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Abstract
Creating datasets for language phenomena to fill gaps in the language resource panorama of

specific natural languages is not a trivial task. In this work, we explore the application of transfer-
learning as strategy to boost both the creation of language-specific datasets and systems. We use
offensive language in Dutch tweets directed at Dutch politicians as a case study. In particular,
we trained a multilingual model using the Political Speech Project (Bröckling et al. 2018) dataset
to automatically annotate tweets in Dutch. The automatically annotated tweets have been used
to further train a monolingual language model in Dutch (BERTje) adopting different strategies
and combination of manually curated data. Our results show that: (i) transfer learning is an
effective strategy to boost the creation of new datasets for specific language phenomena by reducing
the annotation efforts; (ii) using a monolingual language model fine-tuned with automatically
annotated data (i.e., silver data) is a competitive baseline against the zero-shot transfer of a
multilingual model; and finally, (iii) less surprisingly, the addition of automatically annotated
data to manually curated ones is a source of errors for the systems, degrading their performances.

Warning: this paper contains examples of offensive language that may be disturbing, harmuful, and
distressing to some readers. Following best practices in this field, slurs and swear words have been
obfuscated.

1. Introduction

The creation of language-specific language resources is costly, in terms of time, money, and human
effort. Alternative solutions have seen the application of transfer learning techniques to tackle this
problem, especially in cross-lingual settings. We can describe transfer learning as the application
of knowledge that a system (or a model) has obtained in one task, using some form of supervised
training, to a different one. This may correspond to a different domain, language variety (Ramponi
and Plank 2020, Karouzos et al. 2021, Bose et al. 2021), or language (Artetxe and Schwenk 2019,
Nooralahzadeh et al. 2020, Huang et al. 2021). From a certain perspective, the fine-tuning of pre-
trained language models (PTLMs) on a specific task (e.g., document classification) can also be seen
as a form of transfer learning.

In this work, transfer learning, and in particular zero-shot cross-lingual transfer learning, is used
as a method to investigate its contribution to the development of language specific datasets and
systems. As a case study, we focus on offensive language against politicians in Twitter messages
in Dutch. While Dutch has quite a strong Natural Language Processing (NLP) panorama, it is
less-resourced when it comes to datasets and tools for socially unacceptable language phenomena.

Socially unacceptable language is a broad term that covers multiple phenomena that have natural
language as the primary means of expression, ranging from toxic language and microaggressions, to
hate speech, abusive language and offensive language, among others. Socially unacceptable language
represents an issue for the full development of inclusive and peaceful societies. The growth and spread
of Social Media platforms (e.g., Facebook, Twitter, Reddit, Instagram, 4Chan, among others) has
contributed to an increase of this phenomenon as well as to a polarization of societies (Cinelli
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et al. 2021, Haidt 2022). The mainstream approach in automatic content moderation is still based
on so-called reactive interventions, i.e., blocking or deleting the “bad” messages (Seering et al. 2019).
Whether this is the most effective strategy to counteract socially unacceptable languages is still a
matter of debate (Chandrasekharan et al. 2017), also considering the risks that this approach has in
perpetrating bias and discrimination (Sap et al. 2019). Regardless of the preferred and most effective
method, the first step is the detection and identification of specific types of socially unacceptable
language. Such step necessarily requires language-specific resources to train tools to distinguish the
“good” messages from the harmful ones.

In this work, we focus on a specific sub-type of socially unacceptable language, namely offensive
messages. We present a series of experiments that aims to assess the contribution of automatically
annotated data obtained by applying zero-shot cross-lingual transfer learning using mBERT (Pires
et al. 2019) to Twitter messages in Dutch targeting politicians. To better assess the impact and
the contributions of zero-shot cross-lingual transfer, we manually annotated a set of 1,500 tweets.
This test set has been developed by applying the same guidelines for offensive language used to
develop the Dutch Abusive Language Corpus (DALC, henceforth) (Caselli et al. 2021a, Ruitenbeek
et al. 2022), thus extending the availability of test data for offensive language in Dutch in the spirit
of dynamic benchmarking (Kiela et al. 2021, Thrush et al. 2022).

Our main contributions are:

• the availability of a new benchmark test in Dutch for offensive language on Twitter messages
containing the mentions of politicians;

• a set of experiments investigating the contribution of automatically annotated data as strate-
gies to boost the development of competitive NLP systems in absence of manually annotated
training data;

• an analysis of the benefits of zero-shot transfer learning to boost the creation of manually
curated datasets.

The paper is further structured as follows: an overview of related work on offensive language
detection and the use of cross-lingual transfer learning is presented in Section 2. Section 3 describes
the data we have collected and used, distinguishing between manually annotated, unlabelled, and
automatically annotated. Our experiment settings, the new test benchmark and the results are
presented in Section 4, followed by a discussion and critical reflections in Section 5. Finally, in
Section 6 conclusions and future work are presented.

2. Related Work

Socially unacceptable language comprehends many different phenomena with varying degree of harm-
fulness. It is out of the scope of this contribution to present an exhaustive overview of all phenomena,
datasets, and machine learning-based approaches related to their treatment (we refer interested read-
ers to Poletto et al. (2021) and Dhanya and Balakrishnan (2021) for recent surveys). On the other
hand, we will structure this review along three core topics: offensive language detection, cross-lingual
transfer learning, and the impact of using automatically annotated data in low-data settings.

2.1 Offensive Language Detection: Definition, Data, Methods

Offensive language is primarily a subjective phenomenon since it is strictly connected to the per-
ception of a message by the receiver (Vidgen et al. 2019). Defining what is offensive language is a
more challenging task than one can imagine. The Merriam-Webster Online Dictionary states that
“offensive” corresponds to “causing displeasure or resentment”,1 highlighting the negative feelings

1. https://www.merriam-webster.com/dictionary/offensive
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that an offence may trigger. Poletto et al. (2017), on the other hand, adopts a definition of offensive
language that somehow recalls the (lack of) definition of obscenity by Justice Potter Stewart in
Jacobellis v. Ohio (1964):2 something is offensive as soon as there is even the smallest possibility of
being perceived as offensive by someone. Whereas this definition concentrates on the negative feeling
that offensiveness may have on others, Zampieri et al. (2019a) broadens the definition by explicitly
mentioning non-acceptable language. In particular, in their work offensive language is defined as:

Posts containing any form of non-acceptable language (profanity) or a targeted offence, which can
be veiled or direct. This includes insults, threats, and posts containing profane language or swear
words.

