
Computational Linguistics in the Netherlands Journal 12 (2022) 269-286 Submitted 12/2022; Published 12/2022

Comparing Neural Meaning-to-Text Approaches for Dutch

Chunliu Wang∗ chunliu.wang@rug.nl
Johan Bos∗ johan.bos@rug.nl

∗Center for Language and Cognition, University of Groningen, Netherlands

Abstract

The neural turn in computational linguistics has made it relatively easy to build systems
for natural language generation, as long as suitable annotated corpora are available. But can
such systems deliver the goods? Using Dutch data of the Parallel Meaning Bank, a corpus of
(mostly short) texts annotated with language-neutral meaning representations, we investigate what
challenges arise and what choices can be made when implementing sequence-to-sequence or graph-
to-sequence transformer models for generating Dutch texts from formal meaning representations.
We compare the performance of linearized input graphs with graphs encoded in various formats
and find that stacking encoders obtain the best results for the standard metrics used in natural
language generation. A key challenge is dealing with unknown tokens that occur in the input
meaning representation. We introduce a new method based on WordNet similarity to deal with
out-of-vocab concepts.

1. Introduction

Meaning-to-Text generation is an active research task in the Natural Language Generation commu-
nity, in which the goal is to generate textual descriptions from structured data, such as Abstract
Meaning Representation, AMR (Banarescu et al. 2013), Discourse Representation Structures, DRS
(Wang et al. 2021), and minimal recursion semantics, MRS (Copestake et al. 1997). Due to the
limitation of available annotated corpora, previous work usually focuses on English. Instead, we
investigate meaning-to-text generation for Dutch using a recently made available corpus that pairs
formal meaning representations with short Dutch sentences. In this paper, we use Discourse Repre-
sentation Graphs (DRG) as our research meaning representation data, which is a notational variant
of DRS (Kamp and Reyle 1993) and can be represented as simple directed acyclic graphs or in
a linear variable-free notation (Bos 2021). Figure 1 visualizes the task of generating Dutch from
meaning representations.

person.n.01

order.v.02

hamburger.n.01
time.n.08

speaker now

≺

Time
ThemeAgent

quantity.n.01

Quantity

2

=

Dutch: Ik heb twee hamburgers besteld.
Translation: I ordered two hamburgers.

person.n.01 EQU speaker
quantity.n.01 EQU 2
hamburger.n.01 Quantity -1
order.v.02 Agent -3 Theme -1 Time +1
time.n.08 TPR now

DRG-to-Text

DRG-to-Text

graph vs. linear

=

Figure 1: Generating Dutch from formal meaning representations.

©2022 Chunliu Wang, Johan Bos.

We focus on neural network approaches for generating text. A key issue in neural Meaning-to-
Text generation is how to encode the input data (the meaning representation, see Figure 1). The
current focus is on two typical approaches: sequential encoders and graph encoders. Sequential en-
coders are primarily used for data represented in linearized format (Konstas et al. 2017), and encoders
are usually based on the Long-short Term model, LSTM (Hochreiter and Schmidhuber 1997) or a
Transformer model (Vaswani et al. 2017). Graph encoders are usually applied to graph-structured
data, aiming at producing sentences that preserve both the meaning and structured information of
the input graphs because linearized data may not always capture the structure inherent in meaning
representations. In addition, there are also hybrid approaches of adding sequential information to
graph encoders, such as using stacking encoders (Damonte and Cohen 2019) or adding sequential
graphs to original graphs data (Guo et al. 2019). However, few works explicitly compare these
methods, especially for non-English meaning-to-text generation tasks. In this paper, we aim to
take Dutch as the target language and compare various input representation possibilities for neural
network approaches. This comparison is facilitated by the data resource that we use, which offers
meaning representations both in linear and in graph format (Section 3).

While recently a substantial amount of meaning-to-text research is carried out on AMR (Konstas
et al. 2017, Damonte and Cohen 2019, Guo et al. 2019, Ribeiro et al. 2019), we motivate our choice
of DRG here. Firstly, DRG is a more expressive formalism than AMR, as it models more seman-
tic phenomena (negation, presupposition) and can handle document-level representations by using
explicit discourse relations. Secondly, DRG is language neutral (even though an English WordNet
is used to represent concepts), and the annotated DRG corpus is available for multiple languages,
while AMR is slightly biased towards English. Thirdly, although not perfect, the alignment between
text and meaning in the linearized DRGs is more smoothly than in AMR. Imperfect alignments can
make it difficult for the linear recurrent neural networks to induce the original connections between
words and nodes in the graph (Song et al. 2018). And, finally, there is an annotated corpus available
that pairs Dutch sentences with DRGs (Abzianidze et al. 2017). To the best of our knowledge,
no such corpus exists for AMR. With this as background, we aim to answer the following research
questions:

1. Which type of encoder in sequential and graph encoders achieves the best performance in
DRG-to-text generation for Dutch?

2. Is it useful to add sequential information to graph2Seq models and in which way is this best
done?

3. What are the major challenges in DRG-to-text generation for Dutch?

Before we introduce the various methods for generating sentences from meaning representations,
we first have a closer look at the semantic formalism of our choice: Discourse Representation Graphs.

2. Discourse Representation Graphs

DRG is a variant of DRS (Kamp and Reyle 1993) that allows us to represent meaning in two different
ways: as a sequential notation, or as a graph. Both representations are semantically equivalent.
But the sequence notation, which is a linearisation of the graph, contains more information, since
the order of the concepts reflects the order in which they are introduced in the corresponding
sentences. This order information is normally not present in the graph notation. There are five
types of semantic information that can be found: concepts, roles, constants, comparison operators
and discourse relations. In more detail, they are defined as:

1. The concepts are represented by WordNet synsets (Christiane 1998) (for nouns, verbs, adjec-
tives and adverbs), indicating the lemma, part-of-speech and sense number (ball.n.04, kill.v.01,
old.a.02, ...);

270

2. The roles are represented by the thematic relations proposed in VerbNet (Kipper et al. 2008)
(Agent, Theme, Time, ...), which are used to mark relations between concepts;

3. The constants are used to represent discourse deictics (speaker, hearer, now), unknown infor-
mation (?), names, and quantities;

4. Comparison operators are used to relate and compare concepts or constants, such as EQU (=,
equality), APX (∼, approximately), and TPR (≺, temporal precedence);

5. Discourse relations are used to indicate discourse relations between different scopes of a DRG,
such as NEGATION, CONTINUATION, ELABORATION and CONTRAST.

