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Abstract
This paper reports on a set of proof-of-concept experiments performed to evaluate and improve

the alignment of monolingual embeddings for a specialised domain, viz. the medical use case of
heart failure. The presented approach, which creates domain-specific dictionaries on-the-fly from
cross-lingual Wikipedia links, achieves good results for cross-lingual alignment of this specialised
vocabulary in three language pairs: English-Dutch, English-French, and Dutch-French. The ex-
perimental results show that the setup incorporating a smaller but dedicated domain-specific
dictionary outperforms the alignment incorporating a larger but general-domain seed dictionary.
A detailed error analysis reveals that many potentially useful (near-)equivalents are found beyond
those present in the gold standard, and it inspires strategies for further improvements, such as
lemmatisation and improved tokenisation.

1. Introduction

The recent introduction of large pre-trained language models has caused a considerable performance
improvement for many natural language processing tasks. This is, even more, the case for the
transformer architectures, such as BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019).
However, these language models suffer from the important disadvantage of requiring large training
data collections and computation power. As a result, they have mainly been trained and evaluated
on resource-rich languages and general domain data.

To overcome this lack of resources, researchers have started to investigate the use of cross-
lingual information, where knowledge or data from a well-resourced language, like English, is used
to improve the modelling for a specific NLP-task in a low(er)-resourced target language. The idea of
cross-lingual embeddings has been introduced by Mikolov et al. (2013), who hypothesised that vector
spaces in different languages share a certain similarity and that a projection can be learned from one
language to another. Since this seminal work, a lot of research has been proposed to perform cross-
lingual alignment (see Section 2). Although these cross-lingual alignments have been shown to work
well for a wide range of NLP tasks and languages, research evaluating these alignments for domain-
specific terms is scarce. Since most of the applications for cross-lingual alignments lie in specialised
domains like medicine, finance, etc, it is important to evaluate the quality of the alignments in a
domain-specific setting rather than on general domain data. One of the few studies on this topic
is presented by Shakurova et al. (2019), who investigate best practices for constructing the seed
dictionaries used for cross-lingual alignment for a specific domain, being the sequence labelling task
of Curriculum Vitae parsing.

The aim of the proposed research was twofold. First, we wanted to evaluate the performance of
existing alignment methods, and Vecmap (Artetxe et al. 2018a) more in particular, on specialised
vocabulary for a given domain, namely the medical use case of heart failure for this research. Sec-
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ond, we wanted to research a methodology to improve the performance for domain-specific cross-
lingual alignment. To this end, we have investigated an automatic approach to construct smaller
domain-specific seed dictionaries from Wikipedia pages and evaluated it on three language pairs,
two involving English as the source language (English-Dutch and English-French), and one having
Dutch as the source language (Dutch-French).

The remainder of this paper is organised as follows. Section 2 gives a brief overview of relevant
related research, whereas Section 3 elaborates on the proposed methodology to use Wikipedia cross-
lingual links to create domain-specific dictionaries. Section 4 provides an overview and analysis of
the experimental results, and Section 5 ends this paper with concluding remarks and indications for
future research.

2. Related research

Various methodologies have been proposed to align monolingual word embeddings into a common
space, assuming that a perfect mapping can be learned by traversing between vector spaces in
different languages. Mikolov et al. (2013) learned a linear mapping from one space to another and
optimised the performance by means of a bilingual lexicon. Other approaches also rely on the
assumption of a similarly structured embedding space to project monolingual spaces into a shared
space, either based on a seed translation dictionary (Faruqui and Dyer 2014), or some other form of
cross-lingual supervision based on parallel corpora (Guo et al. 2015, Søgaard et al. 2015, Vulić and
Moens 2016).

As large bilingual lexicons are often lacking for low-resourced languages or specific domains, ap-
proaches have been proposed that either completely eliminate or drastically reduce the size of the
bilingual lexicon. Artetxe et al. (2017) further explored these ideas by using a combination of back
translation and denoising. This approach was, however, severely lacking in terms of performance
as compared to a method with cross-lingual signals. The advent of adversarial networks brought
on some unique ideas which opened up a lot of new research directions: a discriminator is trained
to identify whether an embedding originates from a source language or a target language and a
mapping is trained to fool the discriminator. The underlying principle is that there is an orthogonal
matrix W, which can transform embeddings in one language to embeddings in another language.
VecMap (Artetxe et al. 2018a) uses this base adversarial learning approach but with a lot of clever
additions and tweaks. Unsupervised initialisation of the transformation is done using the gram ma-
trices of the individual languages and Singular Value Decomposition (SVD). Then iterative training
is performed to obtain an increased similarity for the pre-initialised dictionary.