While subjectivity has not completely disappeared, this definition is as an attempt to reduce
it by introducing more verifiable parameters such as the presence of profanities, swear words, and
threats. At the same time, there are risks of introducing bias in datasets based on this definition
by reducing offensive messages to explicit realizations only. Besides this limitation, this definition of
offensive languages has been adopted in two subsequent SemEval tasks, namely SemEval 2019 Task
6: OffensEval (Zampieri et al. 2019c) (English data only) and SemEval 2020 Task 20: OffensEval
2020 (Zampieri et al. 2020) (multilingual data, covering English, Turkish, Arabic, Danish, Greek).
Refining the definition of what constitute offensive language in absolute terms is not a trivial task
and, possibly, not even a useful path to follow. Being a highly subjective phenomenon, refinements
should take into account the social, ethnographic, and community-oriented dimensions of where the
interaction takes place and calibrate the offensiveness of a messages according to the values of a
specific community of speech.

A complimentary and faster solution to monitor the impact of subjective interpretation, while
avoiding strongly prescriptive annotation guidelines, is the introduction of a hierarchical annotation
format that focuses on the distinction of how the targeted language phenomenon is realized (Waseem
et al. 2017). Building on top of the definition of offensiveness provided by Zampieri et al. (2019a),
it is possible to introduce an explicitness layer to distinguish whether the message is unambiguously
offensive in its potential or not. If this strategy is applied to a parallel annotation by two or
more (trained) annotators, it will be easier to distinguish potential bias (i.e, an over annotation of
explicit messages) and identify controversial cases (i.e., whether a message is offensive or not). Such a
strategy, for instance, has been adopted for the annotation of DALC (Caselli et al. 2021b, Ruitenbeek
et al. 2022) for both abusive and offensive language.

A further feature of offensive language is that it represents the starting point to define and iden-
tify other socially unacceptable language phenomena such as abusive language and hate speech. For
instance, a “targeted insult” when addressed to a social group (e.g., women, LGBTQIA+ people)
can correspond to an instance of hate speech while when directed towards an individual may be
an instance of abusive language. A similar behavior can be associated with “threats”. This makes
it possible to connect together different phenomena and focusing on their differences and interac-
tions (Poletto et al. 2021).

Datasets and corpora for offensive language are available in more than 10 languages across a varied
representation of language families.3 In most of the cases, the annotation of offensive language is
accompanied by the presence of other more fine-grained phenomena such as sexism or hate speech
(targeted at a specific social group). The majority of these corpora adopts Twitter as reference Social
Media platform. Clearly, the availability of APIs and Terms of Use that easily allow scholars to obtain
and re-share the data4 makes Twitter a privileged channel for these types of studies. At the same

2. https://mtsu.edu/first-amendment/article/392/jacobellis-v-ohio
3. For more details see https://hatespeechdata.com
4. A big limitation of Twitter-based studies is that corpora tend to shrink over time since users have the right to

permanently delete their messages or because their account are suspended. Nevertheless, by adopting appropriate
anonymization procedures and a Data Management Plan, the sharing of the full text of a tweet - rather than just
the IDs - is possible. We are currently working to release the DALC data in this format.
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time, the limited amount of characters that Twitter allows for a message, makes the study of forms of
socially unacceptable language very limited in their variety and complexity (Vidgen and Derczynski
2020). A further common property of most offensive language datasets is the distribution of the
positive and negative examples. The overall amount of socially unacceptable language phenomena
on Social Media is unknown. Estimates on Twitter position it between 1% and 3% of the total
messages (Founta et al. 2018) while other venues, such as GAB or TheRedPill subreddit, have
a denser distribution of these phenomena. Nevertheless, messages containing socially unacceptable
language phenomena are a minority with respect to the overall user-generated inputs. In an attempt
to maintain an ecological representation of the data distribution, corpora present an unbalanced
distribution of the positive and the negative classes, with a tendency to under-represent the positive
class to a third of the entire corpus size.

Systems for offensive language detection are based on supervised machine learning methods,
either using monolingual or multi-lingual learning strategies. In recent years, there is an growing
tendency to reduce this (and other tasks) to a “simple” fine-tuning of pre-trained language mod-
els (PTLMs) (Zampieri et al. 2019d, Kumar et al. 2020, Pelicon et al. 2021, Gaikwad et al. 2021,
y Jorge Carrillo-de-Albornoz y Laura Plaza y Julio Gonzalo y Paolo Rosso y Miriam Comet y
Trinidad Donoso 2021). Not surprisingly, the use of fine-tuning results in state-of-the-art perfor-
mances, with averages macro-F1 scores across different languages above 0.80. However, when dis-
secting the results per class, we observe that all systems tend to under-perform with respect to the
positive class, with F1 scores in the a range between 0.60 and 0.70. Quite interestingly, the use of
simpler architectures - such as Support Vector Machines - are very strong baselines for these tasks.

As for Ducth, previous work is quite limited. Van Hee et al. (2015) investigate cyberbullying
focusing on the context in which an aggressive or hurtful message is posted. Posts are retrieved
from a Dutch question answering social medium, are annotated using a three-point scale, where
0 indicates no cyberbullying, 1 the presence of context and indications of cyberbullying, and 2
indicates explicit and serious threats or incitements to commit suicide. A different contribution,
focusing on racism, has been presented by Tulkens et al. (2016). In this work, the authors develop
a dictionary-based system,HADES (HAte speech DEtection System), to detect racist messages in
Dutch. The dictionary is created in a semi-automatic way in three steps starting with seed terms
and then expanding them using a word2vec model. The last step is a manual curation step where
unsuitable expansions are removed. Lastly, more recent work has been conducted in the area of
offensive and abusive language thanks to the development of DALC.5 The best system for offensive
language developed on DALC with a PTLMs (RobBERT, Delobelle et al. (2020)) achieves a macro
F1 score of 0.828, with an F1 on the positive class of 0.746 (Ruitenbeek et al. 2022).