The Parallel Meaning Bank, PMB (Abzianidze et al. 2017), provides a large corpus of sentences
annotated with DRS for several languages including Dutch, as shown in Figure 2. The box format
used in Discourse Representation Theory (Kamp and Reyle 1993) is perhaps intuitive and easy to
read but not convenient for modeling with deep learning methods. As a result, DRS is often pre-
processed in a format such as clauses (van Noord et al. 2018, Wang et al. 2021), graphs (Fancellu
et al. 2019) or trees (Liu et al. 2021) that can be modeled by neural network models.

wolf.n.01

kill.v.01

sheep.n.01
time.n.08

Box2

Time
PatientAgent

sheep.n.01	 Quantity 2
NEGATION -1

time.n.08 TPR now
kill.v.01						Patient -2 Time -1 Agent +1
wolf.n.01

(b) DRG

now

Box1

¬

(c) Graphical DRG

Quantity

x

sheep.n.01(x) Quantity (x, 2)

¬

(a) Box-format DRS

e t y

time.n.08(t) t ≺ now
kill.v.01(e) Time(e, t) Patient(e, x) Agent(e, y)
wolf.n.01(y)

2
≺

Figure 2: (a) The box-format DRS for the Dutch sentence: Twee schapen werden niet gedood door
de wolf. (Translation: Two sheep were not killed by the wolf.), (b) the corresponding
sequential notation DRS and (c) the corresponding visualized graphical DRG.

These conversion procedures of graph format and tree format often require complicated and cum-
bersome rules, and the obtained structure is also difficult to understand. On the other hand, DRG
(see Figure 2b), in particular the sequential notation, enables a straightforward way to manually
encode a DRS as a sequence of elements without resorting to explicit variable names and removing
several notational redundancies. It is simpler and easier to understand than clause format and can
be converted to graph structure directly, as shown in Figure 2c). The role of variables is taken over
by relative positive and negative indices, where negative indices refer to concepts introduced before
in the discourse, and positive indices refer to concepts mentioned after (Bos 2021). For instance,
”Patient -2” in Figure 2b connects the killing event to the concept introduced two positions before
in the sequence, i.e., sheep.n.01.

VerbNet roles connect the relationship between concepts and are regarded as edge labels in the
DRG, while concepts form the nodes. The comparison operators are also represented as edge labels
in the graph, while the constants such as named entities are terminating nodes. All the roles and

271

comparison operators following the concepts are treated as outgoing edges of that concept. There
are three types of nodes: entities, constants, and contexts (i.e., DRSs). The contexts are indexed
(Box1, Box2, and so on, in order to distinguish them from each other in the graph structures. Note
that contexts are implicit in the sequence notation (Bos 2021).

3. Methods

In this section we show how we represent DRG data for the different types of encoders. We use
two types of data representations and apply them to the corresponding baseline encoders. We also
summarize three hybrid approaches that combine sequential information in linearized data with
structured information in graph data. Furthermore, we introduce three state-of-the-art graph en-
coders for our comparative experiments: Gated Graph Neural Networks (GGNN), Graph Attention
Networks (GAT), and Graph Isomorphic Networks (GIN). Finally, we present our methods for deal-
ing with the out-of-vocabulary (OOV) for DRG data.

3.1 Input Representations

Linearized DRG This type of input representation is the linearized sequential notation of DRS
data provided in release 4.0.0 of the Parallel Meaning Bank (PMB) (Abzianidze et al. 2017) We
remove the alignment between meaning and text in the original PMB files (Figure 3a) and replace
all newlines with spaces to ensure that the meaning representation is a sequence on one line. We also
remove quotation marks contained in named entities to reduce the sparsity of the data (Figure 3b).
In sum, this is essentially a type of input representation that requires hardly any pre-processing.

Graph-structured DRG This type of input representation requires substantial pre-processing.
Based on Section 2, the sequential notation DRS can be transformed into a directed labeled graph.
A directed acyclic graph can be represented as G = ⟨V, E⟩, where V is the set of graph nodes and
E corresponds to all graph edges. Each edge e ∈ E is a triple (vi, l, vj), showing labelled relation
between two connected nodes vi and vj , where vi is the parent node, l is the edge label and vj is
the child node.

Following previous work (Beck et al. 2018), a directed acyclic graph can be converted into the
directed unlabeled Levi graph used for graph encoders, where each labeled edge e = (vi, l, vj) is
transformed into two unlabeled edges e1 = (vi, l) and e2 = (l, vj). Figure 3c illustrates this idea.
For instance, the single edge between be.v.08 and time.n.08 with label Time is replaced by two new
edges: an unlabeled edge between be.v.08 and Time and another one between Time and time.n.08,
where Time become a new node.

This approach is also convenient for representing compound named entities, where the direction
of edges corresponds to the order of the tokens comprising the name, without using additional edge
labels. For instance, the labeled edge e = (male.n.01,Name, ”Stephen Hawking”) is converted to three
unlabeled edges e1 = (male.n.01,Name), e2 = (Name, Stephen), and e3 = (Stephen,Hawking), where
Name and ”Stephen Hawking” become three new nodes in an unlabeled graph.

The final step of the process outlined is to produce the graph in the form of an adjacency
matrix (Beck et al. 2018). Figure 3d illustrates a simple directed unlabeled graph with self-loops.
In this matrix, a 1 or 0 is in position according to whether graph vertices are adjacent or not.

