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Abstract

Previous studies show that neural machine translation (NMT) systems produce translations
with higher quality when highly similar sentences (i.e. fuzzy matches; FMs) to a given input
sentence can be found in the NMT training data. This study explores the usefulness of FMs
for the task of sentence-level quality estimation (QE) for NMT. To this end, fuzzy matches are
integrated into the QE architecture that utilizes a pre-trained XLM-RoBERTa model, through a
data augmentation methodology. The results show that FMs improve QE performance in domain-
specific scenarios when using translation edit rate (TER) as quality labels. However, similar
improvements are not observed when the same methodology is applied to a general-domain setting
when quality labels were generated through direct (manual) assessment of translation quality or
by measuring the technical post-editing effort required for transforming the MT output to its
post-edited version.

1. Introduction

Quality estimation (QE) is defined as the task of predicting the document-, sentence- or word-
level quality of machine-translated texts without any access to gold-standard human (i.e. reference)
translations (Blatz et al. 2004, Specia et al. 2009, Wong and Kit 2012). QE has been an actively
explored area in the field of machine translation (MT) given its many applications, which include
error analysis (Ueffing and Ney 2007), comparing the translation quality of different MT systems
(Rosti et al. 2007), filtering out low-quality translations for human post-editing (Specia et al. 2009)
and selecting high-quality translations to be published as they are (Soricut and Echihabi 2010).

In sentence-level QE, state-of-the-art predictive models commonly rely on the information pro-
vided by source-MT pairs to assess the quality of a given MT output, since the quality of the MT
output is estimated in terms of its correctness compared to the given source text. In two recent stud-
ies, it has been shown that transformer-based domain-specific neural machine translation (NMT)
systems, which are trained on source-target sentence pairs, produce translations with higher quality
when highly similar sentences to the input sentence (i.e. high fuzzy matches, FMs) were present in
the NMT training data (Bulté and Tezcan 2019, Tezcan and Bulté 2022). These findings suggest
that, in the context of domain-specific NMT, the degree of similarity between the input sentence
and the NMT training data plays an important role in the quality of translations produced by the
same system.

With the hypothesis that, for a given source sentence, the FMs retrieved from the NMT training
data are informative for estimating the quality of the NMT output, the current study explores their
usefulness for the sentence-level QE task. More concretely, this study aims to answer the following
research questions:

• RQ1: How does the performance of the FM-augmented QE models compare to that of a
baseline QE model?
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• RQ2: What is the optimal data size for training FM-augmented QE models in the context of
transfer learning?

• RQ3: How does QE performance differ in domain-specific and general-domain scenarios? Does
predicting different quality labels result in different QE performances?

• RQ4: How does FM similarity score influence the performance of FM-augmented QE models?

To answer these research questions, this study adopts a data augmentation approach, which is
originally proposed in the context of NMT (Bulté and Tezcan 2019). Using this approach, for a
given source sentence, the best FM retrieved from the NMT training data is simply concatenated to
a typical QE input sequence, which consists of the source-MT pair. Using the FM-augmented data
sets, sentence-level QE models are trained in the context of transfer learning, by utilizing the XLM-
RoBERTa (XLM-R) model (Conneau et al. 2020) within the TransQuest framework (Ranasinghe
et al. 2020).

The first set of experiments is conducted on two domain-specific data sets and language pairs,
namely the TM of the European Commission’s translation service (DGT-TM) for the English–
Dutch (EN–NL) language pair and the United Nations corpus (UN) for the English–French (EN–
FR) language pair. The results obtained in domain-specific settings show that this simple data-
augmentation method improves sentence-level QE performance compared to the baseline systems
and better QE performance is achieved with increasing FM scores. The results also demonstrate
that, by relying only on the information obtained from the source sentences and the NMT training
data (i.e. in the absence of the MT output), decent QE performances can be achieved. To obtain a
better picture of the impact of FM-augmentation on sentence-level QE, the experiments are repeated
in a general-domain setting using the WMT 2020 Wikipedia data set for the English–German (EN–
DE) language pair, while using a different set of quality labels. The experiments conducted in
the general-domain scenario, however, show that the FM-augmentation approach does not lead to
any statistically significant differences in QE performances. This study additionally identifies two
potential reasons for the discrepancy between the QE performances observed in the two scenarios.
Firstly, the different quality labels used in both scenarios potentially measure different aspects
of translation quality, and the FMs, which are retrieved using cosine similarity between sentence
embeddings, might only be informative for predicting only certain types of quality labels. Secondly,
the similarity scores for the FMs retrieved for the test sentences used in the general-domain scenario
are observed to be much lower on average compared to the domain-specific scenario. Given that
the domain-specific QE systems perform better with higher FM scores, the FMs retrieved in the
general-domain scenario are potentially less informative than the ones retrieved in the domain-
specific scenario.

The remainder of this paper is structured as follows: in the next part, relevant previous research is
discussed (Section 2). The methodology is described in Section 3, followed by the results (Section 4),
and their discussion (Section 5). In the final section (Section 6), conclusions are drawn up.

2. Related Research

This section briefly describes the different types of QE tasks (Section 2.1) and QE systems (Sec-
tion 2.2), before discussing previous attempts that utilized FMs for the task of QE (Section 2.3). We
then summarize FM utilization approaches within the NMT framework and outline the neural fuzzy
repair methodology, which is adopted in this study for the sentence-level QE task (Section 2.4).

2.1 QE tasks

QE is typically addressed as a supervised machine learning task where the goal is to predict the
quality of MT output on word, sentence, or document levels, in the absence of reference (i.e. gold-
standard) translations (Specia et al. 2020, Specia et al. 2021).
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Word-level QE focuses on detecting word-level translation errors in a machine-translated text,
where the aim is to predict binary quality labels per word as correct or incorrect. In literature, word-
level quality labels have been generated in different ways, such as by utilizing coarse- and fine-grained
human error annotations (Popović and Ney 2011, Tezcan 2018, Popović 2018, Specia et al. 2018) or
by automatically marking words that require post-editing (i.e. technical post-editing effort) using
automatic MT evaluation metrics, such as translation edit rate (TER) (Snover et al. 2006, Specia
et al. 2020, Specia et al. 2021)

In sentence-level QE the goal is to often predict a (continuous) quality score, which reflects how
close a machine-translated text is to a gold-standard translation. In the past, quality scores have
been obtained through direct assessment (human evaluation) (Specia et al. 2020), by comparing
MT output to its post-edited version, using automatic MT evaluation metrics (Specia and Farzindar
2010), or by measuring the time it takes to post-edited a given MT output (Bojar et al. 2013). More
recently a new variant of the sentence-level QE task has been introduced, which aims to predict
a sentence-level binary score indicating whether a translation contains (at least one) critical error,
which may carry health, safety, or legal implications (Specia et al. 2021). Word- and sentence-level
QE tasks, which utilize different quality labels or scores, can also be extended to a document level,
which is referred to as document-level QE (Specia et al. 2020, Specia et al. 2021).