The more recent contextual embeddings significantly enhanced word and sentence representa-
tions and improved upon previous methods of cross-lingual alignment like MUSE (Lample and
Conneau 2019) and VecMap (Artetxe et al. 2018a) due to their dynamic nature. Multilingual BERT
(mBERT, Devlin et al. (2019)) and XLM (Conneau and Lample 2019) were jointly trained for
Masked Language Modelling on 104 languages and significantly outperformed previous approaches
for a variety of zero-shot cross-lingual tasks. However, a number of recent works have also discussed
the various limitations of large multilingual models, referred to as the curse of multilingualism. Wu
and Dredze (2020) talk about poorer representation for lower-resourced languages, due to various
issues like smaller vocabulary shares, poor tokenisation strategies for morphologically rich languages,
etc. Similar problems are reported by Gerz et al. (2018), who also discuss the fact that fine-grained
morphological features are modelled incorrectly due to lower frequencies in the training corpora
and that performance in multilingual LMs can vary largely based on the typological features of the
languages. Therefore, while these models present an excellent opportunity to unify monolingual
learning in a multilingual setting, they aren’t as reliable for cross-lingual learning as methods with
some supervision of cross-lingual signals like seed dictionaries.

All these methodologies focus on the alignment and evaluation of general language vocabulary,
relying on generic seed dictionaries and pretrained cross-lingual embeddings. The evaluation of the
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cross-lingual alignment is often performed through the task of Bilingual Lexicon Induction (BLI).
Researchers like Laville et al. (2022), however, discuss some issues related to the gold standard
data sets (e.g., MUSE lexicon) typically used for this evaluation, such as a limited representation
of various Part-of-Speech categories (the evaluation set containing a lot of proper nouns), a high
number of word pairs showing a large graphical similarity (many identical word pairs and graphically
close ones), and overrepresentation of high-frequency words. As the MUSE lexicon is not only used
for evaluation, but also as a seed dictionary for aligning cross-lingual embeddings, similar issues
might hamper the training process of the cross-lingual alignments.

Little research has been performed on specialised vocabulary so far. Shakurova et al. (2019) have
investigated some best practices to construct seed dictionaries for specific domains. The obtained
embeddings are evaluated for Curriculum Vitae parsing, and the experimental results show that the
size of the dictionary, the frequency of the dictionary terms in the domain-specific corpora and the
source of the data (task-specific or generic domain) do have an impact on the parsing performance.
In addition, they show that the bilingual dictionary gets more important in proportion to the smaller
size of the training data in the low-resourced language. Recent work has demonstrated good results
when combining large pretrained Transformer-based models such as BERT (Devlin et al. 2019) with
external linguistic knowledge for the biomedical domain. Such large external resources are, however,
not always available for low-resourced languages, but Liu et al. (2021) show that general domain
bitext helps to transfer specialised knowledge to languages with little to no in-domain data for the
task of biomedical entity linking.

In this research, we want to take one step back and evaluate and improve the performance of
cross-lingual alignment, performed with VecMap, on domain-specific words. To this end, we propose
a straightforward method using domain-specific dictionaries generated on-the-fly from Wikipedia to
improve the alignment performance on downstream tasks for the domain in question.

Wikipedia has proven to be a useful resource for automatic data creation for various NLP tasks,
going from using Wikipedia titles in the framework of Neural Machine Translation (Karakanta
et al. 2018) or more specialised terminology translation (Molchanov et al. 2021), to using Wikipedia
as a multilingual knowledge resource for cross-lingual information retrieval (Nguyen et al. 2009, Sorg
and Cimiano 2012) or for mining biomedical synonyms (Jagannatha et al. 2015). More related to the
research we propose here is the approach taken by Sharoff (Sharoff 2018, Sharoff 2020), who extracts
seed dictionaries for cross-lingual word alignment from the titles of interlinked Wikipedia articles in
two languages (“iWiki links”). The titles are word-aligned and the resulting word-level dictionaries
are filtered against the respective frequency lists. Jiang et al. (Jiang et al. 2020), however, show that
using Wikidata and full Wikipedia pages in different languages appears to be more reliable than
using page titles or cross-lingual Wikipedia links, as titles can be ambiguous and cross-lingual links
may direct to disambiguation or mismatched pages.

In the next section, we explain how we create domain-specific dictionaries to be incorporated as
seed dictionaries for cross-lingual alignment of embeddings. We do not only use the titles, but start
from a domain-specific Wikipedia article, and collect all terms in that article for which a separate
Wikipedia article exists. Our results (Section 4) show that the alignment quality improves when
using this smaller and more focused dictionary instead of the more commonly used seed dictionaries,
such as MUSE.