3.2 Baselines Encoders

Sequential Encoders We use bidirectional LSTM encoders as our baseline sequential encoders,
where the sequential linearization is the input to a bidirectional LSTM network (Konstas et al. 2017),
which is widely used in various NLP tasks such as machine translation. They learn the input sequence
in two directions and then concatenate the states for each time step:

272

(d) Graph-structured DRG

Box

male.n.02

Name

Theme

now

B
ox

m
ale.n.02

N
am
e

Them
e

now

Stephen

be.v.08

Hawking

R
ole

EQ
U

C
o-Them

e

Role

EQU

Co-Theme

time.n.08

person.n.01

Stephen

H
aw
king

be.v.08

Tim
e

person.n.01

tim
e.n.08

1 1 0 0 1 0 0 0 0 1 0 0 1 0 1

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

male.n.02 Name Stephen Hawking be.v.08 Theme -1 Time +1 Co-
Theme +2 time.n.08 EQU now person.n.01 Role +1 physicist.n.01

(b) Linearized DRG

(a) DRG aligned with text

male.n.02 Name “Stephen Hawking”
be.v.08 Theme -1 Time +1 Co-Theme +2
time.n.08 EQU now
person.n.01 Role +1
physicist.n.01

male.n.02

be.v.08

time.n.08

Box

=
Role

Time
Co-ThemeTheme

(c) Graphical DRG

now

% Stephen Hawking [0-15]
% is een [16-22]
%
% natuurkundige. [23-37]
%

physicist.n.01

Name

“Stephen Hawking”

physicist.n.01

Time

physicist.n.01

person.n.01

Figure 3: (a) An example of sequential notation DRS data for the sentence of Stephen Hawking is een
natuurkundige. (Translation: Stephen Hawking is a physicist.) (b) Linearized DRG for
sequential encoders neural models. (c) Graphical DRG for the sentence of Stephen Hawking
is een natuurkundige. (d) Input representation with graph-structured information for
graph encoders.

←−
hj = LSTM(

←−−
hj+1, xj) (1)

−→
hj = LSTM(

−−→
hj−1, xj) (2)

where xj is the input vector at time step j, and
←−
hj and

−→
hj are hidden states generated based on xj

and the previous hidden states
←−−
hj+1 and

−−→
hj−1.

Graph Encoders Previous studies have pointed out that sequence-to-sequence (seq2seq) mod-
els lack explicit modeling of syntax or any language hierarchy structure, while graph-to-sequence
(graph2seq) models have been proposed to incorporate structured information in neural graph en-
coders (Song et al. 2018). Specifically, we rely on Graph Convolutional Networks (GCNs) as our
baseline graph encoders, which is a recent class of multilayer neural networks operating on graphs
(Thomas and Max 2017). Each node v ∈ V with a feature vector xi ∈ Rd, and the GCN sums over
the embeddings of the immediate neighbor of each node following:

h
(l+1)
i = ReLU(

∑
j∈N(i)

W
(l)
dir(j,i)h

(l)
j + b

(l)
dir(j,i)) (3)

where W
(l)
dir(j,i) represents the weight matrix of the lth layer and b

(l)
dir(j,i) represents the bias vector

of the lth layer, which are direction-specific parameters, where dir(j, i) ∈ {default, reverse, self}.
default, reverse, and self refer to the original edges, the reversed edges to the original edges, and the
self-loop edges (Marcheggiani and Titov 2017). Further more, N(i) is the set of immediate neighbors
of xi, ReLU is the activation function, and hj is the embedding representation of node xj ∈ V at
layer l.

273

dog.n.01

growl.v.01

person.n.01

time.n.08

Box

Agent

Time

EQU

TPR

speaker

now

Recipient

Figure 4: The Levi graph of DRG with sequential connections between concepts (gray dashed lines).
The full graph also contains reverse and self edges, which are omitted in the figure.

3.3 Hybrid Encoders

In order to better integrate the advantages of the two types of baseline encoders, we also experiment
with hybrid approaches where we combine graph methods with sequence methods.

Graph Encoders with Sequential Graph The input of graph-structured data is initially a
surface form containing sequential information, which is lost when it is modeled using graph encoders,
especially for data like DRG whose concepts are aligned with words in the text. Inspired by the
work of syntax-based neural machine translation (Beck et al. 2018), we add a sequential graph to
the original graph (GCN+seq), which uses additional sequential edges connecting concepts in DRG,
as shown in Figure 4. That means the node embeddings in a graph are computed by Equation 3,
where dir(j, i) ∈ {default, reverse, self, sequence} instead of dir(j, i) ∈ {default, reverse, self}.
On this basis, the sequential information in the original format data can be modeled.

Stacking Graph Encoders with Sequential Encoders Another approach combining graph-
structured information with sequential information is to stack graph encoders with sequential en-
coders. In this paper, we apply stacking to LSTM encoders and GCN encoders. This method
was shown to be effective for syntax-aware neural machine translation tasks (Bastings et al. 2017),
and allows us to easily test the contributions of stacking components. There are two ways to im-
plement stacking encoders (Damonte and Cohen 2019): using graph encoders on top of sequential
encoders (GCN+LSTM), where the graph encoders are applied to create refined input embeddings
and then passed through LSTM, and its reverse (LSTM+GCN), using sequential encoders on top of
graph-structured encoders.

3.4 Other Typical Graph Encoders

We apply three current state-of-the-art graph encoders to DRG data as our comparative experiments.
Below we give a brief summary of each of these approaches.

Gated Graph Neural Networks GGNNs use a Gated Recurrent Unit (GRU) to facilitate infor-
mation propagation between local layers, which was proposed for the reason that the GCN model has
difficulty learning deep layers of node information. GGNN can be seen as a multi-layer GCN where
layer-wise parameters are tied and gating mechanisms are added. With this, the model can propa-

274

gate node information between long-distance nodes in the graph (Yujia et al. 2016). In particular,
the lth layer of a GGNN is calculated as:

h
(l+1)
i = GRU(h

(l)
i ,

∑
j∈Ni

W (l)h
(l)
j) (4)

where W (l) represents the weight matrix of the l-th layer which is a direction-specific parameter. ρ
is the activation function, and we use ReLU in the experiments. hj is the embedding representation
of node j ∈ V at layer l, and GRU is a gated recurrent unit, a combination function.

Graph Attention Networks Some researchers consider it is unreasonable to assign equal im-
portance to all adjacent nodes of a node and proposed GAT, which updates each node represen-
tation by incorporating the attention mechanism to calculate the importance of adjacent informa-
tion (Veličković et al. 2018).

h
(l+1)
i = ρ(

∑
j∈Ni

α
(l)
ji W

(l)h
(l)
j) (5)

where W
(l)
dir(j,i) represents the direction-specific weight matrix, and α

(l)
ji is the normalized attention

coefficient at lth layer computed by the attention mechanism as follows:

αl
ji = softmax(σ(a

T

[W (l)h
(l)
i ||W

(l)h
(l)
j])) (6)

where σ is a activation function, || is the concatenation function and α is a model parameter for
computing attention function.