2.2 QE systems

Earlier work on QE mostly focused on machine learning methods that rely on linguistic processing
and feature engineering (Hardmeier et al. 2012, Specia et al. 2013, Specia et al. 2015). In feature-
based approaches to QE, linguistic features were mostly extracted from MT systems (glass-box
features) or obtained from source-machine-translated sentence pairs, and external resources (black-
box features).

In the last decades, (deep) neural networks (NNs) have shown outstanding performance in the
field of natural language processing (NLP) and have led to improvements in various NLP tasks,
including QE for MT. Firstly, recurrent NNs (RNNs) were successfully adopted for the QE task (Kim
and Lee 2016, Patel and Mukundan 2016). Using RNNs, Kim et al. (2017) proposed a two-stage QE
architecture referred to as predictor-estimator which consists of an encoder-decoder RNN (predictor)
trained on parallel data for a word prediction task and a unidirectional RNN (estimator) that
estimates the quality of a given MT output by using the representations generated by the predictor
model. With the advances in the context of transfer learning, recent work on QE focused on fine-
tuning large-scale, pre-trained models for the different QE tasks. For example, Kepler et al. (2019)
replaced the predictor component in the predictor/estimator architecture with pre-trained BERT
(Devlin et al. 2019) and XLM (Conneau and Lample 2019) models. More recently, the cross-lingual
XLM-R model has been successfully utilized in the QE tasks, either as the predictor component in the
predictor/estimator architecture (Chen et al. 2021), as a stand-alone model (Ranasinghe et al. 2020),
or as an ensemble of different XLM-R checkpoints (Zerva et al. 2021). Such XLM-R-based QE models
achieved state-of-the-art results in the WMT shared tasks on word- and sentence-level QE in recent
years (Specia et al. 2020).12. It should also be noted that, in multiple studies, cross-lingual models,
such as XLM-R, have been reported to perform better than multilingual models, such as mBERT
(Pires et al. 2019) and mBART (Liu et al. 2020) on different QE tasks (Ranasinghe et al. 2020, Eo
et al. 2021, Zerva et al. 2021).

2.3 Integration of FMs into QE for MT

To our knowledge, this is the first study that directly integrates FMs retrieved for a given source
sentence from the MT training data into a sentence-level QE architecture. However, in the field of

1. https://www.statmt.org/wmt21/quality-estimation-task_results.html
2. https://www.statmt.org/wmt20/quality-estimation-task_results.html
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QE, the idea of utilizing the level of similarity between a given source sentence to the MT training
data is not new. For example, the QuEst toolkit utilized a wide range of features extracted from
source texts, MT output, external language resources, as well as from the MT training data (Specia
et al. 2013). Regarding the similarity of a given source sentence to the MT training data, the QuEst
toolkit utilized features that indicated how frequent source n-grams of different sizes also appeared in
the MT training data set. In a more recent study, Wang et al. (2021) integrated a set of features into
a neural QE architecture based on the highest n similarity scores measured between a given input
sentence and the NMT training data. Similar to the QE architecture used in this study, Wang et al.
(2021) utilized the XLM-R model in the context of transfer learning. The results of the experiments
conducted on the WMT 2020 sentence-level QE data set showed that, when combined with other
linguistic features, such similarity-based features led to a decrease in QE performance.

2.4 Integration of FMs into NMT

While the usefulness of integrating FMs into neural QE architectures is yet to be demonstrated, FMs
have been successfully utilized to improve NMT models in the past. Within the NMT paradigm,
various modifications to the NMT architecture and search algorithms were proposed to leverage
information from FMs. For example, Cao and Xiong (2018) added an encoder to the NMT ar-
chitecture, which specifically utilized FMs retrieved from the NMT training data. Alternatively,
NMT models have also been adapted to incorporate lexical constraints obtained from FMs during
the decoding stage (Gu et al. 2018), to take into account rewards attached to text fragments that
are found in FMs (Zhang et al. 2018), or to generate tokens in the target language by employing
a nearest neighbor classifier, which utilizes similar translations retrieved from the NMT training
data (Khandelwal et al. 2020, Meng et al. 2022). Whereas most of the approaches that utilize FMs
for NMT require modifications to the NMT architectures or decoding algorithms, to this end FMs
have also been integrated into NMT through augmenting source sentences with translations of FMs
retrieved from the NMT training data at training and inference times (Bulté and Tezcan 2019, Xu
et al. 2020, Tezcan et al. 2021). This data augmentation approach, referred to as neural fuzzy repair
(NFR), forms the basis of the QE methodology in this study.

In NFR, for a given TM, or a bilingual data set used for training the NMT model, consisting of
source/target sentence pairs S, T , each source sentence si ∈ S is augmented with the translations
{t1, . . . , tn} ∈ T of n FMs {s1, . . . , sn} ∈ S, where si /∈ {s1, . . . , sn}, given that the FM score
is sufficiently high (i.e., above a given threshold λ). Sentence similarity is either measured using
token-based edit distance (Bulté and Tezcan 2019) or cosine similarity between sentence embeddings
(Tezcan et al. 2021).

The NMT model is then trained using the combination of the original TM, which consists of the
source/target sentence pairs S, T , and the augmented TM, consisting of augmented-source/target
sentence pairs S′, T . At inference, each source sentence is augmented using the same method. If
no FMs are found with a match score above λ, the non-augmented (i.e., original) source sentence is
used as input to obtain translations. Figure 1 illustrates the NFR method for the EN–NL language
pair, which utilizes a single FM for data augmentation.

3. Methodology

This section first describes the data sets (Section 3.1) and the NMT systems (Section 3.2) used
for the domain-specific QE experiments conducted in the study. We then provide more details on
the two core methodologies used for integrating FMs into the sentence-level QE task: FM retrieval
(Section 3.3), and the FM-augmented QE architecture, which utilizes FM-augmented data sets in
the context of transfer learning (Section 3.4).
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Figure 1: Neural fuzzy repair: training and inference (Tezcan et al. 2021).

3.1 Data

3.1.1 Domain-specific Setting

For the domain-specific QE experiments, data sets from two domains and in two language directions
were used: the TM of the European Commission’s translation service (DGT-TM), which consists of
texts written for mostly legal purposes, such as contracts, reports, regulations, directives, policies
and plans within the Commission (EN–NL) (Steinberger et al. 2012), and the UN parallel corpus,
which consists of the official records and parliamentary documents of the United Nations (EN–FR)
(Ziemski et al. 2016).

Each data set was partitioned into a training set, two validation sets, and a test set. To this end,
random sentences were selected from the two data sets consisting of a minimum of 3 and a maximum
of 85 tokens. In the first step, the DGT and UN data sets were used to train domain-specific NMT
systems (by using the training, validation 1, and test sets). The data sets were also used to build
FM-augmented sentence-level QE systems, in the second step (by using the training, validation 2,
and test sets).