2.2 Cross-lingual Transfer and Low-data Settings

Cross-lingual transfer learning is a relatively new task in NLP which has sparked lot of interest in
the community (Schuster et al. 2019, Do and Gaspers 2019, Li et al. 2020, among others). The
key idea is that dense representations (i.e., embeddings) of tokens or sentences are built into a
common representation space, either using parallel data or not, that allow to train a system in one
language on a specific task and transfer the learned model to other languages not present during
the training phase. The benefit of the use of this method has been consistently shown in different
tasks, from morpho-syntax to Machine Translation (Lynn et al. 2014, Aufrant et al. 2016, Ahmad
et al. 2019, Kim et al. 2019, Chen et al. 2021). Recent work has advanced the state of the art by
proposing innovative approaches such as adapter modules (Pfeiffer et al. 2020, Üstün et al. 2020) or
the use of meta-learning (Lee et al. 2022). One of the proved advantages of the use of cross-lingual
transfer learning is that it allows to apply NLP tools to less-resourced languages, even if never seen
in training (i.e., zero-shot setting) or included in the development of the shared representations,
obtaining satisfying performances. It would be an overstatement to claim that these models offer

5. More details on the corpus are presented in Section 3
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a definitive solution for languages that are under-resourced. First, there is a growing evidence
showing how monolingual PTLMs outperform multilingual ones in every tasks and setting (de Vries
et al. 2020). Secondly, performances of zero-shot experiments are actually boosted when adding few
manually annotated data for the target language, even if the target language is not present in the
pre-training materials (Zhou et al. 2021, Üstün et al. 2022). Finally, the data (i.e., size and quality)
used to generate multilingual PTMLs have a relevant impact on the models’ predictions in zero-shot
settings due to differences in writing systems can degrade performance as well as cultural differences
primarily encoded in natural language (Pires et al. 2019, Lauscher et al. 2020).

A complementary approach to zero-shot transfer is self-training (Blum and Mitchell 1998, Mc-
Closky et al. 2006). Self-training is a simple method to reduce data sparseness, especially in low data
settings. Withing the self-training paradigm, an existing model is applied to a large set of unlabelled
data. The newly labeled data are considered as ground-truth and recombined with the manually
annotated one used for training (gold data) to develop a new model. Although the effectiveness of
self-training is debatable with varying results, on the basis of the task and amount of data (UzZaman
et al. 2013, Basile and Caselli 2020, Mi et al. 2021), it is interesting to investigate its use in the light
of the advancements given by PTLMs and for a task such as offensive language detection.

3. Data

For this work, different datasets have been used and developed for training and testing our models.
In the following sections we highlight the properties of the various datasets and discuss how the
unlabelled data for Dutch have been collected.

3.1 Gold Training Data

We have collected two manually annotated datasets to train our models. The first is the Political
Speech Project dataset (Bröckling et al. 2018) and the second is DALC. While the Political Speech
Project dataset will represent the starting point for our experiments using transfer learning and self-
training data, DALC is mainly used to develop an upper-bound threshold on the newly developed
test set.

Political Speech Project The Political Speech Project (PSP, henceforth) dataset has been devel-
oped by a consortium of journalists in Europe whose primarily focus was to investigate abuse against
female politicians and whether politicians from particular parties were more subject to abuse than
others. The authors randomly sampled 320 politicians (40 men and 40 women) from four countries
(France, Germany, Italy and Switzerland) using lists of parliamentary and government ministers. In
addition, each journalist selected 10 prominent politicians (5 men and 5 women) from each country
representing the full political spectrum. The data were collected during a 4-week period (February
21 – March 21, 2018) from Twitter and Facebook. A random sample of 41,222 posts has been man-
ually annotated for two dimensions: (i) the level of offensiveness, and (ii) the category of offence
that was expressed. The level of offensiveness is expressed via a scale of three values having at
the extreme sides the values “neutral” - for non-offensive messages - and “highly offensive”. The
category of the offence is used to better identify the content of the offensive message. The authors
adopt seven classes, including sexist, anti-immigrant, anti-Muslim, anti-Semitic, homophobic and
other. The category labels are not mutually exclusive since offensive expressions may be intrinsi-
cally intersectional (Crenshaw 2017) targeting multiple dimensions at the same time (e.g., sexism
and anti-Muslim , if the offence is addressed to a Muslim woman politician, for instance). In ad-
dition to this, a further annotation layer distinguishes whether the offence is personally directed to
the politician mentioned in the message or not. Unfortunately, the accompanying documentation
of the dataset does not contain definitions and guidelines for the use of the level category, leaving
the interpretation to the annotators. Although there can be variability in the labels across single
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annotators, the dataset is uniform and spans across multiple languages representing a unique in the
language resource panorama. Table 1 illustrates some examples from the PSP data.

Country Text Off. Level Off. Category Is personal?

Switzerland
Jacqueline Badran Nationalrätin
SP (ZH) sagt #NEINzuNoBillag!
@JayBadran https://t.co/6ZGu5Q1y8l

0 None No

France

@flo_agri @auroreberge Et vous la
gauchiasse avec plein de sang sur les
mains et de nombreux meurtres
de masse.

1 None Other

Italy @ckyenge @mattiellodavide Stai zitta
st** di m**. .torna nella tuo c** di Congo 2 Sexist, Anti-immigrant, Other Other

Germany

nunja ist ne ditib einrichtung das müssen
nicht zwangsläufig afd leute gewesen sein
am liebsten würd ich die einrichtungen
auch abfackeln

3 Anti-immigrant, Anti-muslim Other

Table 1: Examples from the PSP dataset, showing the country, the text of the message, the level
of offensiveness (Off. Level), the category of the offence (Off. Category), and whether the
offence directly targets the politicians or not (Is personal?)

Having adopted a random sampling approach for the annotations with no correction strategies,
the PSP dataset presents a very skewed distribution of the labels across all annotated dimensions.
In particular, the messages belonging to the negative class make up for 93% (38,516) of all the
occurrences. A full overview of the distribution of the level of offensiveness per country is represented
in Table 2.

Country Off. Level Total
0 1 2 3

France (FR) 12,401 589 225 48 13,263
Italy (IT) 12,297 777 151 19 13,244
Germany (DE) 9,296 425 106 18 9,845
Switzerland (CH) 4,522 258 79 11 4,870

Table 2: PSP data: Distribution of messages per rating and country (0: neutral, 1: mildly offensive,
2: offensive, 3: highly offensive).

As Table 2 shows, the skeweness also affects the distribution of messages per country, with France
and Italy representing almost 64% of the total, while Germany provides 24% and Switzerland a mere
12%. This has an impact in the language distribution. Quite surprisingly, Switzerland has only
messages in Swiss German. Although Swiss German is very closely related to Standard German,
they are not the same. Variations in spelling, morpho-syntax, and vocabulary may all have an
impact in the development of our transfer learning model. In addition to this, there are instances of
code-switching. Using Langid6 we found that the data for France and Germany can be multilingual,
due to the presence of English phases or clauses.

To run our experiments, we converted the 4-way classification of the offence level to a binary
format, by collapsing into a global offensive category the labels 1, 2 and 3, and using a NOT
class for the label 0. In addition to this, we excluded 3,499 messages because the full text was not
properly retrieved or missing, leaving us with 37,723 entries. We present in Table 3 an overview of
the re-arranged classes per country.