3. Alignment of Domain-specific Terms

This section describes the methodology that was applied to align monolingual embeddings for three
language pairs, viz. English-Dutch, English-French, and Dutch-French for a use case from the medical
domain of heart failure. The approach we present was inspired by two hypotheses: (1) using related
words in the seed dictionary for alignment improves alignment for domain-specific words, and (2)
re-training embeddings with domain-specific text improves representations and alignments for the
respective domain.
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3.1 Cross-lingual Alignment

As discussed already, the alignment of monolingual embeddings has been studied for a while now,
starting with Mikolov et al. (2013) exploiting similar geometries of the embedding spaces to learn
a linear mapping between embeddings. The older methodologies, however, required large parallel
dictionaries to guide the alignment, which are often not available for domain-specific text. For this
research, we opted to use VecMap (Artetxe et al. 2018b), because it has been frequently shown
to perform better in cases where the size of the bilingual dictionary is strictly limited. We align
monolingual embeddings trained using FastText (Bojanowski et al. 2017) on the Common Crawl
corpus and Wikipedia. These models were trained using the Continuous Bag of Words (CBOW)
model with position weights, a dimensionality of 300, character n-grams of length 5, a window of
size 5, and 10 negative samples.

VecMap focuses on learning the orthogonal matrix using iterative self-learning. The algorithm
exploits similar distributions of nearest neighbours for words that have similar meanings, in order
to improve a small bilingual dictionary by adding new pairs to it after each iteration. This ends up
making the alignments effective with a significantly smaller dictionary.

Given a source language s and a target language t, the objective of the classical alignment
methods is to learn a transformation

Es,t ≈ W s→tEs,s (1)

where Es,s represents the embeddings of the source language in their original space, while Es,t

represents the embeddings of the source language, in the target language’s multi-dimensional space.
Inversely,

Et,s ≈ W t→sEt,t (2)

should also be a possibility. This can now be formulated as an optimisation problem for orthogonal
matrix W . VecMap achieves this by maximising for similarity over a sparse seed dictionary, which
can be initialised with zero supervision or using identical words if a seed dictionary is not available,
and iteratively improving the dictionary and re-learning the alignment after each optimisation step.
Other approaches, such as MUSE (Lample and Conneau 2019), achieve the same objective by
initialising W using an adversarial objective, where W is optimised such that a discriminator model
is unable to differentiate between the embeddings originating from Et,t and WEs,s. To find the
optimal matrix W , we use the supervision dictionary D where D is a matrix such that Dij = 1 if the
ith word in the source language corresponds to the jth word in the target language. The optimisation
is therefore formulated by Vecmap as

W ∗ = argmin
W

∑
i

∑
j

Dij ∥Ei∈s,sW − Ej∈t,t∥ (3)

The baseline analysis and comparisons are done using the monolingual FastText embeddings
aligned with VecMap using a generic seed dictionary made available by MUSE (Conneau et al. 2017).
These dictionaries were created in an unsupervised manner, exploiting the similarity in the shape
of monolingual embedding spaces, and have not been manually verified. They contain around 5000
word pairs for every language pair used. We performed a first analysis of the cross-lingual alignment
of domain-specific terms by manually inspecting the nearest neighbours for a sample of terms in the
aligned embedding spaces. Table 1 shows the five nearest neighbours for the term atherosclerosis
both in the English and Dutch embedding space.

Figure 1 shows a visualisation of the multilingual embedding space for a couple of domain-
specific terms for the use case of heart failure. From this small sample, it is already clear that the
alignments for specialised words are rather poor when using the default VecMap embeddings (and
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nearest neighbours in English space nearest neighbours in Dutch space
neighbour score neighbour score
atherosclerosis 1,0000 trombocytenopenie 0,7011
atherosclerotic 0,9137 vaatziekten 0,6883
arteriosclerosis 0,8565 trombose 0,6831
hypertension 0,8292 longaandoening 0,6814
hypercholesterolemia 0,7882 stofwisselingsziekten 0,6811

Table 1: Five closest nearest neighbours of the English word atherosclerosis in the English and
Dutch embedding spaces.

seed dictionary). To improve on the alignment for specialised terms, we decided to construct a
domain-specific dictionary and to retrain the FastText embeddings using domain-specific data.

Figure 1: Multilingual word embedding space for a sample of English-Dutch aligned terms for the
use case of heart failure.

