, A. (2005), Development of rule-based verb spelling in Dutch students, Written Language
and Literacy 8, pp. 1–18.

Cordewener, K. A. H., L. Verhoeven, and A. M. T. Bosman (2016), Improving spelling performance
and spelling consciousness, The Journal of Experimental Education 84, pp. 48–74.

Cucchiarini, C. (1993), Phonetic transcription: a methodological and empirical study, Nijmegen, The
Netherlands.

Cucchiarini, C. (1996), Assessing transcription agreement: Methodological aspects, Clinical Linguis-
tics and Phonetics 10, pp. 131–155.

Elffers, B., C. van Bael, and H. Strik (2013), ADAPT: Algorithm for Dynamic Alignment of Phonetic
Transcriptions, Nijmegen, The Netherlands.

Gompel, M. van and M. Reynaert (2013), FoLiA: A practical xml format for linguistic annotation:
a descriptive and comparative study, Computational Linguistics in the Netherlands Journal
3, pp. 63–81.

Harmsen, Wieke (2022), Algorithm for Automatic Detection and Annotation of Spelling Errors in
Dutch Texts. https://github.com/WiekeHarmsen/SpellingErrorsBasiScript.

Harmsen, W.N., C. Cucchiarini, and H. Strik (2021), Automatic quantitative analysis of spelling
errors in texts written by sixth graders, Proceedings of the 13th International Conference on
Education and New Learning Technologies pp. 8937–8945.

Harward, S. V., R. A. Allred, and R. R. Sudweeks (1994), The effectiveness of four self-corrected
spelling test methods, Reading Psychology: An International Quarterly 15, pp. 245–271.

Horbach-Kleijnen, R. (1992), Hardnekkige spellingfouten: Een taalkundige analyse, Swets &
Seitlinger, Lisse.

Horbach-Kleijnen, R. (1997), Strategieën van zwakke lezers en spellers in het voortgezet onderwijs,
Swets & Seitlinger, Lisse.

Inspectie van Onderwijs (2019), Dyslexieverklaringen: Verschillen tussen scholen nader bekeken.

Keuning, J. and L. Verhoeven (2008), Spelling development throughout the elementary grades: The
Dutch case, Learning and Individual Differences 18 (4), pp. 459–470.

300



Laarmann-Quante, R. (2016), Automating multi-level annotations of orthographic properties of Ger-
man words and children’s spelling errors, Proceedings of the 2nd Language Teaching, Learning
and Technology Workshop pp. 14–22.

Leerdam, M. van, A. M. T. Bosman, and G. C. van Orden (1998), The ecology of spelling instruc-
tion: Effective training in first grade, in Reitsma, P. and L. Verhoeven, editors, Problems and
interventions in literacy development, Kluwer Academic Publishers, Dordrecht, pp. 307–320.

Nunn, A. (1998), Dutch orthography: A systematic investigation of the spelling of Dutch words,
Holland Academic Graphics, Den Haag.

Sandra, D. (2010), Homophone dominance at the whole-word and sub-word levels: Spelling errors
suggest full-form storage of regularly inflected verb forms, Language and Speech 53 (3), pp. 405–
444.

Sandra, D. and L. van Abbenyen (2009), Frequency and analogical effects in the
spelling of full-form and sublexical homophonous patterns by 12 year-old chil-
dren, The Mental Lexicon 4 (2), pp. 239–275, John Benjamins. https://www.jbe-
platform.com/content/journals/10.1075/ml.4.2.04san.

Sandra, D., S. Frisson, and F. Daems (1999), Why simple verb forms can be so difficult to spell: The
influence of homophone frequency and distance in Dutch, Brain and Language 68 (1), pp. 277–
283.

Schijf, T. (2009), Lees- en spellingvaardigheden van brugklassers, SCO-Kohnstamm Instituut, Ams-
terdam.

Schmitz, T., R. Chamalaun, and M. Ernestus (2018), The Dutch verb-spelling paradox in social
media: A corpus study, Linguistics in the Netherlands 35 (1), pp. 111–124, John Benjamins.