6. https://github.com/saffsd/langid.py
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Class Country Total
FR IT DE CH

OFFENSIVE 274 164 233 138 809
NOT 11,184 11,793 9,352 4,585 36,914

Table 3: PSP data aggregated: distribution binary classes per country. Country names are expressed
using ISO 3166 code.

The removal of messages lacking the full text had an impact on the positive class: offensive comments
now account for only 1% of data. The limited number of positive examples poses a challenge to the
development of our transfer learning model, requiring the application of udersampling with respect
to the negative class.

DALC DALC (Caselli et al. 2021a, Ruitenbeek et al. 2022)7 is a Twitter-based corpus in Dutch
annotated for abusive and offensive language phenomena. DALC inherits the definition of offensive
language used by Zampieri et al. (2019b). Three collection methods (keywords extraction, message
geolocation, and seed users) have been employed to extract the messages that compose DALC. This
strategy combined with the sampling of the data at different moments in time has been adopted as
a strategy to limit developers’ bias. The annotation of offensive language has been conducted by
applying a set of semi-prescriptive annotation guidelines by four annotators in parallel. Following the
proposal by Waseem et al. (2017), DALC applies a multi-layer annotation approach distinguishing
between the explicitness of the message and its target. The explicitness layer addresses the surface
form of the message in its potential to be (perceived as) offensive and distinguishes three classes: (i.)
explicit; (ii.) implicit; and (iii.) not. The not class is used for not offensive messages. On the
other hand, the explicit class applies to messages with profanities or that contain a combination of
words that unambiguously make the message offensive. implicit messages are more subtle, lacking
any surface markers, and thus making the offence hidden.

The target layer, on the other hand, indicates towards whom the offence is directed. Four classes
have been identified: (i.) individual, for messages that are addressed to or target a specific person
or individual (who could be named or not); (ii.) group, for messages that target a group of people
considered as a unity because of ethnicity, gender, political affiliation, religion, disabilities, or other
common properties; (iii.) other, for messages that target concepts, institutions and organisations,
or non-living entities; and (iv.) not, for offensive messages without a target.

The parallel annotation of the data offers a more comprehensive and diversified view of what
constitutes offensive language. In case a majority in the labels for each of the layer is not present,
annotators were instructed to discuss the case and find an agreement. An interesting feature of
the offensive language dimension in DALC is the availability of both aggregated and per annotator
labels to foster future work on the relationship of subjectivity and annotation of natural language
phenomena (Basile 2020, Leonardelli et al. 2021). Table 4 presents three examples of messages in
DALC annotated on the explicitness and the target layers.

When it comes to the distribution of labels, DALC is unbalanced - as all socially unacceptable
language datasets - but in a very different way when compared to PSP. In particular, DALC is
composed by 11,292 messages and it maintains a 2/3 vs. 1/3 split of negative and positive classes.
Furthermore, training, development, and test splits for DALC are fixed and follows a strict division
of the messages whereby no topic or time period that is in the training data appears in the test set.
We present the distribution of the data in Table 5, excluding the target layer. The offensive label
is obtained by collapsing together the explicit and the implicit labels.
Although explicit messages are the majority, the number of implicit cases is relatively high - repre-
senting 41.28% of all occurrences. A possible explanation can be found in the annotation guidelines:

7. https://github.com/tommasoc80/DALC
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Text Explicitness Target
Dat gebeurt in het park en veel jongeren
bij elkaar NOT NOT

@USER Hier ben ik het mee eens. Journalistiek
hoort “onafhankelijk” te zijn en dat is in NL al
lang niet meer aan de orde.

IMPLICIT OTHER

@USER Ze doen zo schijnheilig. Hoeveel b** worden
er niet vermoord al dan niet door politieagenten?
Dan demonstreren ze niet, deze personen zijn g**

EXPLICIT GROUP

Table 4: DALC: examples of annotated data. User handlers have been anonymized.

Data Split OFFENSIVE NOT
EXP. IMP.

Train 1,407 1,070 4,340
Dev 230 209 766
Test 584 283 2,403
Total 3,783 7,509

Table 5: DALC: label distribution. EXP. = explicit; IMP, = implicit.

being only semi-prescriptive offensive messages have been labelled as such either because they con-
tained a profanity, or because they were perceived as such by the annotators.

3.2 Unlabelled Dutch Data

To validate the impact of zero-shot transfer from multilingual PTLM and the contribution of au-
tomatically annotated data (silver data, henceforth), we have collected a large quantity of tweets
that contains a mention of a Dutch politician. We created a list of politician twitter accounts using
information from the Tweede Kamer8 (i.e., the Dutch House of Representatives) in September 2021.
At that time, the Tweede Kamer consisted of 148 politicians from 18 different parties, with 4 parties
having more than 10 seats. The full list is available on the DALC GitHub.

We then retrieved tweets containing mentions of politicians using the RUG Twitter Corpus (Sang
2011). In particular, we collected tweets from the Netherlands for the whole month of March 2021.
This month is particularly interesting because it contains a relevant historical event such as the Dutch
Parliamentary elections.9 At that time, people in the Netherlands were still experiencing lockdowns
and limitations of civil liberties to contrast the COVID-19 pandemic. Additionally, the vaccination
campaign against COVID-19 was experiencing delays due to bottlenecks in dose distributions and
organization. The presence of the elections and the measures to counteract the ongoing COVID-
19 pandemic makes it a perfect combination to trigger many messages mentioning or targeting
politicians.

To select only relevant messages, we identified four methods in which a user could mention a
politician:

• direct use of the politician Twitter handler (dm-tweet); e.g., “@markrutte”;

• mention the full name (first and last name) of a politician (fn-tweet); e.g., “Mark Rutte”;

• mention of a politician’s last name in an hashtag (hln-tweet); e.g. “#rutte”;

• mention of the last name only of a politician (ln-tweet); e.g., “Rutte”;

8. https://www.tweedekamer.nl/kamerleden_en_commissies/alle_kamerleden
9. The elections took place on 17 March, 2021.
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The combination of these strategies returned a total of almost 2 million unique messages. Table 6
presents the number of the extracted tweets per method.

Method Retrieved tweets
dm-tweet 859,676
fn-tweet 61,239
hln-tweet 71,277
ln-tweet 940,896
Total 1,933,088

Table 6: Distribution of the different tweet types that were collected

Not surprisingly, the dm-tweet strategy returns the largest amount of valid data, being the most
precise way to identify messages directed at politicians. On the other hand, ln-tweet is the most
noisy since the last name in a tweet can refer to someone else other than a politician. We thus
decided to exclude all messages retrieved in this way.