3.2 Creation of a Domain-specific Dictionary

The bilingual seed dictionary is crucial to the process of cross-lingual alignment of the embeddings.
As we hypothesise that using a domain-specific dictionary will improve the alignment for specialised
vocabulary, we constructed a specialised dictionary (Silvanus) fromWikipedia data for the concerned
domain. This was inspired by previous work using the World Wide Web as a free source to create
large linguistic resources, as was done for instance by de Groc (2011) to compile large thematic
corpora used to automatically generate bilingual terminologies.

The construction of this domain-specific bilingual dictionary is explained in the form of pseudo-
code below. In our case, we start from the single Wikipedia entry on heart failure, though it is possible
to start from multiple articles as well. Each term in that article for which a separate Wikipedia
article exists, is collected, e.g., cardiac arrest and beta blockers. This is considered depth 0. Note
that not all terms with a hyperlink in a Wikipedia article refer to a separate article. Sometimes
they refer to a section within the same article (e.g., right-sided heart failure), or to an article with a
different title (e.g., the link for leg swelling refers to the page on peripheral edema). For each term in
the collection of terms for which a valid page does exist, this process is repeated, i.e., all terms with
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links to other Wikipedia pages are collected. For instance, the term anemia is collected from the
main page on heart failure, and terms like blood and hemoglobin are in turn collected from the page
on anemia. This would be depth 1. The process can be repeated, to add terms at depth 2 or beyond.
For each instance in this collection of terms for which Wikipedia articles exist, the algorithm will
check whether a cross-lingual link exists to the equivalent page in the target language. For example,
the English anemia page has links to both the Dutch (bloedarmoede) and French (anémie) pages on
the same subject.

Algorithm 1 Constructing a Domain-specific Bilingual Dictionary (Silvanus)

Given a list of Domain Words D
for d in D do

if d has a valid Wikipedia entry then
Identify ∀i ∈ I : I is the set of all Wikipedia links on page d
for i in I do

Find j where j is the cross-lingual link in the target language Lt

Add i and j to the domain-specific bilingual dictionary

It is not uncommon for Wikipedia articles to start by providing synonyms and abbreviations.
For instance, the English page on heart failure starts by mentioning a synonym and abbreviations:
“Heart failure (HF), also known as congestive heart failure (CHF)”. While these are currently not
considered, it could be an interesting avenue for future research to take advantage of the additional
information to create a more elaborate dataset.

As a proof of concept, we only use a single seed word, i.e., the name of the domain (Heart Failure)
as a search term. The seed dictionary can obviously be enhanced to make a more comprehensive
search, but we explore here the possibility of using a single term as a starting point. Using just a
single seed word, we are able to obtain more than 5000 word pairs at depth 1. After filtering multi-
word terms (simply removing terms that contain a whitespace character) and terms with encoding
issues, we are left with a specialised bilingual dictionary of 2702 word pairs for English-French and
2819 word pairs for English-Dutch for this specific domain. Out of 2702 word pairs for English-
French, only 1727 were present in the FastText pre-trained embeddings, whereas for Dutch, out of
2819 word pairs, only 1895 were eventually used for the alignments. Even though we performed our
alignment experiments with the heart failure domain, we demonstrate in Table 2 that the bilingual
dictionary construction methodology is also viable for other domains, by constructing dictionaries
for two additional domains, i.e., Dressage and Wind Power.

Domain English-Dutch pairs scraped English-French pairs scraped
Pre-filtering Post-filtering Pre-filtering Post-filtering

Heart Failure 6434 2819 6477 2702
Wind Power 11835 3830 9150 2192
Dressage 7342 2307 5745 1331

Table 2: Bilingual dictionary sizes for English-Dutch and English-French for the domains of Heart
Failure, Wind Power, and Dressage. Pre-filtering represents the initial size of the dictionary scraped,
while post-filtering refers to the dictionary size after removing multi-word terms and encoding issues.

Using the obtained domain-specific dictionaryD and the iterative self-learning of VecMap, we can
then construct word alignments for a specific domain that consistently outperform word alignments
constructed using generic dictionaries or unsupervised methods, as is shown in Section 4. This
confirms our first hypothesis, which states that using related words in the seed dictionary improves
the alignment for domain-specific words.
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3.3 Improving Monolingual Embeddings with Domain-Specific Fine-tuning