To train QE systems, sentence-level quality labels were automatically extracted using Translation
Edit Rate (TER) (Snover et al. 2006)3. On the test set, the TER scores were calculated by comparing
the reference translations with the translations obtained from the NMT model, which was trained
with the full training set (as outlined in Table 1). As this study initially aims to utilize the whole
NMT training data also for the QE task and additionally to measure the impact of different training
sizes on QE performance, 4-fold jackknifing was used to obtain unbiased translations on the NMT
training set. To this end, the NMT training set was further partitioned into four equal splits and
four additional NMT models were trained, each using a different combination of the three splits as
training data and the original validation set. These four NMT models were then used to obtain
translations on the remaining split in each case. The number of sentences used for each domain,
language pair, and partition, is provided in Table 1. In both data sets, the different partitions did
not contain any overlapping sentences.

3. Version 0.7.25: https://github.com/snover/terp
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Table 1: NMT data set: number of sentences in training, validation (Val. 1 and Val. 2), and test
sets, per domain and language pair.

Domain (Language Pair) Train Val. 1 Val. 2 Test Quality Labels
DGT (EN–NL) 708695 2500 2500 2500 TER
UN (EN–FR) 887611 2500 2500 2500 TER

3.1.2 General-domain Setting

For the general-domain QE experiments, the EN–DE data set of the WMT 2020 shared task on
sentence-level QE estimation was used (Fomicheva et al. 2020b, Specia et al. 2020). The WMT QE
data set4 consists of source sentences in the general domain, which were extracted from Wikipedia
articles, as well as NMT output and quality labels per source sentence. The NMT output in this data
set was produced by transformer-based NMT models trained on approximately 23 million sentence
pairs extracted from Wikipedia articles, using the fairseq toolkit (Ott et al. 2019)5

In the WMT 2020 data set, sentence-level quality labels were produced both manually and auto-
matically. For each sentence, the manual quality (i.e. direct assessment, DA) scores were obtained
independently from at least three different professional translators from a single language service
provider (sentence-level direct assessment task). To this end, each sentence was scored between 0 and
100, following the FLORES guidelines (Guzmán et al. 2019), according to the perceived translation
quality. DA scores were normalized by taking the mean z-scores per sentence.

The automatic quality scores were obtained using HTER (Human-targeted Translation Edit
Rate) as the minimum edit distance between a given MT output and its manually post-edited version
(sentence-level post-editing task). In the context of general-domain QE, this study investigates the
performance of FM-augmented QE models for both sub-tasks. The number of sentences in the WMT
2020 shared tasks on sentence-level QE is provided in Table 2.

Table 2: WMT 2020 data set used for the sentence-level QE shared tasks: number of sentences in
the training, validation, and test sets.

Domain (Language Pair) Train Validation Test Quality labels
Wikipedia (EN–DE) 7000 1000 1000 DA/HTER

3.2 NMT systems

All the in-domain NMT systems were trained using the Transformer architecture (Vaswani et al.
2017) and the OpenNMT toolkit (Klein et al. 2017). Prior to training the NMT models, the data sets
were segmented into sub-words using SentencePiece (Kudo and Richardson 2018), using the XLM-R
(base) tokenizer6. The resulting vocabulary sizes were approximately 36K and 44K for the DGT
(EN–NL) and the UN (EN–FR) data sets, respectively. For each training, a total of 1 million steps
were used with validation at every 5000 steps. All of the models were trained with early stopping:
the training ended when the system has not improved for 10 validation rounds in terms of both
accuracy and perplexity. All training runs were initialized using the same seed to avoid differences
between systems due to the effect of randomness. Other details regarding the hyper-parameters used
for training the NMT models are provided in Appendix A.1

4. https://www.statmt.org/wmt20/quality-estimation-task.html
5. The official page of the WMT 2020 shared task points to a data set that consists of approximately 23 million

sentence pairs as the parallel data used to train the NMT models. However, the exact number of sentences used in
training, validation, or test sets, or the implementation of the details of the NMT modes are not further provided.

6. https://huggingface.co/docs/transformers/v4.22.2/en/model_doc/xlm-roberta\#overview
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To provide an indication of the average quality of each NMT system, Table 1 presents automated
evaluation results obtained on each test set, in terms of the BLEU7 (Papineni et al. 2002) and TER
scores. The evaluations were performed after the MT output was detokenized, in each case. It
should be noted that, while the evaluation for the domain-specific data sets was performed against
reference translations, in the general-domain case, post-edited MT output was used for this purpose.
This information is also provided in Table 1.

Table 3: Performance of the NMT models on the test set of each data set.

Domain (Language Pair) BLEU TER Evaluation vs.
DGT (EN–NL) 44.10 0.489 reference translations
UN (EN–FR) 47.42 0.416 reference translations
Wikipedia (EN–DE) 72.37 0.172 post-edited MT output

3.3 FM retrieval

Fuzzy matching is a key functionality in NFR, as the quality of the generated translations is deter-
mined by the similarity level of the retrieved FMs (Bulté and Tezcan 2019, Tezcan et al. 2021). In
the original NFR approach, when augmenting source sentences with FMs, a minimum FM similarity
threshold is used (λ = 0.5), as the FMs with low similarity to the input did not lead to improved
translation quality. As a result, to allow the NMT model to translate both the original and the aug-
mented source sentences at inference time, the original training data is combined with its augmented
version during training (see Figure 1).

With the hypothesis that FMs with low similarity can also be informative for predicting the
quality of NMT output, in the QE task, we do not set a minimum FM similarity threshold. To this
end, for each source sentence in the QE data set (training, validation, and test sets), we seek FMs
against the NMT training data and retrieve the FM with the highest similarity score (i.e. best FM).
Similar to (Tezcan et al. 2021), the sentence similarity score SE(si, sj) between two source sentences
si and sj is measured as the cosine similarity of their sentence embeddings ei and ej , that is,

SE(si, sj) =
ei · ej

∥ei∥ × ∥ej∥
(1)

where ∥e∥ is the magnitude of vector e. To generate sentence embeddings, we use sent2vec
(Pagliardini et al. 2018), and for efficient retrieval of FMs, we build a FAISS index (Johnson et al.
2021). FAISS is a library specifically designed for efficient similarity search and vector clustering
and is compatible with the large data sets used in this study. The hyper-parameters used for
generating sentence embeddings and for building the FAISS index are provided in Appendices A.2
and A.3, respectively. Prior to retrieving FMs, all sentences were segmented into sub-words using
SentencePiece, with the same methodology described in Section 3.3.

Table 4 illustrates the FM retrieval process for the source sentence (SRC) ”This Common Position
shall take effect on the day of its publication.”. In this table, the FM similarity score, the source
(English) and target side (Dutch) of the best FM found for the source sentence are indicated as FM
Score, FMsrc and FMtgt, respectively. The table also includes the machine-translated version of the
source text (MT), and the reference (i.e. gold-standard) translation (REF) in the target language.