The fn-tweet and the hln-tweet return in proportion less messages although being quite ac-
curate in their results. Clearly, the fewer instances retrieved for fn-tweet may be due to the
peculiarities of Twitter: having a limiting amount of characters to express oneself the use of full
name of a politician is rather useless. At the same, transforming a politician last name in an hash-
tag may be either an attempt to push the visibility of the message rather than targeting a politician’s
attention, or a strategy to bypass a block on Twitter by the targeted politician. The final size of the
unlabelled Twitter data amounts to 992,192.

4. Experiments

In this section, we will present the experiments we have run to further validate our transfer learning
approach and the impact of silver data. As a by-product of running a fine-tuned multilingual model
on the PSP dataset, we developed a new manually annotated benchmark for Dutch. While this new
benchmark is still based on the same medium as DALC, it represents a more specialized language
variety when compared to DALC since all messages contain at least the mention of one politician and
cover a time period not present in DALC. For our experiments we used two PTLMs: mBERT (Pires
et al. 2019)10 and BERTje (de Vries et al. 2019).11 In all experiments we have used the same basic
pre-processing steps by means of regular expressions. Details are in Appendix A.

4.1 Zero-shot Transfer with PSP Data

As we have illustrated in Section 3.1, the PSP dataset is heavily imbalanced towards the negative
class. A preliminary experiment where we fine-tuned mBERT (Pires et al. 2019) using the distri-
bution of the data as is and applied 10-fold cross-evaluation resulted in the system not being able
to learn any instances from the positive class. We thus applied under-sampling of the negative
class and up-sampling of the positive one to balance the class distribution to boost the robustness
of the system towards the positive class. Given the limited amount of data, we decided to create
a challenging test set where positive and negative classes are balanced in a 50-50 proportion (236
messages for the negative class and 247 for the positive class). Keeping the 50-50 split, we ended
up with a total of 3,413 messages, where the positive class corresponds to 1,706 messages and the
negative class to 1,707.

10. We used bert-base-multilingual-cased .
11. BERTje is available at GroNLP/bert-base-dutch-cased .
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With this peculiar training setting, we then tested whether learning of offensive messages is
actually enhanced and to what extent. We compared the fine-tuning of mBERT12 against a linear
SVM.13 The SVM is used as a baseline to compare the results of the mBERT model and as a lower
threshold on the PSP data following our split. Results are reported in Table 7.

System Class Precision Recall Macro F1

SVM NOT 0.716 0.737 0.728OFF 0.741 0.720

mBERT NOT 0.777 0.754 0.774OFF 0.771 0.793

Table 7: Results on the PSP dataset with 50-50 proportion on test. Evaluation metrics are Precision
and Recall per class. Macro-average F1 is used as global evaluation measure to rank the.
systems. OFF = offensive; NOT = not offensive

The results indicate that the SVM is already a competitive baseline, although it under-performs on
all classes when compared to mBERT. Quite interestingly, mBERT obtains very good results on the
positive class, with a Recall score even higher than that it has for the non offensive messages. The
relatively high results on this test set should also be taken as a potential warning of the presence
of some bias in the data in terms of similarities and potential lexical overlap between the training
and test materials. Nevertheless, the results of the experiments are positive. This allows us to move
forward and apply the fine-tuned mBERT model on the PSP data (mBERT-PSP) to the unlabelled
Dutch data with mentions of politicians.

The Offend the Politicians Benchmark (OP-NL) As we have previously anticipated, the
development of the new dynamic benchmark for offensive language targeting politicians in Dutch is
a by-product of the deployment of the mBERT-PSP model over the 900k tweets we collected. Once
we deployed mBERT-PSP on the unlabelled Dutch tweets, we randomly extracted 1,500 messages
and manually corrected them. We will refer to this new test data as the Offend the Politicians
Benchmark, henceforth OP-NL.

The manual correction applied the definition of offensive language and the annotation guidelines
used for the development of DALC. The annotation/correction was conducted by one annotator
and it focused only on the distinction between offensive and not offensive, without applying the full
hierarchical annotation strategy used in DALC.14 Table 8 illustrates the results of the correction
process by means of a 2x2 confusion matrix, where N stands for the non-offensive messages, and
P for the offensive ones. As the Table shows, the predictions of mBERT-PSP are unbalanced, with a
tendency to predict a message to be not offensive (1,023 vs. 477). The manual correction clearly
confirms this, showing that the largest class that underwent correction of labels where messages
wrongly predicted as not offensive (280 messages), while only a minority of non-offensive messages
(218) was wrongly predicted as offensive. After correction, the distribution of labels is as follows:
961 messages (64%) are not offensive and 539 (36%) are offensive. The ratio between non-offensive
and offensive messages is 1.78 : 1, very close to the label distribution in DALC.

In terms of annotation efforts, the predictions have to be corrected only for 498 cases (218 +
280 misclassifications) out of the total of 1,500 messaged, representing less than 1

3 of all occurrences.
This has significantly sped up the development of OP-NL.

12. We used the default parameters for learning rate and optimizer from the simpletransformers library, batch size
= 16, number of training epochs = 5 .

13. We have used the scikit-learn library for the SVM, with default value for the C parameter, TF-IDF vectorization,
with unigrams and bigrams for tokens, and trigrams and fivegrams for charatcters.

14. The annotator is one of the authors of this paper. Full data statement for OP-NL is reported in the DALC
repository.
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N P Total
Human

N 743 218 961

P 280 259 539

Total
mBERT-PSP 1,023 477 1,500

Table 8: OP-NL: Confusion matrix of the manual correction with respect to mBERT-PSP predictions.

To validate the annotation, we performed an inter-annotator agreement (IAA) study with a
second annotator on a subset of 150 messages (10%). This resulted in a Cohen’s kappa of κ = 0.67,
indicating substantial agreement and in line with previous work. Although the IAA score is quite
satisfying, the whole of OP-NL is annotated by only one person. Since offensive language is a highly
subjective phenomenon, OP-NL has been enriched with a further annotation layer expressing the
annotator’s confidence on the assigned label. Confidence levels are expressed by means of a Likert-
scale from 1 (very uncertain) to 4 (very certain). The confidence levels are distributed as shown in
Table 9. Most labels (83.6%) are given high certainty values (3 or 4), and only in 5% of the cases the
annotator was highly uncertain (1) about the assigned label. Although this does not fully address
the subjective interpretation of (some) of the messages, we consider the presence of the confidence
scores as a strategy to address this issue and of help for future work and extension of the dataset.

Level 1 Level 2 Level 3 Level 4 Total
84 158 160 1,094 1,500

Table 9: OP-NL: Distribution of confidence levels of labels.