Our second hypothesis was that the monolingual embeddings themselves could be improved in their
representation of domain-specific terminology by further training them on unlabelled data from the
domain. To investigate this, we trained a set of FastText embeddings in English, initialised using
the same Common Crawl and Wikipedia embeddings we have used in the rest of the paper. The
embeddings were fine-tuned on the PubMed1 English corpus to enhance the representation of words
in the heart failure domain. We continued the training process with the same parameters, i.e., CBOW
with position weights, n-grams of length 5, a window of 5, and 10 negative samples, and used these
new English embeddings as a replacement for the baseline English embeddings in our alignments.
These new embeddings, however, resulted in extremely poor alignments for English-Dutch, obtaining
a Mean Reciprocal Rank (MRR) of 0.309, compared to an MRR of 0.567 in our regular setting. We
hypothesise that this occurs due to the isomorphism assumption for alignment, which states that two
monolingual embedding spaces need to be isomorphic to have an acceptable alignment. Isomorphism
is influenced by the training setup, like the data, training time, and parameters. Since the PubMed
data would be vastly different from the Common Crawl and Wikipedia corpora, we can assume this
makes the spaces non-isomorphic. Because of the bad alignment results, we did not further explore
this approach of domain-specific fine-tuning.

4. Experimental Results and Analysis

This section introduces the experimental setup and provides a quantitative and qualitative evaluation
of the alignment approach proposed for domain-specific terms.

4.1 Experimental Setup

We evaluate the proposed methodology using samples from the ACTER dataset (Rigouts Terryn
et al. 2020) as a gold standard. ACTER is a manually annotated dataset for term extraction, covering
three languages (English, French, and Dutch), and four domains (corruption, dressage, heart failure,
and wind energy). For each of the four domains, a comparable corpus (or a parallel corpus in
the case of corruption) exists of more or less equal size in all languages (±50k tokens). Terms
(both specialised and more common) and Named Entities were manually annotated in each corpus
based on publicly available annotation guidelines2. For the comparable corpus on heart failure,
the monolingual annotations were supplemented with cross-lingual annotations (Rigouts Terryn
et al. 2018). For each annotated term, equivalents were sought among the annotations of the other
languages (meaning that only terms and equivalents were added that occur in the specific corpus
used for this dataset). Therefore, this dataset does not pretend to offer an exhaustive overview of all
relevant terms and their equivalents for the domain, but only attempts to cover those in the specific
corpus.

Terms can have multiple alignments due to, among others, synonyms (e.g., the Dutch terms
benauwdheid, kortademigheid and dyspnoe are all synonyms and equivalents to the English breath-
lessness and dyspnea), abbreviations (e.g., the Dutch hartfalen can be aligned to the English heart
failure or HF ), or alternative spellings (e.g., the Dutch bètablokker can be linked to the English
beta-blocker or β-blocker). Since each term may have multiple correct alignments, we consider only
the option that is aligned closest to the source word for the evaluation. We calculate four different
scores: P@1 indicating precision for top-1 nearest neighbours (KNNs), P@5 for the top-5 KNNs,
P@10 for top-10 KNNs and the Mean Reciprocal Rank formulated as:

1. https://pubmed.ncbi.nlm.nih.gov/
2. https://lt3.ugent.be/publications/acter-terminology-annotation-guidelines/
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MRR =
1

n

n∑
i=1

1

ranki
(4)

We perform the evaluation for three language pairs, being English-Dutch, English-French and
Dutch-French. For each language pair we perform the domain-specific alignment using VecMap for
five iterations in two setups: (1) using the constructed domain-specific dictionaries and (2) using the
large generic dictionary for the respective language pair from the freely available MUSE-generated
dictionary sets3. We provide the MUSE-dictionary alignments as baseline scores except for the
case of Dutch-French, where a MUSE dictionary was not available. We still wanted to present the
obtained alignment scores for Dutch-French, however, as we also wanted to explore the possibility
of aligning two non-standard monolingual spaces using domain-specific dictionaries, since English is
almost always used as a source language in related research.

4.2 Experimental results

As is illustrated by Tables 3 and 4, the domain-specific Silvanus dictionaries result in better align-
ments for both language pairs in question. Even though the dictionaries are almost one-third in
size compared to the generic MUSE dictionaries, due to the domain-specific terminology that is
predominant in the word pairs, the resulting alignments appear to be better when incorporating the
Silvanus dictionaries. This is an important finding, as it indicates that it may be better to have a
smaller dictionary with more relevant pairs, than a larger, noisier dictionary for the alignment of
the embedding spaces.

EN-NL Dictionary Size P1 P5 P10 MRR
Baseline 4959 0.447 0.629 0.688 0.534
Silvanus 1895 0.486 0.661 0.709 0.567

Table 3: Comparisons between the alignments using the domain-specific Silvanus dictionary versus
the generic MUSE dictionaries for the English-Dutch language pair.