7. https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Table 4: An example of FM retrieval for the English-Dutch language pair.

SRC This Common Position shall take effect on the day of its publication.
FM Score 0.946
FMsrc This Common Position shall take effect on the day of its adoption.
FMtgt Dit gemeenschappelijk standpunt wordt van kracht op de dag van zijn aanneming.
MT Dit gemeenschappelijk standpunt wordt van kracht op de dag van de

bekendmaking ervan.
REF Dit gemeenschappelijk standpunt wordt van kracht op de dag van zijn bekendmaking.

3.4 QE architecture

To build sentence-level QE models, we adopt a transfer-learning approach and use the MonoTran-
sQuest architecture (MTQ) (Ranasinghe et al. 2020), which was the winner of the WMT 2020
sentence-level direct assessment task for all language pairs (Specia et al. 2020). The MTQ archi-
tecture uses a single cross-lingual XLM-R model, which is fine-tuned for the sentence-level QE task
during training. The input of this model is a concatenation of the original source sentence and its
translation (MT output), separated by a separator ([SEP]) token. The output of the classification
token ([CLS]) is used as the input of a softmax layer that predicts the quality score of the translation,
using mean-squared error loss as the objective function.

To integrate FMs into the MTQ architecture, the original input representation (SRC–MT pair)
was extended by concatenating the source (FMsrc) or target (FMtgt) side of the best FM retrieved
for each source sentence using an additional [SEP] token. The original MTQ architecture and the
modification we made to this architecture in this study are illustrated in Figure 2.

Besides extending the original SRC–MT pairs with the source or target sides of the best FMs
(SRC–MT–FMsrc vs. SRC–MT–FMtgt), we also experimented with other input configurations. To
further investigate the usefulness of FMs in the absence of the MT output, additional experiments
were conducted by concatenating a given input source sentence with the source, target, or both source
and target sides of the best FM obtained for each source sentence (SRC–FMsrc, SRC–FMtgt, and
SRC–FMsrc–FMtgt, respectively). For all different configurations, the data augmentation method-
ology was applied to all sentences in the training data, as well as the sentences in the validation and
the test sets.

For all language pairs we tested, two baseline QE models were trained: an MTQ model using the
standard source–MT pairs as input, and a simple linear regression model8, which uses the FM score
for each given input as a single feature. While the purpose of training the baseline MTQ model was
to compare the performance of the QE approaches proposed in this study to a state-of-the-art QE
approach, the linear regression model was trained to observe the informativeness of the FM score as
a single feature on the sentence-level QE task.

All the MTQ models are trained using the TransQuest toolkit9 with close to standard settings.
To train the baseline QE model with source-MT pairs as input the maximum input sequence was set
to 170 tokens (instead of the default value of 80). To avoid memory issues, the training batch size
was adapted from 8 input sequences to 4, while also changing the gradient accumulation steps from 1
to 2. Using these settings, the QE performance of the baseline model in the WMT 2020 shared task
(EN–DE) could be reproduced by further modifying the learning rate to 1 × 10−6 (from 2 × 10−5)
and the number of validation steps to 100 (from 300). For training QE models with augmented
input, which utilized three input sentences (for example the SRC-MT-FMsrc triplet), the maximum
input sequence length was increased to 256 tokens. All QE models were trained with early stopping:
the training ended when the system has not improved for 10 validation rounds in terms of mean

8. Linear regression models were built using the SciPy library (Virtanen et al. 2020): https://github.com/scipy/

scipy.
9. TransQuest toolkit: https://github.com/TharinduDR/TransQuest
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(a)

(b)

Figure 2: The original MonoTransQuest architecture (Ranasinghe et al. 2020) (a), and the modified
MonoTransQuest architecture, in which the input representation is extended by the source or target
side of the best FM retrieved for each given source sentence (b).
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squared error (MSE). The same hyper-parameter values were also used for training domain-specific
QE models with the exception that the number of validation steps was proportionally increased with
increasing training data set sizes (up to 6400) (see Section 4.1.2 for the experiments that use different
sizes of training data). All models were trained on a single Tesla V100 SXM2 GPU with 16GB of
memory. An overview of the hyper-parameters used for training the MTQ models is provided in
Appendix A.4.

4. Results

In this section, first, an analysis of the results for the domain-specific settings is provided (EN-NL and
EN–FR) (Section 4.1). Subsequently, Section 4.2 shows the results for the general-domain setting
(EN–DE). Similar to the WMT 2020 shared task on sentence-level quality estimation, Pearson’s
correlation coefficient (Pearson r) is used as the primary evaluation metric to evaluate the QE
performance. Statistical significance on Pearson r was computed using William’s test.10

4.1 Domain-specific setting

Table 5 shows the performances of the QE models, which were trained using the full training data
sets for the EN–NL (DGT) and the EN–FR (UN) language pairs. The table consists of three
sections. From top to bottom, it shows the results for (a) the two baseline systems, (b) the QE
systems, which additionally utilize the source or target sentences of the FMs retrieved for each
source sentence, and (c) the QE systems that incorporate source, target, or both the source and
target sides of the retrieved FMs, without the MT output. The table reports Pearson r, as well as
Spearman’s correlation coefficient (rs), root mean squared error (RMSE), and mean absolute error
(MAE) values for all QE systems.11.

Table 5: Results of the automated evaluations for DGT (English–Dutch) and UN (English–French)
data sets. The best scores are highlighted in bold.

DGT (EN–NL) UN (EN–FR)
r ↑ rs ↑ RMSE ↓ MAE ↓ r rs RMSE MAE

Linear Regression 0.489 0.517 0.239 0.295 0.408 0.409 0.172 0.217
SRC–MT 0.556 0.576 0.206 0.277 0.638 0.619 0.139 0.182
SRC–MT–FMsrc 0.572 0.593 0.209 0.271 0.661 0.646 0.136 0.177
SRC–MT–FMtgt 0.621 0.648 0.197 0.260 0.672 0.653 0.134 0.175
SRC–FMsrc 0.555 0.575 0.214 0.275 0.596 0.590 0.145 0.191
SRC–FMtgt 0.563 0.585 0.207 0.274 0.605 0.592 0.144 0.189
SRC–FMsrc–FMtgt 0.562 0.584 0.210 0.274 0.585 0.575 0.145 0.192

Looking at the baseline QE systems (upper section), we see that for both translation directions,
the baseline MTQ model (SRC–MT), outperforms the linear regression model, which utilizes the
FM score as a single feature, by 0.067 and 0.230 in terms of Pearson r. Similar improvements can
be observed for the remaining evaluation metrics. While observing improvement in QE performance
by using state-of-the-art QE models over simple linear regression models is not surprising, it should
be noted that, by using a single feature, the linear regression models remarkably achieve a moderate
correlation with the gold standard quality labels in both data sets.