Evaluating mBERT-PSP against OP-NL Having created a reference gold standard for Dutch,
we can now evaluate the predictions in a zero-shot setting of mBERT-PSP. Results are illustrated in
Table 10.

System Class Precision Recall Macro F1

mBERT-PSP
NOT 0.726 0.773 0.629OFF 0.543 0.480

Table 10: Results of mBERT-PSP on the gold version of OP-NL.

Overall, mBERT-PSP obtains good performances, especially on the non offensive messages, even if
Dutch has never been seen at training time and considering that the data composing PSP comes
from two Social Media platforms, namely Facebook and Twitter, with different properties in terms
of how a message can be posted (e.g., length, presence of hashtags, mentions of users, among others).
On the other hand, we observe that the model struggles with predicting the offensive class, with a
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F1 score for this class barely above 50% (0.509). In the reminder of our experiments, our goal will
be to boost the performance on the OP-NL dataset by means of silver data in Dutch.

4.2 Impact of monolingual silver data with mBERT

It is known that having, at training time, data from the language (and task) in which the model
will be tested is helpful. The following experiments investigate whether adding monolingual silver
data to a manually annotated dataset such as PSP confirms this effect or not. In addition to this,
it is also relevant to understand whether a potential beneficial effect of silver data is dependent on
the amounts that are added to the gold data.

Our first experiment is partially inspired by Ranasinghe and Zampieri (2020) and it adopts an
incremental self-training approach to expand the size of the silver data and test their impact. We
call this method dyna-mBERT-PSP. The idea is quite simple: over 10 iterations, a total 3,410 silver
data instances, corresponding to almost the same size of the PSP training, are used to fine-tune
mBERT-PSP. At each iteration, 10% of the total data (i.e., 341 instances) are used to fine-tune the
model. The dynamic part of the method is that a fine-tuning iteration represents a predict-train-
predict cycle where, firstly, the weights of an initial fine-tuned model, Mt, are used to predicts the
labels of 341 data instances in Dutch. Secondly, the weights of the model are updated by fine-tuning
the additional labels of the predicted 341 instances, creating a new model Mt+1. Finally, the newly
fine-tuned model, Mt+1, is evaluated against OP-NL. After this, an new cycle is started to predict
labels for additional silver training data. The cycle stops after 10 iterations. In all iterations, we
maintained the seed fixed.

The second method we implemented is slightly different. We call this mBERT-PSP+. The method
is still based on self-training, but in this case, rather than saving the weights of the multilingual
model (i.e., mBERT-PSP) and then fine-tune it on target language silver data, we initially add a total
of 3,413 automatically labeled messages in Dutch to the original PSP data. The initial training set
is thus composed by 6,826 messages. We then used this training corpus, a hybrid of gold and silver
data, to fine tune a new model and evaluate it against OP-NL. The main difference of this approach
with respect to dyna-mBERT-PSP consists in implementing a train-predict cycles only. After this
initial “kick start” with a larger set of silver data, we keep expanding the amount of Dutch silver
data in training by blocks of 1,000 message at each iteration. Being a train-predict cycle only, at
each iteration a new model is trained with an increasing amount of training material. At iteration
10, mBERT-PSP+ is trained on a combination of 3,413 messages from the PSP dataset and 13,413
Dutch silver data. The rationale for this set of experiments is to obtain more evidence of the impact
of silver data. Like for the dyna-mBERT-PSP experiments, the cycles stops after 10 iterations. In all
iterations, we maintained the seed fixed. In both experiments, there is no overlap in the selected
silver data across all iterations. The results for both experiments are presented in Table 11.

In general, we observe a degrading of the performances in both experiments when silver data are
used. However, there are some peculiarities and differences. For dyna-mBERT-PSP, in all experiments,
we note that silver data play a positive role in increasing the Recall for the negative class and, to
a smaller extent, the Precision for the positive one. The changes in the macro-F1 have a random
behaviour at the beginning and until iteration 5, and they consistently degrade in the remaining
iterations. However, it seems that at iteration 4 we reach a nice spot obtaining a macro-F1 score
of 0.634 with a delta of 0.005 points in favor dyna-mBERT-PSP when compared to mBERT-PSP (see
iteration 0).

When looking at the results for mBERT-PSP+, the impact of silver data seems to be less dras-
tic. Although we add 1,000 new messages at each iteration, the macro-F1 score remains quite
stable in its degradation, with a less random behavior than dyna-mBERT-PSP. When compared to
dyna-mBERT-PSP, silver data, in this case, tend to increase the Precision with a limited impact on
the Recall scores for the positive class. At the same time, the impact on the negative class seems
more varied. Until iteration 5, Recall increases at the expenses of Precision. This drastically changes
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dyna-mBERT-PSP mBERT-PSP+
Training
iterations Class Prec. Rec. Macro F1 Prec. Rec. Macro F1

0 NOT 0.726 0.773 0.629 0.719 0.783 0.622OFF 0.543 0.480 0.541 0.456

1 NOT 0.721 0.796 0.627 0.714 0.826 0.622OFF 0.554 0.452 0.570 0.411

2 NOT 0.695 0.860 0.592 0.714 0.832 0.623OFF 0.569 0.328 0.577 0.408

3 NOT 0.696 0.860 0.595 0.714 0.832 0.623OFF 0.571 0.332 0.577 0.408

4 NOT 0.725 0.806 0.634 0.712 0.805 0.615OFF 0.568 0.454 0.547 0.419

5 NOT 0.711 0.808 0.615 0.717 0.807 0.624OFF 0.549 0.415 0.558 0.434

6 NOT 0.696 0.840 0.593 0.723 0.757 0.627OFF 0.550 0.346 0.533 0.493

7 NOT 0.694 0.856 0.590 0.725 0.784 0.631OFF 0.561 0.328 0.551 0.471

8 NOT 0.693 0.887 0.589 0.719 0.774 0.621OFF 0.600 0.300 0.543 0.462

9 NOT 0.691 0.903 0.585 0.721 0.783 0.625OFF 0.620 0.282 0.543 0.460

10 NOT 0.683 0.912 0.566 0.717 0.783 0.619OFF 0.612 0.246 0.537 0.449

Table 11: Results for the dyna-mBERT-PSP and mBERT-PSP+ over the full 10 iterations on OP-NL.
Macro-average F1 is used to identify the best performing models. Precision and Recall
per class are reported as well. Best results for each model are marked in bold.

from iteration 6 onward where we observe a drop in Recall but limited losses for the Precision. It is
as if the old saying “the more data, the better” seems to maintain some of its efficacy in this setting.
At iteration 7, with 7,000 extra silver data in the training, we reach a macro-F1 of 0.631, beating
the regular mBERT-PSP, but still below dyna-mBERT-PSP.