Graph Isomorphic Networks Due to the limited understanding of graph representation proper-
ties by the above graph models, GIN was proposed to analyze the expressive ability of graph neural
networks to capture different graph structures and proved to be as powerful as the Weisfeiler-Lehman
(WL) graph isomorphism test (Xu et al. 2019). GIN updates node representations as:

h
(l+1)
i = MLP(l+1)(h

(l)
i +

∑
j∈Ni

h
(l)
j) (7)

where MLP is a multi-layer perceptron. Different from the above graph networks, GIN simply ag-
gregates the node along with its neighbors without a combination aggregated neighborhood feature.

3.5 Dealing with Out-of-Vocabulary Tokens

Models are typically trained with a closed output vocabulary derived from the training data, and
can never give non-zero probability to a specific token not seen during training (Pappas et al. 2020).
The tokens that are not in the vocabulary are unknown tokens, and the ubiquity of unknowns
inevitably leads to data sparsity and limits the learning capacity of models. So we need appropriate
strategies to deal with unknowns. In the case of Discourse Representation Graphs (see Section 2),
the unknowns could be concepts, roles, constants, comparison operators, and discourse relations.
Because of the relatively small (and finite) inventories of roles, comparison operators and discourse
relations, these three semantic categories never occur as unknowns as they are all part of the DRG
training data, so we can safely ignore them. But this is not the case for concepts and constants (e.g.,
numbers, names), of which there is a relative large number of rare instances occurring during test
time (more than 20% of the concepts and about 25% of the constants are not seen during training).
We consider several strategies for dealing with Out-of-Vocabulary (OOV) issues for constants and
concepts.

275

OOV Constants Regarding meaning-to-text generation tasks, the strategies for alleviating the
data sparsity can by and large be divided into (a) non-word-level tokenization (van Noord et al. 2018,
Wang et al. 2021), (b) anonymization (Marcheggiani and Titov 2017, Damonte and Cohen 2019),
and (c) the copy mechanisms (Song et al. 2018, Ribeiro et al. 2019). First we evaluate whether these
strategies can be used in our comparative experiments.

Non-word-level tokenization is an “open up” vocabulary approach that models sequences of
bytes, characters, or subwords instead of conventional word tokens. This technique is often used
in seq2seq models but rarely in graph2seq models because it makes the graphs considerably larger.
Hence we discard this option here.

Anonymization is a general method that works by replacing named entities and numerical
values with specific tokens with type information (e.g. person, location, date) (Konstas et al. 2017).
If two entities of the same type in a given input will be given a numerical suffix, e.g. PERSON 0 and
PERSON 1. Anonymization can alleviate data sparsity well, especially for data sets with a large
number of named entities. For data containing compound named entities, anonymized data can be
well applied to graph models. However, this approach typically requires a large number of manual
rules for covering all types of open-class tokens and is not easily adaptable to new domains (Song
et al. 2018), so we ignore this method in experiments.

The copy mechanism works on top of an attention-based RNN decoder by integrating the
attention distribution into the final vocabulary distribution (Gu et al. 2016), which favors generating
words such as dates, numbers, and named entities that appear in the graphical or linearized input.
Therefore, in the experiments below, we adopt the copy mechanism for both sequential encoders
and graph encoders to deal with unknown constants.

OOV Concepts Unlike the constants above, the mapping between concepts and words in the
corresponding text is not a simple copy of the surface text. Although the copy mechanism always
provides state-of-the-art adaptation performance for dealing with constants, it cannot solve the
problem of rare occurrences of concepts. Concepts in DRG are represented by WordNet synsets as
explained in Section 2, and WordNet represents nouns, verbs, adjectives and adverbs in the form
of a network through connections between synonyms (synsets) (Christiane 1998, Agirre et al. 2009,
Orkphol and Yang 2019). The interconnections denote conceptual-semantic and lexical relations,
including hyponymy, hypernymy, synonymy, antonymy, and so on. Our basic idea is to replace
unknown concepts in DRG by utilizing the interlink between synsets to help models generate natural
and coherent text.

Table 1: The NLTK interfaces used in replacement process for different POS concepts

Lexical Relation Nouns Verbs Adj. Adv.

Synonym ✓ ✓ ✓ ✓
Hypernym ✓ ✓ ✗ ✗
Hyponym ✓ ✓ ✗ ✗

Entailment ✗ ✓ ✗ ✗
Verb group ✗ ✓ ✗ ✗

Similar to ✗ ✗ ✓ ✗

More specifically, we use NLTK1 toolkit to implement the above idea, which provides easy-to-use
interfaces to access WordNet version 3.0. When we test the model, we first automatically check the
unknown concepts in the test set, and then employ the NLTK interface to obtain concept replacement
candidates for the OOV concepts. The acquisition of candidates is done via synonyms, hypernyms,
hyponyms and similar-to concepts of the OOV concepts depending on the different parts of speech
(POS). The specific NLTK interfaces shown for each lexical relation are shown in Table 1. We use the

1. NLTK 3.7 release: http://www.nltk.org/.

276

above concepts as replacement concepts candidates, and find a concept in training vocabulary with
the most similar meaning to replace the OOV concepts, where the similarity between two concepts
can be obtained by measuring the path between two synsets in WordNet. For example, grill.v.01 is an
OOV concept in the DRG test set and its part of speech is a verb. Then, we search for its synonyms,
hypernyms, hyponyms and verb groups according to Table 1 and get the candidates {barbeque.v.01,
change.v.02} that are in the vocabulary of the training set. The hyponym barbeque.v.01 gets the
best similarity and is used to replace grill.v.01. Figure 5 summarises the process of handling OOV
concepts.

OOV
Concept

WordNet

Find Alternative Concepts

Training Set
Vocabulary

ü Synonyms
ü Hypernyms
ü Hyponyms
ü

OOV Concept
Candidates

Shortest Path Synset
in WordNet

Return
Candidate Concept

Figure 5: The steps of handling OOV concepts (WordNet synsets) in meaning representations.

4. Experiments and Results

All the models we used were implemented based on OpenNMT-py (Klein et al. 2017) and Pytorch
Geometric (Matthias and E. 2019). We adopt the standard fully batched attention-based LSTM
decoder (Dzmitry et al. 2015), where the attention memory is the concatenation of the attention
vectors among all input words.2

4.1 Experimental Setup

Data We use DRG data for Dutch from release 4.0.0 of Parallel Meaning Bank (PMB) (Abzianidze
et al. 2017), which contains 1,467 gold (fully manually verified) instances, 1,440 silver (partially
corrected machine-generated) instances, and 28,265 bronze (uncorrected machine-generated) data.
Each instance contains a DRG and corresponding Dutch sentence. There are 437 development
instances and 491 test instances in the gold data. We use the remaining gold, silver and bronze
data as training data. The Moses (Koehn et al. 2007) tokenizer is used to segment the reference
sentences, i.e., the text corresponding to the DRG data.