EN-FR Dictionary Size P1 P5 P10 MRR
Baseline 4986 0.640 0.797 0.812 0.709
Silvanus 1727 0.668 0.797 0.814 0.726

Table 4: Comparisons between the alignments using the domain-specific Silvanus dictionary versus
the generic MUSE dictionaries for the English-French language pair.

Table 5 shows the results for the Dutch-French cross-lingual alignments. While the results for
Dutch-French aren’t that promising when incorporating a domain-specific dictionary generated at
depth 2, this might be due to the limited size of the Dutch-French Silvanus dictionary (927 term
pairs), which is almost half in size compared to English-Dutch and English-French. The size of
the dictionary can be expanded by increasing the depth of the search, but a higher depth makes
the obtained word pairs less likely to be relevant to the domain in question. Since the size of the
initial domain-specific dictionary appeared to be too small for Dutch-French, we experimented with
a dictionary collected at depth 3, and the results listed in Table 5 show that this indeed improves the
performance considerably. Therefore, even if the words might be slightly less relevant, an increase
in the dictionary size still boosts performance.

In the next section, we dive further into the types of mistakes and the potential causes underlying
them when using the Silvanus dictionaries for cross-lingual alignments.

3. https://github.com/facebookresearch/MUSE/blob/main/README.md
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NL-FR Dictionary Size P1 P5 P10 MRR
Baseline - - - - -
Silvanus - Depth 2 927 0.144 0.223 0.255 0.18
Silvanus - Depth 3 2423 0.197 0.284 0.336 0.245

Table 5: Alignment scores for Dutch-French when using the domain-specific Silvanus Dictionary.

4.3 Error Analysis

4.3.1 Error Annotation

To gain a better understanding of the results and the types of errors, a detailed error analysis was
performed. This more nuanced evaluation gave us a better idea of the usability of the methodology,
especially since the gold standard is unavoidably imperfect. Identifying terms and equivalents is, to a
certain degree, a subjective task. Moreover, the gold standard is based on cross-lingual annotations
of only those terms that occur in the comparable corpus used to create the dataset. As explained
in Section 4.1, this corpus consists of original texts (unaligned, not translations) with around 50k
tokens per language. Hence, some concepts are only mentioned in one or two of the languages of
the corpus, and not all terms for each concept are necessarily used. Consequently, the system may
find valid equivalents that are automatically evaluated as incorrect, because they are not part of
the gold standard. For the error analysis, a random selection was made of 200 cross-lingual term
pairs (100 French-English, 100 Dutch-English) and the ten most highly ranked equivalents per term
pair by the system. So, for each term in the source language, we had the gold standard term in the
target language and ten ranked, automatically generated potential equivalents. These were manually
analysed by a linguist-terminologist, who identified additional equivalents and near-equivalents. Five
labels were used:

1. Additional equivalent (not in Gold Standard), regardless of number

e.g., the English equivalent for the Dutch anticoagulantia in the Gold Standard is anticoagu-
lants. Additional equivalents found were anticoagulant, anti-coagulant, and anti-coagulants.

2. Near-equivalent with different part-of-speech (POS)

e.g., the English equivalent for the Dutch stabiele in the Gold Standard is stable. Near-
equivalents with different POS were stability, stableness, stabilizing, and stablest.

3. Additional equivalent with wrong spelling

e.g., the English equivalent for the French santé in the Gold Standard is health. Wrong
spellings that were also found are helath, heatlh, and healt. Note that, in cases with different
but very commonly used spellings (e.g., anticoagulant and anti-coagulant, haemorrhage and
hemorrhage), equivalents would be classified as normal additional equivalents, not as wrong
spellings.

4. Additional equivalent with tokenisation issue

e.g., besides the correct equivalentmetabolism, the system also foundmetabolism-, metabolism.,
and metabolism.the.

5. Antonyms

Wrong spellings of terms and tokenisation issues were only annotated for candidates that would
otherwise be equivalent. So, if, for instance, a term was misspelled but not in any way equivalent
to the source term, the misspelling was not annotated, and not counted in the analysis. In case
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multiple labels were applicable, the first one in the list was assigned, e.g., if a near-equivalent with
a different POS was also misspelled, it would still be annotated as the former.

Based on this analysis, strict and lenient versions of precision@rank were calculated and com-
pared. For strict precision, only the Gold Standard and additional equivalents were considered
correct. For lenient precision, near-equivalents with a different POS and additional equivalents with
spelling mistakes or tokenisation issues were also considered correct. The motivation was that any
human using these results would, of course, prefer to get strict equivalents, but would probably also
be able to derive a strict equivalent from the other categories relatively easily. For instance, if the
noun ischemia is suggested instead of the adjective ischemic, human users would not have much
trouble finding ischemic based on the noun. The results of the analysis, with numbers per category
and per language pair, can be found in Table 6.