The fact that in both settings we observe an improvement of the macro F1 score at a certain
point suggests the possibility of identifying a threshold in terms of silver data material that could
be added to an initial model to boost its performances in a positive direction. This, unfortunately,
is more a working hypothesis than a confirmed findings from our experiments.

4.3 Using BERTje: Impact of gold and silver data

So far, all experiments we have conducted make use of mBERT, a multilingual PTLMs. Limitations
in performance of multilingual PTLMs when compared to corresponding monolingual models are
known (Rust et al. 2021). Given that Dutch has available monolingual PTLMs,15 we decided to
investigate the use of silver data generated by mBERT-PSP when used to train a monolingual PTLM.

15. At the time of writing, available PTLMs for Dutch are BERTje (de Vries et al. 2019), RobBERT (Delobelle
et al. 2020), and RobBERTje (Delobelle et al. 2021).
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For our experiments, we selected BERTje (de Vries et al. 2019) because of its similarity, in terms of
architecture, with mBERT and the careful data selection process followed for its development.16

BERTje allows us to run multiple experiments with different data combinations. Firstly, we can
assess a potential upper-bound on OP-NL when gold data are used to fine-tune a model. Secondly,
we can asses what is the performance of fine-tuning a model using silver data only. Finally, we can
compare the results of these models when the training set is composed by silver and gold data.

Upper-bound on OP-NL The OP-NL benchmark is not accompanied by a corresponding train-
ing corpus in the spirit of dynamic benchmarking. To assess a potential upper-bound performance
on this benchmark, we have used the training data from DALC to fine-tune BERTje. The advantage
of this model with respect to all the others is that it uses monolingual data annotated for the same
language phenomenon of the OP-NL benchmark. Furthermore, the definition of what constitutes an
offensive message in DALC is the same we have applied to OP-NL. The challenge is that the data
come from a different time period and topic than those used to create the training set of DALC. We
refer to this model as BERTje-Gold.

Silver data only In this setting, BERTje is fine-tuned with silver data originally predicted with
mBERT-PSP. In particular, we selected 3,143 silver messages replicating the size (but not the label
distribution) of the PSP data. This model is called BERTje-Silver In addition to this, we replicated
the dynamic self-training setting of dyna-mBERT-PSP. In this case, for each predict-train-predict cycle
we use 1,000 silver labeled messages. The iterations stop after 10 cycles. It is important to stress that
in this case, with exclusion of the initial set of 3,143 silver messages (iteration 0), the labels for the
messages of each new iterations (iterations 1 to 10) are obtained using BERTje. We call the models
obtained with this approach dyna-BERTje-Silver. In all iterations with dyna-BERTje-Silver, we
did not change the seed.

Extend gold with silver The last experiment consists in expanding the gold data from DALC
with additional silver data. We have followed two settings by differentiating the size of the silver
data. In the first case, we added the same amount of silver messages as the size of the PSP training
data, i.e., 3,413 messages. The resulting model is called BERTje-Silver-3k. In the second varia-
tion, we used an amount of silver data that was the double of the PSP training, i.e., 6,826 messages,
reaching an amount of data comparable to the manually annotated training in DALC (i.e, 6,817).
We will refer to this model as BERTje-Silver-6k. In both cases, the silver data are obtained from
the predictions of mBERT-PSP. For each of these experiments, the training data have been shuffled
before passing them to BERTje to avoid any impact related to the order in processing the gold and
silver data during the fine-tuning.

We present an overview of the results of all the experiments in Table 12. For reason of space
and to maintain a coherent comparison of the results across the different experiments, we report the
best results for the dyna-BERTje-Silver. The complete overview of the dyna-BERTje-Silver for
each iteration is presented in Appendix B.

Not surprisingly, the use of gold data leads to the best results across all experiments with BERTje,
reaching a macro-F1 of 0.737, with very balanced scores for Precision and Recall for the positive class
(Precision = 0.677 and Recall = 0.641). In general, the results of models fine-tuned on silver data are
quite disappointing if interpreted only in terms of performance since no system obtains scores that
are competitive with BERTje-Gold. On the other hand, when considering BERTje-Gold as an ideal
upper-bound limit of potential performance on OP-NL, the picture is a quite different. First, we
observe a positive effect of the dyna-BERTje-Silver approach when compared to BERTje-Silver,
indicating a positive effect of the dynamic self-training approach within a monolingual PTLM.

16. For all fine-tuning experiments with BERTje, we used the default parameters for learning rate and optimizer from
the simpletransformers library, batch size = 8, number of training epochs = 5 .
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System Class Precision Recall Macro F1

BERTje-Gold
NOT 0.804 0.828 0.737OFF 0.677 0.641

BERTje-Silver
NOT 0.736 0.775 0.643OFF 0.558 0.506

dyna-BERTje-Silver
NOT 0.749 0.809 0.667OFF 0.603 0.517

BERTje-Silver-3k
NOT 0.768 0.813 0.691OFF 0.628 0.562

BERTje-Silver-6k
NOT 0.761 0.816 0.684OFF 0.624 0.543

Table 12: Results of the experiments fine-tuning using BERTje with gold and/or silver data. The
results for dyna-BERTje-Silver correspond to training iteration #3. Best results are in
bold.

Among all systems using silver data, the most competitive are BERTje-Silver-3k and BERTje-Sil
ver-6k. Unfortunately, their results are different from what expected. The working hypothesis was
based on a positive effect of the silver data material when joined to the gold data material, more or
less in line with the effects seen with mBERT-PSP+. The contrary is actually the case. The best macro
F1 is obtained by BERTje-Silver-3k, where the silver data are roughly half of the gold material.
Using an amount of silver data which is almost the size of the gold training is actually detrimental.
The macro F1 for BERTje-Silver-6k is lower by 0.007 points when compared to BERTje-Silver-3k.

5. Discussion

The picture that emerges from the experiments we have presented so far is actually more complex
than it can appear at first sight. To facilitate the summary of our findings, we report in Table 13 the
best results of all the models. In this overview table, BERTje-Gold serves as reference of a potential
upper bound limit on OP-NL.

One of the substantial conclusions we can draw from the overview of the results is that silver data,
although limited, do have a positive contribution for developing systems for language phenomena for
which (eventually) no gold data is available. This is in line with previous findings (Socha 2020). The
positive impact of silver material is amplified if directly used within a monolingual model rather in a
multilingual one. This finding provides further evidence of the superiority of monolingual language
models over multilingual ones.