Hyperparameters We construct vocabularies from all words in the training data. For the hy-
perparameters, we use the SGD optimizer with the initial learning rate set to 1 and decay 0.8. In
addition, we set the dropout to 0.5 at the decoder layer to avoid overfitting. We set ReLU activa-
tions, and highway layers for graph models. For the LSTM model, we set a single layer, which is
based on the performance of the development set. For the layer-wise graph models, we set one layer
of the encoder, the number of graph layers are chosen from {2, 3, 4}, the encoder hidden dimensions
are chosen from {300, 512, 750}, and the batch size are chosen from {32, 64, 128}. We show the
performance of graph models training on two graph layers, 32 batch size and 750 hidden dimensions,
which achieves the best performance on the GCN model.

Evaluation We use three standard metrics measuring word overlap between system output and
references. They are BLEU (Papineni et al. 2002), METEOR (Lavie and Agarwal 2007), and

2. Our code and checkpoints are available at https://github.com/wangchunliu/DRG-generation-Dutch.

277

ROUGE-L (Lin 2004). These metrics are standard in machine translation evaluation and common
in NLG. In Section 4.2, we show the results of the models’ performance with the copy mechanisms
for unknown constants but without the replacement strategy for unknown concepts. In Section 4.3,
we give the performance of state-of-the-art model (GCN + LSTM) and compare it with the results
after adding the replacement strategy.

4.2 Basic Results

Sequential Encoders versus Graph Encoders Table 2 summarizes the performance of base-
line models for Dutch DRG data. The results show that the baseline LSTM sequential encoder
outperforms the GCN graph encoders GCN by far, scoring better on all three metrics. It is worth
noting that a hybrid encoder, obtained by adding sequential graphs to the graph encoder (GCN +
seq in Table 2), can significantly improve the performance of the graph encoders training on original
graphs, and achieves competitive performance compared to LSTM alone. In addition, we find that
stacking encoders can improve performance over a single type of encoders, and the order of stacking
encoders affects the results. Using the GCN model to encode first is better than using the LSTM
model to encode first (Table 2).

Table 2: Comparison between graph encoders and sequential encoders.

Type Model BLEU METEOR ROUGE

Sequential Encoder (baseline) LSTM 44.2 35.0 68.8
Graph Encoder (baseline) GCN 37.7 32.0 64.6
Hybrid Encoder 1 GCN + Seq 43.9 34.7 68.6
Hybrid Encoder 2 (stacking) LSTM + GCN 44.8 35.0 69.1
Hybrid Encoder 3 (stacking) GCN + LSTM 45.3 35.6 70.4

Comparison of Different Graph Encoders As Table 2 shows, stacking works best. So it would
be interesting to compare various types of popular graph encoders stacked with LSTM (Section 3.4).
Table 3 shows the performances of three more types of graph encoders (GIN, GAT and GGNN)
stacked with LSTM. Our experiments show that none of these new combinations outperform the
hybrid encoder based on stacking GCN with LSTM.

Table 3: Comparison between different types of stacked hybrid encoders.

Type Model BLEU METEOR ROUGE

Hybrid Encoder 3 (stacking) GCN + LSTM 45.3 35.6 70.4
Hybrid Encoder 4 (gated) GGNN + LSTM 42.0 34.1 68.1
Hybrid Encoder 5 (attention) GAT + LSTM 43.0 35.2 69.5
Hybrid Encoder 6 (isomorphic) GIN + LSTM 42.7 34.6 68.7

4.3 Effects of Replacement Strategy for OOV Concepts

The results shown in Table 2 and Table 3 were obtained without applying our strategies for unknown
concepts. The number of OOV concepts is considerable in our data set. Table 4 show the distri-
bution of concepts (i.e., WordNet synsets) for nouns, verbs, adjectives, and adverbs in the training
vocabularies and test set vocabularies, as well as the number of concepts included in the test set
vocabulary but not in the training vocabulary. The concepts of nouns and verbs occupy most of the
concepts in the corpus, and the OOV concepts are also mainly concentrated on them. Since there

278

are many nouns and verbs in the vocabulary, it is relatively easy to find suitable alternative concepts
for OOV noun concepts and verb concepts in the vocabulary, as shown in Table 4. Correspondingly,
although there are not many OOV concepts for adjectives, it is difficult to find replacement con-
cepts in the vocabulary. Unlike other part-of-speech concepts, adverb concepts are relatively rare in
both WordNet and training vocabulary, and it is difficult to find alternative concepts using lexical
relations.

Table 4: Distribution of OOV concepts and their replacement concepts via lexical relations.

Type Nouns Verbs Adj. Adv. Total

Concept types in training 10,235 4,842 3,149 211 18,437
Concept types in test 333 234 93 9 669
OOV concept types in test 60 69 18 4 151
OOV concept tokens in test 61 74 19 4 158
OOV concept replaced by synonym 2 6 2 1 11
OOV concept replaced by hypernym 51 31 n.a. n.a. 82
OOV concept replaced by hyponym 8 11 n.a. n.a. 19
OOV concept replaced by verb group n.a. 5 n.a. n.a. 2
OOV concept replaced by entailment n.a. 2 n.a. n.a. 5
OOV concept replaced by similar to n.a. n.a. 8 n.a. 8
OOV concept without replacement 0 19 9 3 31

But what is the effect of this replacement strategy for unknown concepts? Using the best-
performing hybrid model, we ran it on the test set after applying our strategy for unknown concepts.
Our results, shown in Table 5, indeed show a slight increase in the automated evaluation metric
results.

Table 5: Effect of WordNet-based replacement strategy of dealing with unknown concepts.

Type Model BLEU METEOR ROUGE

Hybrid Encoder 3 (unaltered) GCN + LSTM 45.3 35.6 70.4
Hybrid Encoder 3 (replacing OOV concepts) GCN + LSTM 45.9 36.0 70.7

In a way, big improvements of results cannot be expected with the current evaluation metrics.
This is because when we use a substitution of a new concept for an unknown concept, the model
generates the text corresponding to that new concept, not the text corresponding to the unknown
concept. Even though two concepts may respond to similar meanings, it does not improve the word-
overlap between generated text and the reference in which the standard metrics BLEU, METEOR
and ROUGE are based. In this case we would gain more insight of the impact of our concept
replacement strategy by looking at the data.