In the middle section, we see that the QE systems, which additionally utilize the source or
target side of the FMs retrieved for a given source sentence (SRC–MT–FMsrc and SRC–MT–FMtgt,
respectively) outperform both baseline systems for both language pairs and evaluation metrics, with

10. https://github.com/ygraham/nlp-williams
11. All calculations are performed using the SciPy library (Virtanen et al. 2020): https://github.com/scipy/scipy.
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the exception of RMSE for the SRC–MT–FMsrc configuration of the DGT (EN–NL) data set (0.209
vs. 0.206). The results also show that the target side of a retrieved FM is more informative on the
sentence-level QE task than the source side when such information is combined with source–MT
pairs. Combining source–MT pairs with FMtgt leads to improvements in r values, for the DGT
(EN–NL) (+0.049) and EN-FR (+0.011) data sets, respectively.

The same trend can be seen in the lower section of Table 5, which shows the QE performances of
the systems that utilize source sentences with the source, target, or both source and target side of the
retrieved FMs, in the absence of the MT output. The QE system, which utilizes the target side of the
retrieved FMs (SRC–FMtgt) does not only outperform its counterpart, which utilizes FMsrc instead
(SRC–FMsrc), but also the system that utilizes both FMsrc and FMtgt (SRC–FMsrc–FMtgt), for
all evaluation metrics. This section also shows a clear decrease in QE performance, when the MT
output is removed from the SRC–MT–FMtgt triplets. Another interesting observation is that by
using only the SRC–FMtgt pair as input (without using the MT output), a better QE performance
than the baseline MTQ model (SRC–MT) was achieved for the DGT data set (0.563 r vs. 0.556 r).
This observation, however, cannot be made for the UN data set (0.605 r vs. 0.638 r).

When the results are analyzed together, we see that the system which utilizes the SRC–MT–
FMtgt triplet outperforms all other systems tested for both data sets and all evaluation metrics,
including the baseline MTQ system (SRC–MT) by 0.065 (+12%) and 0.034 (+5%) points in terms
of r. For both data sets, the r improvements achieved by the best-performing systems compared to
the baseline MTQ systems are statistically significant (p < 0.001).

4.1.1 Impact of FM similarity score

In this section, the impact of the FM similarity score on QE performance is analyzed. To this end,
the QE performances of the best performing MTQ models (SRC–MT–FMtgt) and the baseline MTQ
models (SRC–MT) are provided in Table 6, per FM similarity range (i.e. 0.50-0.59 ... 0.90-0.99)
and data set. For both the DGT and the UN data sets, the minimum FM range is observed as 0.50-
0.59, when the similarity between source sentence embeddings is measured in terms of their cosine
similarity. Additionally, for both language pairs, Table 6 provides the total number of sentences
that are found in the corresponding test sets, per FM similarity range.

Table 6: QE performance per FM similarity range in terms of Pearson r. The number of sentences
in each FM similarity range is indicated with #Sent.

DGT (EN–NL) UN (EN–FR)
SRC–MT SRC–MT–FMtgt #Sent SRC–MT SRC–MT–FMtgt #Sent

0.50-0.59 0.178 0.355 15 0.542 0.533 36
0.60-0.69 0.361 0.360 387 0.486 0.485 832
0.70-0.79 0.429 0.412 840 0.578 0.583 830
0.80-0.89 0.366 0.436 500 0.595 0.625 375
0.90-0.99 0.539 0.607 758 0.575 0.699 427

Table 6 shows that the QE performance of the best-performing MTQ model, which combines
the source-MT pair with FMtgt (SRC–MT–FMtgt) increases with increasing FM similarity score,
except for the lowest FM range (0.50-0.59) for the UN data set. It should also be noted that this
FM range corresponds to a very small portion of the full test sets (15 and 36 sentences out of 2500
sentences in the DGT and the UN test sets, respectively). A similar positive correlation between
the FM similarity ranges and QE performance, however, cannot be observed for the baseline MTQ
systems.

When we compare the QE performances of the two systems per FM range, for both data sets, we
see a clear improvement in r values, when the FM-augmented model utilizes FMs in high similarity
ranges (above 0.80). The total number of sentences that are observed above the 0.80 similarity
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range corresponds to 50% (1258 sentences) and 32% (802 sentences) of the whole test set for the
DGT and UN data sets, respectively. While such clear improvements cannot be observed for the
FM-augmented MTQ models in the lower FM similarity ranges (below 0.80), the results show that,
for both data sets, these models still achieve similar QE performance to the baseline MTQ models
(i.e. without any evident decrease in QE performance), when the lowest FM range for the DGT
data set is excluded from this analysis (due to the low number of sentences found in this range).

4.1.2 Impact of training data size

In the domain-specific setting, to analyze the impact of the training data size on QE performance, the
performance of the best-performing (SRC–MT–FMtgt) and the baseline (SRC–MT) MTQ models
are evaluated for increasingly smaller subsets of the DGT and the UN QE training data. To this end,
after training the MTQ models with the full training data (100%), first, a random subset of half the
size of the full data is collected. This operation is repeated by taking a random subset of the training
set from the previous step until 1.56% of the full training data is reached. The smallest QE training
data sets consist of approximately 11K (DGT) and 13K (UN) sentence pairs (SRC–MT) or triplets
(SRC–MT–FMtgt). The motivation for training MTQ models in the domain-specific setting with
such small data sets is twofold. Firstly, it allows us to measure the potential improvements over the
baseline MTQ model in low-resource QE scenarios. Secondly, despite the differences in the quality
labels used in the two settings, the QE performances in the domain-specific and general-domain
scenarios become comparable to a certain extent, as in the general-domain scenario the full training
data set consists of 7000 sentence pairs. Figure 3 shows the QE performance of the MTQ models,
which are trained with different data sizes. It should also be noted that, when the QE models are
trained with smaller training sets, the NMT models and the NMT output remain the same in each
case.

The results in Figure 3 show a clear overall picture for both the DGT and the UN data sets, with
an advantage for integrating FMs into the QE architecture, as the FM-augmented MTQ models
outperform the baseline models for each QE training set size. For both data sets and each different
training set size, the Pearson r improvements achieved by the FM-augmented system compared
to the baseline MTQ system are statistically significant (p < 0.001). Moreover, the improvements
observed over the baseline MTQ models increase with decreasing training set sizes. When trained
with the smallest data sets (1.56% of the full training set), the FM-augmented models yield 0.13
(+29%) and 0.17 (+31%) r improvements, for the DGT and the UN data sets, respectively.

These results also reveal the training set sizes that yield near-optimal performance for the MTQ
models. For both the DGT and the UN data sets, increasing the QE training set size of the FM-
augmented MTQ models above 25% of the full training size does not yield notable improvements in
QE performances. In the case of the baseline MTQ models, however, we see that a larger training
set size (100%) leads best QE performance for the DGT data set (0.56 r). For the UN data set,
similar to the FM-augmented QE model, the baseline MTQ model yields near-optimal performance
when trained with 25% of the full training set (0.64 r).