Number of instances found per
category among top 10 generated suggestions 100 NL-EN 100 FR-EN Total
Additional equivalents (strict) 53 64 117
Near-equivalents with different POS 73 86 159
Equivalents with wrong spelling 21 38 59
Equivalents with tokenisation issues 26 30 56
Antonyms 18 16 34
p@1 strict .72 .63 .68
p@1 lenient .76 .74 .75
p@10 strict .87 .90 .89
p@10 lenient .87 .91 .89

Table 6: Summary of the error analysis for a random selection of 100 term pairs in Dutch-English
and French-English.

4.3.2 Discussion of Error Analysis

Additional equivalents and impact on scores: Several interesting conclusions can be drawn
from these numbers. The gold standard only considered those terms and equivalents that were
present in the corpus based on which it was constructed, so it is entirely possible that the system
found additional equivalents that were simply not present in the gold standard corpus. Moreover,
while the gold standard contains multiple potential equivalents for some terms, we only consider the
most closely ranked one in our evaluation. Therefore, it was to be expected that some additional
equivalents would be found in the error analysis. Nevertheless, the number of additional equivalents,
as shown in Table 6, was remarkable, especially since the annotation was relatively strict and did
not take into account many near-equivalents. For instance, the Dutch term terminale has the
Gold Standard English equivalent of terminal, but four additional terms were detected that can
be considered equivalent in some contexts: stage-four, stage-4, dying, and incurable. Since these
are only equivalent in some contexts, they were not annotated. Similarly, compounds that contain
the correct equivalent, but are not themselves equivalent are regularly found, but not included in
the error analysis, e.g., potassium-rich, and potassium-containing for potassium, and re-diagnosed,
rediagnosed, and misdiagnosed for diagnosed. The presence of multiple potential equivalents, some
of which are different from the Gold Standard option, has a considerable impact on the scores.
Precision@1 based on just the Gold Standard data for the samples of 100 term pairs NL-EN and
FR-EN is only 0.61 and 0.54 respectively, and precision@10 is 0.80 and 0.89 respectively. Compared
to the strict precision scores in Table 6, which include additionally annotated equivalents, this is a
considerable difference of 1 up to 11 percentage points. The lenient calculation of precision, which
includes near-equivalents and equivalents with different POS or tokenisation issues, shows an even
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more optimistic view of the results, especially for precision@1, which is 4 (NL-EN) and even 11
(FR-EN) percentage points higher than strict precision.

Figure 2: Multilingual word embedding space and nearest neighbours in English and Dutch for the
word ‘inorganique’.

Antonyms: The presence of near-equivalents and compound terms that contain the correct
equivalent is expected, and an indication of relevant semantic spaces. However, we also found many
antonyms, which is logical (as they will co-occur with the right term a lot), but not intended, since
they have the opposite meaning. These antonyms are often indicated by an additional prefix (e.g.,
diagnosed versus undiagnosed, neurological and non-neurological, organic and inorganic) (see also
Figure 2), or a different prefix (e.g., hypertrophy and hypotrophy). Antonyms are sometimes among
highly ranked results, but out of the 34 antonyms found, only 3 occur before the most highly ranked
valid equivalent: non-terminal comes before terminal, diastolic precedes systolic, and inorganic is
ranked before organic (Figure 2). So, while having antonyms among the results is not ideal, they
are not a big issue for the results, and human users would likely be able to recognise many of them
relatively easily.

Impact of language pair: There are small differences between the language pairs, but given
the small sample size, it is difficult to generalise. One of the clearest differences is that strict p@1 is
lower for FR-EN than for NL-EN (-0.09), whereas strict p@10 is more similar (-0.04). This difference
is much smaller for strict precision scores (-0.02 and -0.03). This seems mostly due to a combination
of two factors: there are more equivalents with a different POS or a wrong spelling that are ranked
in first position in FR-EN (11) than NL-EN (4); and the valid Gold Standard equivalent has a lower
average rank in FR-EN (2.3) than in NL-EN (1.6). Further research is required to test whether this
pattern is consistent and how it can be explained and improved.