In Table 6, we give several examples of the effects of our replacement strategy. Although our
method cannot improve the scores of automatic evaluation metrics very much, it can greatly improve
the readability of generated text, and produce texts that are close in meaning to the original text
in some cases. However, this method also has certain limitations. For individual rare concepts, it
is also difficult to find a similar concept to replace it. When a hypernym is very far away from the
unknown concept, the generated text may also face losing most of its meaning.

279

Table 6: Effect of the replacement strategy for unknown concepts using the GCN+LSTM model.
Shown is the input DRG with OOV concepts in red and replaced concepts in blue, followed
by the generated texts for the input without (red) and with replacing (blue).

Meaning have.v.01 Time +1 Pivot +2 Theme +3 time.n.08 EQU now person.n.01 EQU hearer shoehorn.n.01 →
device.n.01

Gen. text Heeft u een klantenkaart?
Gen. text Heeft u dat apparaat?
Ref. text Hebt u een schoentrekker?

Meaning company.n.01 Name FermiLab create.v.06 → produce.v.02 Agent -1 Time +1 Result +2 time.n.08 TPR
now software.n.01 Name Linux LTS

Gen. text FermiLab diende Linux LTS.
Gen. text FermiLab produceert Linux LTS.
Ref. text FermiLab ontwikkelde Linux LTS.

Meaning person.n.01 Role +1 extremist.n.01→ person.n.01 kidnap.v.01 Agent -2 Time +1 Theme +2 time.n.08
TPR now person.n.01 Role +1 wife.n.01 Of +1 person.n.01 Role +1 president.n.03

Gen. text De docent stelde de vrouw van de president.
Gen. text Ze wilden de vrouw van de president.
Ref. text Extremisten ontvoerden de vrouw van de president.

Meaning tip.n.01 PartOf +1 spear.n.01 → weapon.n.01 time.n.08 TPR now dip.v.01→ enter.v.01 Theme -3 Time
-1 Destination +2 deadly.a.01 → fatal.a.01 AttributeOf +1 poison.n.01

Gen. text De kern van de brievenbus werd donderdag tot een rustige handelsonderneming.
Gen. text De kern van de uitbraak werden binnen tot de tweezijdige weerstand.
Ref. text De top van de speer was gedrenkt in een dodelijk vergif.

Meaning alarm clock.n.01 wake.v.05 → awaken.v.01 Causer -1 Time +1 Patient +2 time.n.08 ClockTime 07:00 TSU
now person.n.01 EQU speaker

Gen. text De wekker kozen me om zeven uur.
Gen. text De wekker maakt me om zeven uur.
Ref. text De wekker wekt me om zeven uur

Meaning queen.n.02 → leader.n.01 female.n.02 Name Elizabeth Title -1 pass away.v.01 → die.v.01 Patient -1 Time
+1 time.n.08 YearOfCentury 1603 TPR now

Gen. text Zelfs Elizabeth diende in 1603.
Gen. text leider Elizabeth stierf in 1603.
Ref. text Koningin Elizabeth overleed in 1603.

Meaning entity.n.01 time.n.08 EQU now measure.n.02 Quantity 1000000 Unit +1 yen.n.02 worth.a.02 → valu-
able.a.01 Theme -4 Time -3 Value -2

Gen. text Is een miljoen yen doorgebracht?
Gen. text Het is een miljoen yen waard.
Ref. text Dit is een miljoen yen waard.

Meaning person.n.01 EQU speaker have.v.01 Pivot -1 Time +1 Theme +2 time.n.08 EQU now person.n.01 Quantity
2 Role +1 niece.n.01 → relative.n.01

Gen. text Ik heb twee jezüıeten.
Gen. text Ik heb twee familieleden.
Ref. text Ik heb twee nichtjes.

Meaning person.n.01 Name ? be.v.02 Theme -1 Time +1 Co-Theme +2 time.n.08 EQU now person.n.01 Role
+1 leader.n.01 PartOf +2 country.n.02 Name algeria military unit.n.01 → enemy.n.01 Name Gewapende
Islamitische Groep Source -1

Gen. text Wie is de leider van algeria nog een algeria?
Gen. text Wie is de leider van algeria de algeria Gewapende Groep Groep Groep?
Ref. text Wie is de leider van de Algerijnse Gewapende Islamitische Groep?

Meaning NEGATION -1 hedgehog.n.02 → mammal.n.01 NEGATION -1 be.v.01 Theme -1 Co-Theme +2 small.a.01
AttributeOf +1 animal.n.01

Gen. text Een dolfijn is een klein dier.
Gen. text Een zoogdier is een klein dier.
Ref. text De egel is een klein dier.

Meaning male.n.02 Name Tom toss.v.01 → throw.v.01 Agent -1 Time +1 Theme +2 Destination +3 time.n.08 TPR
now key.n.01 female.n.02 Name Mary

Gen. text Tom diende de sleutel aan Mary.
Gen. text Tom gooide de sleutel naar Mary.
Ref. text Tom gooide de sleutels naar Mary.

280

5. Discussion

Most previous studies on data-to-text generation tasks have shown that graph-structured data
trained with graph encoders can achieve performance similar to, or even better than, sequential
encoders. This is often attributed to the loss of structural information after linearization of the
graph (Damonte and Cohen 2019, Ribeiro et al. 2019, Guo et al. 2019). The use of graph neural
networks can indeed preserve the structural information of data well. In addition, in linearized data
based on AMR, the concept nodes after serialization often do not correspond to the surface word
order, and it would be difficult for sequential neural networks to learn these long-range dependen-
cies (Damonte and Cohen 2019). In our experiments (see Table 2), however, we show that sequential
encoders (LSTM) can significantly outperform graph encoders (GCN) without sequential informa-
tion because the serialized DRG data contains the order of concepts aligned with the information
in the corresponding text. This sequential information is lost when treating the input as a graph.
Furthermore, we are also interested in the impact of different data properties on the performance of
the model. Therefore, we conduct additional experiments for more analysis. This section reports on
the effect of the graph size, data size, and use of indices in DRG input on generating Dutch texts.