Schrödel, M. and J. Trouvain (2003), The German text-to-speech synthesis system MARY: A tool for
research, development and teaching, International Journal of Speech Technology 6, pp. 365–377.

Taalunie (2014), Corpus Gesproken Nederlands - CGN (version 2.0.3). Available at Dutch Language
Institute, http://hdl.handle.net/10032/tm-a2-k6.

Tellings, A., M. Hulsbosch, A. Vermeer, and A. van den Bosch (2014), Basilex: An 11.5 million
words corpus of Dutch texts written for children, Computational Linguistics in the Netherlands
4, pp. 191–208.

Tellings, A., N. Oostdijk, I. Monster, F. Grootjen, and A. van den Bosch (2018), BasiScript: : A
corpus of contemporary Dutch texts written by primary school children, International Journal
of Corpus Linguistics 23 (4), pp. 494–508.

Van Rossum, Guido and Fred L. Drake (2009), Python 3 Reference Manual, CreateSpace, Scotts
Valley, CA.

Verhaert, N., E. Danckaert, and D. Sandra (2016), The dual role of homophone dominance. why
homophone intrusions on regular verb forms so often go unnoticed, The Mental Lexicon 11
(1), pp. 1–25.

301



6. Appendix

Tables 6 to 11 show the annotation scheme that is used in this study to annotate the incorrectly
spelled PCUs (error layer) and correctly spelled PCUs (basic layer). Each table contains the spelling
principles of one category: Unmarked (Table 6), Marked by Context (Table 7), Marked by Morphol-
ogy (Table 8), Marked by Syntax (Table 9 and 10), and Marked by Semantics (Table 11).

Each spelling principle is numbered and has a unique name in the “Error” column. This tag
is used to make annotations in the error layer. For annotation in the basic layer, the names in
the “Basic” column are used. These are not unique for every spelling principle, because it was in
some cases not possible to distinguish between the different spelling principles when only taking into
account the target spelling, and not the original spelling. In total, there are 38 unique error spelling
principles and 32 unique basic spelling principles.

Most spelling principles consist of several sub-spelling principles. These are printed in italics
below the corresponding spelling principle. For example: UnSub1 consists of UnSub1a and UnSub1b.
This means that UnSub1a and UnSub1b are used to annotate PCUs in the data set. UnSub1 is the
superset of UnSub1a and UnSub1b. So each spelling principle annotated with UnSub1a or Unsub1b
is also annotated with UnSub1.

Table 7: Spelling principles from the Unmarked category
Theme Name Description of spelling error Examples

Error Basic Target Original

1 Deletion UnDel1 Un Deletion of PCU straat straa
2 Insertion UnIns1 Ins Insertion of PCU school schrool

3 Substitution UnSub1 Un Substitution of PCU with another PCU
that maps to the same phoneme

UnSub1a Un
A consonant is not doubled

if it’s written after a long vowel
and if it’s not at the end of the word

koken kokken

UnSub1b Un
Substitution of PCU with another PCU

that maps to the same phoneme,
which is not UnSub1a

pauw pouw

4 UnSub2 Un Substitution of PCU with another PCU
that maps to another phoneme.

UnSub2a Un Target PCU is reversed original PCU. klein klien

UnSub2b Un Graphemes of PCU are partly deleted reus res

UnSub2c Un Graphemes of PCU are partly inserted binnen buinen

UnSub2d Un Complete substitution of PCU buiten boeten

5 UnSub3 Un Substitution involving capital letter PCUs

UnSub3a Un
Every not-first letter of a sentence

and non-name is written with a
lowercase letter

kat Kat

UnSub3b Un
Substitution of capital letter

with lowercase letter that is
not SemCap1 or SyCap1

kat Kat

302



Table 8: Spelling principles from the Marked by Context category
Theme Name Description of spelling error Examples

Error Basic Target Original

6 Vowel
Singulation CoVs1 CoVs1

A long vowel is written with one
vowel symbol if it is at the end
of a syllable

maken maaken

7 CoVs2 CoVs2
Exceptions: A long vowel is written

with two vowel symbols at the end
of a syllable in several cases:

CoVs2a CoVs2a
A long vowel is written with two

letters if it is followed by “ch”
to avoid confusion with the sjwa

goochelaar gochelaar

CoVs2b CoVs2b
A long “ee” is written with

two symbols at the end of a word
to avoid confusion with the sjwa

zee ze

CoVs2c CoVs2c A long “ie” is written with two
vowels at the end of a word drie dri

CoVs2d CoVs2d A long vowel is written with two
vowels before a diminutive suffix laatje latje

8 Consonant
Doubling CoCd1 CoCd1

A consonant is doubled if it is written
after a short vowel (excluding sjwa)
and if it’s not at the end of the word

jokken joken

9 Special
Cases CoSc1 CoSc1 The “w” before an “r”

is pronounced as a /v/ wreken vreken

10 CoSc2 CoSc2
A /w/ or /j/ pronounced between

two vowels is not written
januari,
eieren

januwari,
eijeren

11 CoSc3 CoSc3
When a “w” is pronounced after

an /ee/ or /ie/ sound, an “u”
should be written before the “w”

sneeuw,
nieuw

sneew,
nieuw

12 Accents CoAc1 CoAc1
Some vowels need an accent

to simplify pronunciation
België,

café
Belgie,

cafe

13 CoAc2 Un
Most vowels don’t need an accent

to simplify pronunciation
kat kät

14 Apostrophe CoAp1 CoAp1 An apostrophe is written in several cases:

CoAp1a CoAp1
An apostrophe is written in proper

names that end in an sis-sound
and are used as genitive

Frits’ Frits

CoAp1b CoAp1
An apostrophe is written in plural

and genitive forms that people
could read wrongly with a short vowel
instead of long vowel

opa’s opas

CoAp1c CoAp1 Apostrophe is written in diminutives
of words ending in a consonant +“y” baby’tje babytje

CoAp1d CoAp1
Apostrophe is written in one symbol

words or abbreviations before suffixes
of plural and genitive forms

h.b.o.’er’
sms’t

h.b.o.-er
sms-t

CoAp1e CoAp1 Apostrophe is written instead
of other letters to shorten a word zo’n zoon

303



Table 9: Spelling principles from the Marked by Morphology category
Theme Name Description of spelling error Examples

Error Basic Target Original

15 Assimilation MoAs1 MoAs1 Assimilation of stem

MoAs1a MoAs1 Unvoiced consonant
is pronounced as voiced steeds steets

MoAs1b MoAs1 Voiced consonant
is pronounced as unvoiced zeldzame zeldsame

16 Miniatu-
rization MoMi1 MoMi1 Miniaturization

(Geminaatdelging) achttien achtien

17 Ass. and Min. MoAsMi1 MoAsMi1 Assimilation of stem,
followed by miniaturization opbod obod

18 Final
Devoicing MoFd1 MoFd1

Final Devoicing: Voiced
obstruent becomes
voiceless at end of
word

MoFd1a MoFd1 Voiced obstruent “d”
is written as “t” hond hont

MoFd1b MoFd1 Voiced obstruent “b”
is written as “p” club clup

19 MoFd2 MoFd2
Exception Final Devoicing:

Words cannot end in
a voiced obstruent

MoFd2a MoFd2 Words cannot end in
the voiced obstruent “v” werf werv

MoFd2b MoFd2 Words cannot end in
the voiced obstruent “z” muis muiz

20 Silent “t” MoEndT1 MoEndT1 t is written,
but /t/ is not pronounced

kastje
rechtdoor

kasje
rechdoor

21 Silent “n” MoEndN1 MoEndN1
n is written,

but /n/ is not pronounced
binnen

fietsen
binne

fietse

22
Composition

words
MoCoS1 MoCoS1

You write a “between s”
between two parts of a
composition word if you
hear that “s” or when you
hear it in similar words

dorpsweg,
dorpsstraat

dorpweg,
dorpstraat

23 MoCoS2 MoCoS2
If you don’t hear an “s”

between two parts of a
composition word, you
don’t write one

hoofdweg hoofdsweg

24 Hyphen MoHy1 MoHy1 Use a hyphen ...

MoHy1a MoHy1 ... in case of word repetition
zon- en
feestdagen

zon en
feestdagen

MoHy1b MoHy1 ... in case of word repetition abc-boek abc boek
MoHy1c MoHy1 ... in names Gert-Jan Gert Jan