4.2 General-domain setting

The general-domain QE models were trained using the WMT (EN-DE) data set, for the two sentence-
level QE tasks in WMT 2020, namely the sentence-level direct assessment task, which uses the man-
ually generated DA labels, and the sentence-level post-editing effort task, which uses HTER scores,
as quality labels. FM-augmented MTQ models were built using the best-performing QE configura-
tion in the domain-specific setting (SRC–MT–FMtgt). Similar to the general-domain setting, the
performance of the FM-augmented MTQ models was compared to two baseline systems: an MTQ
model using the standard source-MT pairs as input (SRC–MT), and a linear regression model, which
uses the FM score for each given input as the single feature. Table 7 shows the QE performances
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(a)

(b)

Figure 3: The impact of training data sizes on QE performance (Pearson r) for the best performing
(SRC–MT–FMtgt) and the baseline (SRC–MT) MTQ models, for (a) the DGT (EN–NL) and (b)
the UN (EN–FR) data sets.
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of the three QE systems per quality label. The table reports Pearson’s correlation coefficient (r), as
well as Spearman’s correlation coefficient (rs) RMSE, and MAE values for all QE systems.

Table 7: Results of the automated evaluations for the WMT 2020 data set, for the sentence-level
direct assessment and post-editing effort tasks. The best scores are highlighted in bold.

Direct assessment (DA) Post-editing effort (HTER)
r ↑ rs ↑ RMSE ↓ MAE ↓ r rs RMSE MAE

Linear Regression 0.081 0.103 0.546 0.696 0.069 0.088 0.160 0.195
SRC–MT 0.443 0.450 0.439 0.621 0.485 0.473 0.134 0.175
SRC–MT–FMtgt 0.418 0.422 0.469 0.639 0.505 0.475 0.128 0.169

From Table 7, it can be seen that, unlike in the domain-specific setting, the predictions obtained
from the linear regression models yield almost zero correlation with the gold-standard DA and
HTER scores (0.081 r and 0.069 r). When we look at the Pearson r results for the DA task, we see
that the baseline MTQ model (SRC–MT) outperforms the MTQ model that additionally utilizes
the target side of the retrieved FMs in the input (SRC–MT–FMtgt) (0.443 vs. 0.418). We see a
different picture, however, for the task of predicting post-editing effort. When HTER scores are used
as quality labels, the additional information presented by the target side of FMs to the QE model
leads to an increase in QE performance (0.485 vs. 0.505). While all evaluation metrics agree on the
better-performing system in both the direct assessment task and the task of predicting post-editing
effort, for the MTQ models, the differences in Pearson r are measured to be statistically insignificant
(p = 0.08 and p = 0.06, respectively).

4.2.1 Impact of FM similarity score

To obtain more insight into the impact of FM similarity score for both QE tasks in the general
domain, we analyze the QE performance of the baseline (SRC–MT) and the FM-augmented MTQ
models (SRC–MT–FMtgt) per FM similarity score range. QE performance is measured in terms
of Pearson r and the results are provided in Table 8. In the WMT QE test set, the minimum
and maximum similarity range for the FMs retrieved from the NMT training data, which consists
of approximately 23 million sentence pairs, are observed as 0.3-0.39 and 0.80-0.89, respectively.
However, given that only a few sentences are found in these two FM ranges (4 and 5, respectively),
they are excluded from Table 8.

Table 8: QE performance per FM similarity range in terms of Pearson r. The number of sentences
in each FM similarity range is indicated with #Sent.

Direct assessment (DA) Post-editing effort (HTER)
SRC–MT SRC–MT–FMtgt SRC–MT SRC–MT–FMtgt #Sent

0.40-0.49 0.501 0.452 0.461 0.496 258
0.50-0.59 0.425 0.410 0.494 0.496 484
0.60-0.69 0.477 0.383 0.553 0.538 209
0.70-0.79 0.505 0.447 0.335 0.516 40

For the direct assessment task, we see that the baseline MTQ model (SRC–MT) outperforms
the FM-augmented model (SRC–MT–FMtgt) in all FM similarity ranges. A similar trend can be
seen for the task of predicting post-editing effort, where the overall best-performing MTQ model
(SRC–MT–FMtgt) achieves higher Pearson r in all FM ranges, except the range of 0.60-0.68 (0.553
vs. 0.538). Unlike in the case of the domain-specific setting, we do not observe a clear increase in
the QE performance of the FM-augmented MTQ models, with increasing FM similarity scores.
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5. Discussion

5.1 Domain-specific setting

Our detailed analyses for the domain-specific setting demonstrate the usefulness of integrating FMs
into the sentence-level QE task when TER scores are used as quality labels. The informativeness
of FMs in this context is, firstly, shown by the baseline linear regression models. By utilizing the
similarity score for the best FM retrieved for a given source sentence as a single feature, simple
linear regression models were able to achieve a moderate positive correlation (r) with gold-standard
TER scores, for both the DGT and UN data sets.

The usefulness of FMs in the domain-specific QE setting is confirmed by the neural QE models,
which were built in the context of transfer learning. For both data sets, the FM-augmented MTQ
models (SRC-MT-FMtgt and SRC-MT-FMsrc) outperformed the baseline MTQ models, which rely
on SRC-MT input sequences. When we compared the impact of integrating the source (FMsrc)
or the target (FMtgt) side of the best FM retrieved for a given source into MTQ models, we
observed a clear trend: FMtgt is not only more informative on the sentence-level QE task than
FMsrc (when concatenated to SRC or SRC–MT pairs as input) but also than the FMsrc–FMtgt
pair (when concatenated to SRC as input). For both data sets, the MTQ systems which utilized the
SRC–MT–FMtgt triplets outperformed all other configurations according to all evaluation metrics,
achieving the overall best QE performance in the domain-specific setting. This configuration also
yielded significant improvements in QE performances compared to the baseline MTQ systems, with
+12% and +5% relative improvement in Pearson r for the UN and the WMT data sets respectively.

Even though the best QE performances were achieved by using the SRC–MT–FMtgt input
sequence, our analyses also revealed that high QE performance could be achieved by only using
SRC–FMtgt input sequence, without utilizing the MT output for the QE task. In fact, for the DGT
data set, the MTQ model that utilized SRC–FMtgt input pairs outperformed the baseline MTQ
model, which utilized SRC–MT input pairs instead. Considering that state-of-the-art QE models
typically rely on SRC–MT pairs, these findings can lead to new research directions in the field of
QE, which focus on building QE systems that only rely on the information collected from source
sentences and NMT training data. Provided that high FMs can be retrieved from the MT training
data, such QE approaches could also be beneficial for real-time applications of QE systems, as they
do not require the generation of MT output prior to estimating translation quality.