Dynamic self-training appears to be a viable strategy to improve system performance. Besides
observing the same trend with respect to the advantages of using a monolingual model with respect
to a multilingual one, a matter that needs further investigation is the optimal amount of silver data
to be used. On the basis of our experiments, there is an consistent trend that using an amount of
silver messages in the range between 2,500 and 3,000 instances returns optimal results.

On the other hand, mixing silver data with gold data is detrimental. The results of BERTje-Silver-3k
and BERTje-Silver-6k are pretty clear in this sense. Nevertheless, a point of reflection that we
want to stress concerns the quality of the material produced by mBERT-PSP. The manual correction
we conducted to create OP-NL indicates that a third of the predictions are incorrect. It could be
the case that different results for the inclusion of silver data with gold data could be observed, if
systems with better performances were used.

Finally, zero-shot transfer learning qualifies as a very useful method to boost the development of
new gold data material. We have estimated that the creation of OP-NL took at least one third less
of the time that it would have required, were we to annotate all data from scratch.
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Training
data Model Class Precision Recall Macro F1

Si
lv

er

mBERT-PSP
NOT 0.726 0.773 0.629OFF 0.543 0.480

dyna-mBERT-PSP
NOT 0.725 0.806 0.634OFF 0.568 0.454

mBERT-PSP+
NOT 0.725 0.784 0.631OFF 0.551 0.471

BERTje-Silver
NOT 0.736 0.775 0.643OFF 0.558 0.506

dyna-BERTje-Silver
NOT 0.749 0.809 0.667OFF 0.603 0.517

Si
lv

er
&

G
ol

d BERTje-Silver-3k
NOT 0.768 0.813 0.691OFF 0.628 0.562

BERTje-Silver-6k
NOT 0.761 0.816 0.684OFF 0.624 0.543

G
ol

d BERTje-Gold
NOT 0.804 0.828 0.737OFF 0.677 0.641

Table 13: Summary of results of all models on the OP-NL benchmark. The results for
dyna-mBERT-PSP correspond to training iteration #4. The results for mBERT-PSP+ cor-
respond to training iteration #7. The results for dyna-BERTje-Silver correspond to
training iteration #3.

6. Conclusion and Future Work

This work presents a thorough investigation on the use of silver data in different transfer learning
settings, ranging from pure zero-shot cases to extending manually annotated data for training. In
addition to this, we present and make publicly available a new benchmark, OP-NL. OP-NL is
composed by 1,500 messages from Twitter annotated for offensive language and containing at least
one mention of a Dutch politician.

More in details, we have used a multilingual but domain specific dataset, PSP, to train a mul-
tilingual language model (mBERT) to generate silver data. Different strategies on how to use the
generated data have been implemented, including direct re-use of the silver data as is and dynamic
self-training. We have further compared the impact of silver data when using a multilingual language
model and a monolingual one. The results we have obtained clearly indicates that silver data have
a more positive impact in system performance when used to fine-tune a monolingual model rather
than when applied to a multilingual one. In addition to this, a large amount of silver data used to
increase the size of training material does not always result in better performances. This is con-
firmed by the results of models developed using the dynamic self-training approach. In both cases,
it appears that an optimal amount of new training material is around 3,000 instances, whereas using
larger quantity of data degrades the performances. The quantity of training material used in each
prediction-training-prediction cycle has also an impact on the number of iteration needed to obtain
optimal results. Currently, our results are based on empirical observations, but further investigation
is needed to validate these findings and potentially be able to predict them on the basis of the task
and the quality of the silver data. Dynamic self-training has also an advantage over the addition of
silver data in successive steps, as indicated by the results for mBERT-PSP+ in Table 11.

A clear indication of the negative effects of mixing silver and gold data comes from the exper-
iments with BERTje-Silver-3k and BERTje-Silver-6k. In this case, regardless of the size of the
silver data, the impact is detrimental.
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On the other hand, zero-shot transfer learning has a beneficial effect in speeding the annotation
process for developing new language specific dataset/corpora. As a result of the application of
zero-shot transfer, we were able to create a new benchmark for offensive language Dutch, OP-NL.
OP-NL will provide an additional benchmark to evaluate systems for offensive language in Dutch
by maintaining the same medium of the training data (i.e., Twitter), but varying topics and time
period. The resulting performances on OP-NL could be used to better spot weaknesses of systems
in terms of robustness and portability. The OP-NL test set will be released as part of DALC.

Future directions will investigate the creation of high quality silver data. This can help both as
a strategy to boost the development of benchmarks for language phenomena not yet available in a
target language, and to develop robust baseline models. A direction to explore could be the use of
multilingual language models fine-tuned with larger and good quality datasets that present detailed
and specific definitions of the target language phenomenon. For the specific case of offensive language,
a promising starting point are the corpora released for the SemEval 2020 Task 12: SemEval-2020
Task 12: Multilingual Offensive Language Identification in Social Media (Zampieri et al. 2020).
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Appendix A.

Preprocessing All experiments have been conducted with common pre-processing steps, namely:

• lowercasing of all words

• all users’ mentions have been substituted with a placeholder (@USER);

• all URLs have been substituted with a with a placeholder ([URL]);

• all ordinal numbers have been replaced with a placeholder ([NUM]);

• emojis have been removed;

• hashtag symbol has been removed from hasthtags (e.g. #kadiricinadalet → kadiricinadalet);

• extra blank spaces have been replaced with a single space;

• extra blank new lines have been removed.
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Appendix B.

dyna-BERTje-Silver
Training
iterations Class Prec. Rec. Macro F1

0 NOT 0.736 0.775 0.643OFF 0.558 0.506

1 NOT 0.731 0.808 0.643OFF 0.578 0.469

2 NOT 0.741 0.817 0.659OFF 0.602 0.491

3 NOT 0.749 0.809 0.667OFF 0.603 0.517

4 NOT 0.753 0.789 0.666OFF 0.589 0.538

5 NOT 0.748 0.794 0.661OFF 0.587 0.523

6 NOT 0.740 0.787 0.650OFF 0.572 0.506

7 NOT 0.757 0.769 0.665OFF 0.576 0.560

8 NOT 0.758 0.743 0.658OFF 0.557 0.577

9 NOT 0.751 0.776 0.660OFF 0.575 0.541

10 NOT 0.743 0.774 0.650OFF 0.565 0.523

Table 14: Results for the dyna-mBERT-PSP and mBERT-PSP+ over the full 10 iterations on OP-NL.
Macro-average F1 is used to identify the best performing models. Precision and Recall
per class are reported as well. Best results for each model are marked in bold.
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