MoHy1d MoHy1 ... in case of vowel collision
zonne-
energie

zonneenergie

MoHy1e MoHy1 ... in other categories - -

304



Table 10: Spelling principles from the Marked by Syntax category (1/2)
Theme Name Description of spelling error Examples

Error Basic Target Original

25 Number SyNum1 SyNum1 Plural noun forms end in
“s” or “n”

SyNum1a SyNum1 Plural noun forms end in “s” bureaus bureau
SyNum1b SyNum1 Plural noun forms end in “n” kanten kanter

26 SyNum2 SyNum2 Plural verb forms end in -n
(pv tt, pv vt, vd, od, inf) fietsen fietser

27 Sjwa SySjwa1 SySjwa1
Sjwa in non-verb suffixes: Some

suffixes consist of an “e”
(sjwa), or “e” (sjwa) + “n”

hele hel

28 SySjwa2 SySjwa2
Some suffixes have an “e”

(sjwa) in second position after
the “d” or “t”

dansende dansend

29 Composition
words SyCoN1 SyCoN1

Between -n needs to be written
between two morphemes
in some composition words

bijenkorf bijekorf

30 Person SyPer1 SyPer1 Present 2nd/3th person singular
forms have suffix “t”

SyPer1a SyPer1 “t” substituted with “d” loopt loop

SyPer1b SyPer1 “t” substituted with another
character, which is not a “d”

loopt
vindt

loop
vinds

31 Past
Simple SyVt1 SyVt1

When the stem of a verb ends in
an unvoiced sound (the sounds
in ”’t exkofschip”), the suffix
starts with an unvoiced
/t/ sound (”t”)

SyVt1a SyVt1 “t” substituted by “d” werkte werkde

SyVt1b SyVt1 “t” substituted by “tt” werkte werktte

SyVt1c SyVt1 “tt” substituted by “t” wachtte wachte

SyVt1d SyVt1 “t” or “tt” substituted by PCU
other than “d”, “tt” or “t”

werkte
wachtten

werkse
wachken

32 SyVt2 SyVt2
When the stem of a verb ends in

an voiced sound (the sounds
not in ”’t exkofschip”), the
suffix starts with a
voiced /d/ sound (”d”)

SyVt2a SyVt2 “d” substituted by “t” krabde krabte

SyVt2b SyVt2 “d” substituted by “dd” krabde krabdde

SyVt2c SyVt2 “dd” substituted by “d” brandde brande

SyVt2d SyVt2 “d” or “dd” substituted by other
PCU than “t”, “dd” or “d”

krabde
brandde

krabme
branke

305



Table 11: Spelling principles from the Marked by Syntax category (2/2)
Theme Name Description of spelling error Examples

Error Basic Target Original

33 Past
Participle SyVd1 SyVd1 If last letter of word stem in

“’t exkofschip”, suffix starts with “t”

SyVd1a SyVd1 “t” substituted by “d” gepakt gepakd

SyVd1b SyVd1 “t” substituted by other character,
which is not a “d” gepakt gepaks

34 SyVd2 SyVd2 If last letter of word stem not in
“’t exkofschip”, suffix starts with “d”

SyVd2a SyVd2 “d” substituted by “t” beloofd belooft

SyVd2b SyVd2 “d” substituted by other character,
which is not a “t” beloofd beloofb

35 SyVd3 SyVd3 Some part participles end in -en geroepen geroept

36 Present
Participle SyOd1 SyOd1 The suffix of present participle

always starts with “d”
SyOd1a SyOd1 “d” substituted by “t” dansend dansent

SyOd1b SyOd1 “d” substituted by other character,
which is not a “t” dansend dansens

37 Capital SyCap1 SyCap1 Every sentence starts with
a capital letter Hallo hallo

Table 12: Spelling principle from the Marked by Semantics category
Theme Name Description of spelling error Examples

Error Basic Target Original

38 Capital SemCap1 SemCap1
Every proper name, title and some

abbreviations start with a capital
letter

Nijmegen nijmegen

306