The impact of integrating FMtgt into the QE architecture became clearer when the QE perfor-
mances were measured for different FM similarity ranges. In the domain-specific setting, we noticed
a positive correlation between QE performance and the similarity score of the best FM that is uti-
lized in the QE task. For both data sets, the FMs above 0.80 (cosine) similarity score brought clear
improvements to QE performance, and the most informative FMs on the QE task were observed
in the highest (i.e. 0.90-0.99) similarity range. While the FMs in low similarity ranges did not
affect the QE performance negatively, they also did not present any additional value to the MTQ
models. Based on these results, the hypothesis that FMs in all similarity ranges are informative on
the sentence-level QE task is rejected. Interestingly, these results confirm previous findings in the
context of NMT, where it has been demonstrated that integrating FMs with higher similarity scores
into the NMT architecture led to higher improvements in estimated translation quality (Bulté and
Tezcan 2019, He et al. 2021, Tezcan and Bulté 2022). Furthermore, these results also explain to
a certain extent why integrating FMtgt into the MTQ architecture yields larger improvements in
average QE performance on the DGT data set compared to the UN data set: the ratio of source sen-
tences in the DGT QE test set, for which highly informative FMs (i.e. FMs above the 0.8 similarity
score) could be retrieved, was marked to be higher than in the WMT test set (50% vs. 32%).

One of the advantages of utilizing cross-lingual pre-trained models for the QE task in the con-
text of transfer learning is their ability to achieve competitive results in low-resource scenarios
(Ranasinghe et al. 2020). The full QE training data sets in the domain-specific setting can be con-
sidered large data sets that lead to computationally-expensive QE training processes. In order to
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see whether similar QE performances could be achieved with smaller training sets, we re-trained
the best performing MTQ models (using the SRC–MT-FMtgt triplets as input), with increasingly
smaller training sets. The results of these experiments revealed two important facts: for both data
sets, (i) near-optimal QE performance was achieved by using 25% of the original QE training data
sets, and (ii) the improvements observed in QE performance grew relatively larger, with decreasing
training set sizes. In the domain-specific setting, the quality labels on the training data could only
be obtained through the jackknifing method, which required training four additional NMT mod-
els using different subsets of the training data (see Section 3.1 for the details of the jackknifing
methodology used to generate the QE training data set). Achieving near-optimal QE performance
by using only 25% of the full training data suggests that the necessary quality labels for training a
well-performing QE model can be obtained by training a single NMT model (using the remaining
75% of the NMT training data). As a result, the FM-augmented QE models proposed in this study
can be built in a computationally more efficient manner. The larger relative improvements achieved
in QE performance when using increasingly smaller training sets become important for comparing
the results in domain-specific and general-domain settings, which is further discussed in Section 5.3.

5.2 General-domain setting

The analyses made in the general-domain setting showed that the similarity score of the best FM
retrieved for a given source sentence is not informative for predicting the quality of the correspond-
ing NMT output when this information is used as a single feature in a linear regression model.
Such linear regression models yielded almost zero correlation for both QE tasks: predicting (i)
manually obtained direct assessment (DA) scores, and (ii) HTER scores, which were obtained by
comparing the NMT output to its post-edited version. These results were confirmed when the QE
performance of the baseline MTQ configuration (SRC–MT) was compared with the best-performing
FM-augmented model in the domain-specific setting (SRC–MT–FMtgt) for both QE tasks. While
the FM-augmented model outperformed the baseline MTQ model for the task of predicting HTER
scores, it achieved a lower QE performance than the baseline MTQ model for the DA task. How-
ever, the differences between the QE performances of the two configurations were not measured to
be significant. These results also confirm the findings of Wang et al. (2021), who demonstrated that
integrating a set of features into a neural QE architecture based on the highest similarity scores
measured between source sentences and the NMT training data led to a slight decrease in QE per-
formance when combined with other features. Similarly, when we analyzed the QE performance of
both MTQ models for source sentences that are grouped in different FM similarity ranges, no clear
patterns emerged.

5.3 Domain-specific vs. general-domain settings

There are two main potential explanations for the apparent discrepancy between the informativeness
of FMs in sentence-level QE tasks in the domain-specific and general-domain settings. First, the
quality labels in both scenarios were obtained through different methods, which capture different
aspects of translation quality and can be considered also one of the main limitations of this study.
While in the domain-specific setting the TER scores were obtained by comparing a given NMT
output to a gold-standard, reference translation, in the general-domain setting, quality labels were
either obtained manually by taking the average direct assessment (DA) scores or automatically by
comparing a given NMT output to its post-edited version (HTER). In this context, while the DA
scores can capture the severity of errors, this often cannot be measured by TER or HTER scores
(Fomicheva et al. 2020a). On the other hand, while HTER scores measure the post-editing effort
based on a given MT output, TER scores are measured again one possible correct translation, which
can differ greatly from the post-edited MT output, especially in such general-domain scenarios,
where the post-editing process is not driven by specialized guidelines or terminology requirements
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Figure 4: FM similarity score distributions in the DGT, WMT, and Wikipedia QE test sets. The
mean FM score in each data set is displayed in white.

(Fomicheva et al. 2020a), unlike the domain-specific scenarios investigated in this study (Steinberger
et al. 2012, Ziemski et al. 2016).

When the FM-augmented systems were trained with similar QE training set sizes in both sce-
narios (full training set in the general-domain setting and 1.25% of the full training set in the
domain-specific setting), we could observe a clear difference in QE performances. While in the
domain-specific setting (using TER), the FM-augmented QE model resulted in up to 31% relative
improvement in Pearson r compared to the baseline MTQ model, in the general-domain scenario
(using DA and HTER scores), we did not observe any significant differences in QE performances
compared to the baseline MTQ models. Although this observation needs to be confirmed in sub-
sequent studies, the differences between the QE performances in both scenarios can potentially be
attributed to the different aspects of translation quality measured by these three different assess-
ment techniques. It should also be noted that, in domain-specific scenarios, it is often not possible
to manually assess the quality (DA) or obtain post-edited MT output (to calculate HTER scores)
for a large number of sentences (e.g. a full TM). As this study demonstrates, while decent QE
performances could be achieved with relatively small QE training sets (e.g. fewer than 14K input
sequences), the QE performances were maximized when larger QE training sets were used in the
context of transfer learning. As a result, automatic extraction of quality labels through automatic
evaluation metrics (such as TER) might be the only practical solution to build FM-augmented QE
models utilizing large training data sets.