Misspellings and tokenisation issues: The number of terms that were equivalent except
for a wrong spelling or tokenisation issue was unexpected. The most remarkable example of wrong
spellings was for the English equivalents of the French physiques. The first option was the correct
version (physical), and then there were eight different wrong spellings: phyiscal, phsyical, physcial,
phyisical, phsical, phisical, phyical, and physicial (the tenth prediction was physiological). While it is
not surprising that wrong spellings can be found in the Wikipedia corpus, it is surprising how many
of them occur often enough to be included in the relevant embedding space. These wrong spellings
are mostly found with terms that are either relatively common, e.g., health, healthy, and diagnosed, or
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(a) (b)

Figure 3: Contrasting embedding spaces showing completely different neighbours of two different
forms of the same word, being artériel (a) and artérielle (b).

understandably hard to spell, e.g., haemorrhage and pharmaceutical. Despite the prevalence of the
issue, misspellings were never ranked higher than correct equivalents. These findings do support the
idea of using word embeddings to detect spelling variation and common spelling mistakes (Nguyen
and Grieve 2020). Tokenisation issues mainly consisted of instances with leftover punctuation,
e.g., brain., and lung-, or appended words (often with punctuation), e.g., brain.the, and europeand.
Interestingly, these issues were often concentrated around the same terms. Out of twenty-eight
terms for which equivalents were found with tokenisation issues, fifteen had at least two different
tokenisation issues. For instance, brain.the, brain.this, brain.but, brain.so, brain.and, brain., and
brain.it. This issue only occurs for relatively common terms, and a misspelling was never ranked
higher than the correct equivalent.

Missing equivalents: A few things stand out when looking at those terms for which no good
equivalent was found. A first observation is that this happens mostly to specialised terms like
natriuretic, trastuzumab, and hypertrophic. There are exceptions, however, like arterial, which is
not very specialised, yet is not found for either Dutch equivalent (arterieel and arteriële). It is
not found for the French equivalent artériels either, though it was found (at ranks 2, 3, and 9
respectively), for the French equivalents artériel, artérielles, and artérielle. This is a phenomenon
that was found for other terms that occur in multiple forms as well. For instance, the correct
English equivalent mitral was only found for one of the three present forms in French (mitral,
mitrales, and mitrale). In such cases, the embedding space for the multiple full forms of the same
lemma is often quite different, as illustrated by Figure 3 for artériel and artérielle. This is a
strong argument for the use of lemmatisation, so that information on each of the different forms
can be combined. On the other hand, sometimes completely different synonymous terms, e.g., anti-
inflammatoir and ontstekingsremmende in Dutch, which both mean anti-inflammatory, do have
almost identical embeddings. A final potential reason for missing equivalents is when the equivalent
is a multi-word term. For instance, the English equivalent for the French échographie-doppler is
usually written as Doppler echocardiography, which means it cannot be found by a system that does
not handle multi-word terms.

In conclusion, this error analysis showed that the Gold Standard alone cannot capture all
relevant information, and it revealed many additional potentially useful (near-)equivalents. While
it is impossible to logically explain all errors, the analysis did show a few potential strategies for
improvements, such as lemmatisation and improved tokenisation. Handling of multi-word terms is
another important and necessary improvement, not only because of missed equivalents seen now,
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but also because so many relevant terms consist of multiple words, as illustrated by how many had
to be excluded from the current Gold Standard compared to the original ACTER dataset.

5. Conclusion and Future Research

In this paper, we propose a fairly intuitive method to create domain-specific dictionaries on-the-fly
from Wikipedia pages and cross-lingual links. Our experimental results show a clear improvement
in cross-lingual alignment of the embeddings when using a dedicated domain-specific dictionary for
the use case of heart failure. Moreover, we demonstrate that it is feasible to collect large domain-
specific bilingual dictionaries for other domains as well. A detailed error analysis indicated that
the alignments using these domain-specific dictionaries might be further improved by lemmatising
before alignments, and building a better and more consistent tokeniser. Even though some of the
errors, like alignments with antonyms for instance, may cause issues in a practical setting, many of
the errors are semantically related terms that often contain interesting suggestions.

There are many ways to expand upon this work in future research. First, this research presents
promising proof-of-concept results, but we would like to evaluate the lexicon creation strategy on
other language pairs and domains to test its robustness. Furthermore, since research has shown
that a larger dictionary directly correlates with better alignments, it would be interesting to explore
dictionaries with higher depths, while filtering words that might be irrelevant using unsupervised
clustering.

Second, we will extend our approach to multi-word terms. Multi-word embeddings have been a
major sore area for static embeddings in the past, but we plan to explore a simple strategy of adding
underscores between the different parts of the multi-word terms.

Third, we would like to experiment with a knowledge distillation approach to distill domain-
specific information from multilingual transformers and compare the results for specialised terms
with aligned monolingual embeddings.
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