5.1 Effect of Graph Size

Large DRG graphs are always mapped into long sentences. In theory, graph encoders should be
more favorable for long sentences because there are more long-distance syntactic dependencies in
graph data, which may not be adequately captured by sequential encoders. However, large graphs
may have more complicated structures, and a small amount of large graph data may not help the
models learn more information, but instead brings noise. To figure it out, we merge the test set and
development set, and then divide them into six buckets according to the length of reference tokens,
from 3 to 8 words. Figure 6 shows the GCN model underperforms the LSTM model for any text
length, and they have the same trend for changes in text length, with the best results at length 6.
There is relatively little long text in Dutch in both the training and test sets, and longer data has
the same impact on sequential and graphical models, making performance worse.

Figure 6: BLEU scores with respect to the sentence length on the combined dev and test set. The
x-axis shows the document length in words (top) and the number of documents for that
length (bottom).

281

5.2 Effect of Data Size

We assume that the performance of the models is largely affected by the size and quality of the data,
and theoretically, the graph encoders are susceptible to noise in the graph data. Meanwhile, while
DRG datasets are usually short sentences, silver data and bronze data contain DRG data with part
of long sentences. We believe that such long data makes the size of the graph bigger, which is not
conducive to the learning of the graph encoders. Different from the above experiments, we test this
hypothesis by retraining the models based on different quality data, instead of using the trained
model to test on the test set.

Table 7: Comparison for baseline encoders trained on different size of training data.

Type Model Data BLEU METEOR ROUGE

Graph Encoders GCN
gold+silver 17.0 19.8 43.9
gold+silver+bronze 37.7 32.0 64.6

Sequential Encoders LSTM
gold+silver 12.8 15.0 35.8
gold+silver+bronze 44.2 35.0 68.8

Table 7 shows the graph encoders outperform the sequential encoders when using gold data and
silver data, but with the addition of bronze data, the sequential encoders will far outperform the
graph encoders. It is clear that sequential encoders can benefit more from large datasets than graph
encoders, although it is still difficult to distinguish whether the performance of the graph encoders
is greatly affected by the data noise or the data size.

5.3 Effect of Indices

The linearized DRG has many indices to represent the connection relationship between concepts.
Since the performance of sequential encoders is better than graph encoders, we hypothesize that
sequential encoders can learn the index information. To test this, we delete the index information
in linearized DRG data and then use the LSTM model to train a new model. As shown in Table 8,
the performance is almost unchanged when the training data is without indices.

Table 8: Comparison for LSTM models trained on linearized DRG with and without indices.

DRG Data BLEU METEOR ROUGE

DRGs with indices (standard) 44.2 35.0 68.8
DRGs without indices 43.5 34.7 68.4
DRGs with shuffled concepts 32.8 29.6 59.1

Although the indices themselves do not contain semantic content, they act as pointers to represent
semantic relationships between concepts. So it is surprising that the lack of this information doesn’t
have a significant impact on performance. Perhaps the sequence of concepts and (unconnected)
roles comprises enough information for natural language generation, and a layer of indices hardly
adds new information, at least for short sentences without long-distance dependencies. We argue
that sequential encoders perform better than graph encoders because the linearized DRG contains
sequential information for text. To test this hypothesis, we shuffle the order of concepts in DRG and
use it as a new training corpus. Our results, see Table 8, show that its performance is substantially
lower than that of graph models if they lose sequential information.

282

6. Conclusion and Future Work

In this study, we presented a meaning-to-text generation task for Dutch. We introduced the process
for DRG-to-text generation to investigate the differences between various neural models. We found
that with a limited amount of training data, the graph encoders outperform the sequential encoders
and that as the amount of data increases, the sequential encoders benefit more and outperform
the graph encoders. Hybrid encoders, where sequential information is added to graph encoders,
can significantly improve the performance as standard graph encoders lack sequential information
modeling.

Future work should address the limitation in size of the data set and whether the conclusion we
draw in this work also generalizes to larger datasets, and to datasets with longer texts. It would also
be interesting to investigate how the different architectures behave on certain linguistic phenomena
such as negation, discourse relations, and long-range dependencies.

References

Abzianidze, Lasha, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van Noord, Pierre Lud-
mann, Duc-Duy Nguyen, and Johan Bos (2017), The Parallel Meaning Bank: Towards a multi-
lingual corpus of translations annotated with compositional meaning representations, Proceed-
ings of the 15th Conference of the European Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, Association for Computational Linguistics, Valencia, Spain,
pp. 242–247. https://www.aclweb.org/anthology/E17-2039.

Agirre, Eneko, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor Soroa (2009),
A study on similarity and relatedness using distributional and WordNet-based approaches, Pro-
ceedings of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, Association for Computational Lin-
guistics, Boulder, Colorado, pp. 19–27. https://aclanthology.org/N09-1003.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider (2013), Abstract Meaning Rep-
resentation for sembanking, Proceedings of the 7th Linguistic Annotation Workshop and Inter-
operability with Discourse, Association for Computational Linguistics, Sofia, Bulgaria, pp. 178–
186. https://aclanthology.org/W13-2322.

Bastings, Jasmijn, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an (2017), Graph
convolutional encoders for syntax-aware neural machine translation, Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, Association for Computa-
tional Linguistics, Copenhagen, Denmark, pp. 1957–1967. https://aclanthology.org/D17-1209.

Beck, Daniel, Gholamreza Haffari, and Trevor Cohn (2018), Graph-to-sequence learning using gated
graph neural networks, Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Melbourne, Australia, pp. 273–283. https://aclanthology.org/P18-1026.

Bos, Johan (2021), Variable-free discourse representation structures, Semantics Archive.

Christiane, Fellbaum (1998), Wordnet: An electronic lexical database, The MIT Press, Cambridge,
Ma., USA.

Copestake, Ann A., Dan Flickinger, Carl Pollard, and Ivan A. Sag (1997), Minimal recursion se-
mantics: An introduction, Research on Language and Computation 3, pp. 281–332.

283

Damonte, Marco and Shay B. Cohen (2019), Structural neural encoders for AMR-to-text genera-
tion, Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), Association for Computational Linguistics, Minneapolis, Minnesota, pp. 3649–3658.
https://aclanthology.org/N19-1366.