A second potential reason for the difference in the QE performances of the FM-augmented
MTQ models is related to the difference in the FM-similarity levels observed in the domain-specific
and in-domain scenarios. In the domain-specific setting, we notice that FM augmentation led to
higher QE performance when the best FM retrieved for a given source sentence yielded a minimum
cosine similarity score of 0.80. In the general-domain scenario, for each source sentence in the QE
test set, even though FMs were retrieved from a very large NMT training data that consists of
approximately 23 million sentence pairs, we observed only five sentences for which FMs above the
0.80 similarity score could be retrieved. For an easier comparison between the DGT, WMT, and
Wikipedia data sets, Figure 4 presents the box plot distribution of the scores for the retrieved FMs
from the corresponding NMT data sets for each source sentence in each test set.
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Given that the same quality label was used in the domain-specific setting for both the DGT
and UN data sets, we already argued that the ratio of informative FMs in the QE test data sets
could explain the differences in the QE performances of the FM-augmented MTQ models (see 5.1).
Considering the differences in FM similarity score distributions in the domain-specific and general-
domain data sets, this argument can be extended to the general-domain setting. In Figure 4, we do
not only see that the Wikipedia QE test set contains only a few sentences with highly informative
FMs (above 0.80 similarity level), but the mean (0.553), minimum (0.376), and maximum (0.853)
FM similarity scores in this data set are much lower than the DGT and UN data sets. These results
suggest that the FM-augmentation approach for sentence-level QE tasks is potentially beneficial and
most effective in domain-specific scenarios when the NMT models are trained with data sets that
have a certain amount of repetition and consistent writing style.

6. Conclusion

This study proposes a simple data augmentation method for integrating FMs, which are retrieved
for a given source sentence from the NMT training data, to predict the sentence-level quality of the
corresponding NMT output. The study was carried out for two data sets (DGT-TM and UN corpus)
and language pairs (EN–NL and EN–FR, respectively) in a domain-specific setting, and for one data
set (WMT 2020 Wikipedia data set) and language pair (EN–DE) in a general-domain setting. The
experiments conducted in this study demonstrate that, in certain settings, FMs retrieved from NMT
training data can be highly informative for predicting the sentence-level quality of the translations
obtained from the corresponding NMT model.

In the domain-specific setting, augmenting the commonly used QE input representations (SRC–
MT pairs) with the target side of the best FM retrieved for each source sentence (SRC–MT–FMtgt)
led to the best QE performance for both data sets when sentence-level quality labels are automati-
cally extracted by comparing NMT output with reference translations, using TER. Domain-specific
experiments also revealed a positive correlation between the similarity scores of the utilized FMs and
the QE performance, showing that the FM-augmented models achieved the best QE performances
when the retrieved FMs were highly similar to the source sentences (above 0.90 cosine similarity).
Moreover, by relying only on the information obtained from the source sentences and the NMT
training data (without utilizing the MT output), high QE performance could be achieved.

The results of the QE experiments conducted in the general-domain setting, however, drew a
different picture. In this setting, the FMs did not lead to any statistically significant difference in
QE performances, for two different sentence-level QE tasks: predicting direct (manual) assessment
scores, and post-editing effort, which is measured by comparing NMT output to its post-edited
version using HTER. We argue that there are two main reasons for the difference in domain-specific
and general-domain settings: the difference in quality labels used in both settings and the lower FM
similarity scores observed in the general-domain setting.

There are several lines of research arising from this work that can be pursued. Firstly, in the
context of domain-specific settings, we would like to investigate imposing a minimum similarity
threshold for FM augmentation and study the usefulness of FM-augmented models for the word-level
QE task. In the context of general-domain scenarios, a different line of research is to investigate the
usefulness of utilizing sub-segment-level similarities between sentences for the word- and sentence-
level QE tasks. Finally, in the future, we would like to repeat these experiments by integrating FMs
into different QE architectures.
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Popović, Maja and Hermann Ney (2011), Towards automatic error analysis of machine transla-
tion output, Computational Linguistics 37 (4), pp. 657–688, MIT Press, Cambridge, MA.
https://aclanthology.org/J11-4002.

Ranasinghe, Tharindu, Constantin Orasan, and Ruslan Mitkov (2020), TransQuest: Translation
quality estimation with cross-lingual transformers, Proceedings of the 28th International Con-
ference on Computational Linguistics, International Committee on Computational Linguistics,
Barcelona, Spain (Online), pp. 5070–5081. https://aclanthology.org/2020.coling-main.445.

Rosti, Antti-Veikko, Necip Fazil Ayan, Bing Xiang, Spyros Matsoukas, Richard Schwartz, and Bonnie
Dorr (2007), Combining outputs from multiple machine translation systems, Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main Conference, Association for Computational
Linguistics, Rochester, New York, USA, pp. 228–235. https://aclanthology.org/N07-1029.

119



Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul (2006),
A study of translation edit rate with targeted human annotation, Proceedings of the 2006
Conference of the Association for Machine Translation in the Americas, AMTA, Cambridge,
Massachusetts, USA, pp. 223–231.

Soricut, Radu and Abdessamad Echihabi (2010), TrustRank: Inducing trust in automatic trans-
lations via ranking, Proceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics, Association for Computational Linguistics, Uppsala, Sweden, pp. 612–621.
https://aclanthology.org/P10-1063.

Specia, Lucia and Atefeh Farzindar (2010), Estimating machine translation post-editing effort with
HTER, Proceedings of the Second Joint EM+/CNGL Workshop: Bringing MT to the User:
Research on Integrating MT in the Translation Industry, Association for Machine Translation
in the Americas, Denver, Colorado, USA, pp. 33–43. https://aclanthology.org/2010.jec-1.5.

Specia, Lucia, Frédéric Blain, Marina Fomicheva, Chrysoula Zerva, Zhenhao Li, Vishrav Chaudhary,
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Appendix A. Hyper-parameters

A.1 NMT models

Table 9: Hyper-parameters for training NMT models.

Hyper-Parameter Value
source/target embedding dimension 512
size of hidden layers 512
feed-forward layers 2048
number of heads 8
number of layers 6
batch size 64
gradient accumulation 1
dropout 0.1
warm-up steps 8000
optimizer Adam

A.2 Sent2vec

To train our sent2vec models, we use the same hyper-parameters that are suggested in the description
paper (Pagliardini et al. 2018) for a sent2vec model trained on Wikipedia data containing both
unigrams and bigrams. In our experiments, we distributed training of a sent2vec model over 40
threads. The hyper-parameters are provided in Table 10.

Table 10: Hyper-parameters for training sent2vec models.

Hyper-Parameter Value
embedding dimension 700
minimum word count 8
minimum target word count 20
initial learning rate 0.2
epochs 9
sub-sampling hyper-parameter 5 × 10−6

bigrams dropped per sentence 4

number of negatives sampled 10

A.3 FAISS

Because our goal is to find matches over all available sentences in the FAISS index, we create a Flat
index with an inner product metric to do a brute-force search. By adding the L2-normalised vectors
of the sentence representation to the index, and using an L2-normalised sentence vector as an input
query, we are effectively using cosine similarity as match metric. More information can be found
here: https://github.com/facebookresearch/faiss/wiki.
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A.4 TransQuest

Table 11: Hyper-parameters for training TransQuest models.

Hyper-Parameter Value
max. sequence length 200 (300)

training batch size 4
gradient accumulation step 2
evaluation batch size 8
epochs 30
weight decay 0
learning rate 1 × 10−6

adam epsilon 1 × 10−8

validation steps 100
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