Dzmitry, Bahdanau, Cho Kyunghyun, and Bengio Yoshua (2015), Neural machine translation by
jointly learning to align and translate, in Yoshua, Bengio and LeCun Yann, editors, 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. http://arxiv.org/abs/1409.0473.

Fancellu, Federico, Sorcha Gilroy, Adam Lopez, and Mirella Lapata (2019), Semantic graph parsing
with recurrent neural network DAG grammars, Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics,
Hong Kong, China, pp. 2769–2778. https://aclanthology.org/D19-1278.

Gu, Jiatao, Zhengdong Lu, Hang Li, and Victor O.K. Li (2016), Incorporating copying mechanism
in sequence-to-sequence learning, Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Association for Computational Lin-
guistics, Berlin, Germany, pp. 1631–1640. https://aclanthology.org/P16-1154.

Guo, Zhijiang, Yan Zhang, Zhiyang Teng, and Wei Lu (2019), Densely connected graph convolutional
networks for graph-to-sequence learning, Transactions of the Association for Computational
Linguistics 7, pp. 297–312, MIT Press, Cambridge, MA. https://aclanthology.org/Q19-1019.

Hochreiter, Sepp and Jürgen Schmidhuber (1997), Long short-term memory, Neural computation 9
(8), pp. 1735–1780, MIT Press.

Kamp, Hans and Uwe Reyle (1993), From Discourse to Logic; An Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and DRT, Kluwer, Dordrecht.

Kipper, Karin, Anna Korhonen, Neville Ryant, and Martha Palmer (2008), A large-scale classifica-
tion of english verbs, Language Resources and Evaluation 42, pp. 21–40.

Klein, Guillaume, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush (2017), Open-
NMT: Open-source toolkit for neural machine translation, Proceedings of ACL 2017, System
Demonstrations, Association for Computational Linguistics, Vancouver, Canada, pp. 67–72.
https://aclanthology.org/P17-4012.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst (2007), Moses: Open source toolkit for
statistical machine translation, Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Ses-
sions, Association for Computational Linguistics, Prague, Czech Republic, pp. 177–180.
https://www.aclweb.org/anthology/P07-2045.

Konstas, Ioannis, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer (2017), Neural
AMR: Sequence-to-sequence models for parsing and generation, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association
for Computational Linguistics, Vancouver, Canada, pp. 146–157. https://aclanthology.org/P17-
1014.

284

Lavie, Alon and Abhaya Agarwal (2007), Meteor: An automatic metric for mt evaluation with high
levels of correlation with human judgments, Proceedings of the Second Workshop on Statistical
Machine Translation, StatMT ’07, Association for Computational Linguistics, USA, p. 228–231.

Lin, Chin-Yew (2004), ROUGE: A package for automatic evaluation of summaries, Text Summa-
rization Branches Out, Association for Computational Linguistics, Barcelona, Spain, pp. 74–81.
https://www.aclweb.org/anthology/W04-1013.

Liu, Jiangming, Shay B. Cohen, and Mirella Lapata (2021), Text generation from discourse rep-
resentation structures, Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Association for
Computational Linguistics, Online, pp. 397–415. https://aclanthology.org/2021.naacl-main.35.

Marcheggiani, Diego and Ivan Titov (2017), Encoding sentences with graph convolutional networks
for semantic role labeling, Proceedings of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, Association for Computational Linguistics, Copenhagen, Denmark,
pp. 1506–1515. https://aclanthology.org/D17-1159.

Matthias, Fey and Lenssen Jan E. (2019), Fast graph representation learning with PyTorch Geo-
metric, ICLR Workshop on Representation Learning on Graphs and Manifolds.

Orkphol, Korawit and Wu Yang (2019), Word sense disambiguation using cosine similarity
collaborates with word2vec and wordnet, Future Internet. https://www.mdpi.com/1999-
5903/11/5/114.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu (2002), BLEU: a method for auto-
matic evaluation of machine translation, Proceedings of the 40th Annual Meeting of the Associ-
ation for Computational Linguistics, Association for Computational Linguistics, Philadelphia,
Pennsylvania, USA, pp. 311–318. https://aclanthology.org/P02-1040.

Pappas, Nikolaos, Phoebe Mulcaire, and Noah A. Smith (2020), Grounded compositional outputs
for adaptive language modeling, Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Association for Computational Linguistics, pp. 1252–
1267. https://www.aclweb.org/anthology/2020.emnlp-main.96.

Ribeiro, Leonardo F. R., Claire Gardent, and Iryna Gurevych (2019), Enhancing AMR-to-text
generation with dual graph representations, Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong
Kong, China, pp. 3183–3194. https://aclanthology.org/D19-1314.

Song, Linfeng, Yue Zhang, Zhiguo Wang, and Daniel Gildea (2018), A graph-to-sequence model for
AMR-to-text generation, Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Melbourne, Australia, pp. 1616–1626. https://aclanthology.org/P18-1150.

Thomas, N. Kipf and Welling Max (2017), Semi-supervised classification with graph con-
volutional networks, 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net.
https://openreview.net/forum?id=SJU4ayYgl.

van Noord, Rik, Lasha Abzianidze, Antonio Toral, and Johan Bos (2018), Exploring neural methods
for parsing discourse representation structures, Transactions of the Association for Computa-
tional Linguistics 6, pp. 619–633. https://www.aclweb.org/anthology/Q18-1043.

285

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 L ukasz Kaiser, and Illia Polosukhin (2017), Attention is all you need, in Guyon, I., U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, Curran Associates, Inc., pp. 5998–6008.
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio (2018), Graph Attention Networks, International Conference on Learning Representa-
tions. accepted as poster. https://openreview.net/forum?id=rJXMpikCZ.

Wang, Chunliu, Noord Rik van, Arianna Bisazza, and Johan Bos (2021), Evaluating text generation
from discourse representation structures, Proceedings of the 1st Workshop on Natural Language
Generation, Evaluation, and Metrics (GEM 2021), Association for Computational Linguistics,
Online, pp. 73–83. https://aclanthology.org/2021.gem-1.8.

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka (2019), How power-
ful are graph neural networks?, International Conference on Learning Representations.
https://openreview.net/forum?id=ryGs6iA5Km.

Yujia, Li, Tarlow Daniel, Brockschmidt Marc, and S. Zemel Richard (2016), Gated graph sequence
neural networks, in Bengio, Yoshua and Yann LeCun, editors, 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings. http://arxiv.org/abs/1511.05493.

286

