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Abstract
Text simplification aims to reduce complexity in vocabulary and syntax, enhancing the readability
and comprehension of text. This paper presents a supervised sentence simplification approach for
Dutch using a pre-trained large language model (T5). Given the absence of a parallel corpus in
Dutch, a synthetic dataset is generated from established parallel corpora. The implementation1

incorporates a sentence-level discrete parametrization mechanism, enabling control over the sim-
plification features. The model’s output can be tailored to different simplification scenarios and
target audiences by incorporating control tokens into the training data. The controlled attributes
include sentence length, word length, paraphrasing, and lexical and syntactic complexity.

This work contributes a dedicated set of control tokens tailored to the Dutch language. It
shows that significant simplification can be achieved using a synthetic dataset with as few as 2000
parallel rows, although optimal performance requires a minimum of 10,000 rows. The fine-tuned
model achieves a 36.85 SARI score on the test set, supporting its effectiveness in the simplification
process.

This research contributes to the field of sentence simplification by discussing the implemen-
tation of a supervised simplification approach for Dutch. The findings highlight the potential of
synthetic datasets and control tokens in achieving effective simplification, despite the lack of a
parallel corpus in the target language.

1. Introduction

Text simplification refers to complexity reduction in vocabulary and sentence structure to make
text more readable and understandable while maintaining its information and meaning. From a
linguistic viewpoint, simplification comprises the lexical part, where complex words are replaced
by simpler versions, and the syntactic aspect, where the sentence structure is adjusted to reduce
complexity. Text simplification refers to simplifying texts on a paragraph level for easier reading
(Alva-Manchego et al. 2020a). Sentence simplification deals with simplification on a sentence level
“where the input of the model is a single source sentence, and the output can be composed of
one sentence or split into multiple” (Martin et al. 2020) to produce a simpler output. Frequently,
the terms text simplification and sentence simplification are used interchangeably (Stajner 2021).
Papers that regard text simplification specifically on phrase or text level are scarce (Glavaš and
Štajner 2013, Laban et al. 2021, Narayan and Gardent 2014), and most work focuses on sentence
simplification (Alva-Manchego et al. 2020a, Martin et al. 2022).

Among the targeted audiences for simplification applications are addressees with cognitive im-
pairments (Carroll et al. 1998, Rello et al. 2013), low reading skills (Aluisio et al. 2008, Watan-
abe et al. 2009), second language learners (Lee and Yeung 2018), or speakers where the target
language is not the mother tongue (Paetzold and Specia 2016b). Likewise, simplification is ap-
plied as a preprocessing step in parsing (Chandrasekar et al. 1996), question generation (Heilman
and Smith 2010), semantic role labeling (Vickrey and Koller 2008), or text augmentation (Sevens

1. Code is released under: https://github.com/tsei902/simplify_dutch and https://huggingface.co/tsei902/

simplify_dutch
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et al. 2018). Often, simplification is understood as a text-editing task, that comprises splitting
(Narayan and Gardent 2014, Siddharthan 2006), deletion, and sentence compression (Févry and
Phang 2018, Filippova and Strube 2008, Ghalandari et al. 2022), as well as paraphrasing (Dehghan
et al. 2022, Maddela et al. 2021, Martin et al. 2022, Qiang et al. 2022, Specia 2010, Wubben
et al. 2012) to modify sentences toward a specific target.

In this paper, we focus on sentence simplification in Dutch. More specifically, this work aims to
clarify the following questions: “Can a synthetically generated dataset be used in the absence of a
Dutch parallel corpus? What is a suitable set of control tokens for Dutch language? To which extent
are these control tokens valuable to steer the generation of simplified sentences?”

To do so, we adapt a sentence-level transfer learning approach based on a text-to-text transformer
model (Raffel et al. 2020) trained in a supervised fashion on Dutch textual data. By adding a control
mechanism (Martin et al. 2020), the model output is adjustable regarding sentence length, word
length, the amount of paraphrasing, and lexical and syntactic complexity. Additionally, we explore
the further adaptation of the generated output at decoding time. Our contributions are the following:
We develop an end-to-end simplification approach with a model trained on the simplification task,
we provide a synthetically generated parallel dataset, and we propose a first set of suitable control
token values for sentence simplification in Dutch.

This work is structured as follows: Section 2 gives an overview of related work in sentence
simplification. Chapter 3 introduces the data used. Chapter 4 introduces methods, model and the
simplification control mechanism. Chapter 5 contains the details on model training, evaluation,
hyperparameter search of training parameters, and control tokens, as well as on the conduction of
experiments. We discuss the results in chapter 6 and conclude in chapter 7.

2. Related Work

Early work on simplification is rule-based (Carroll et al. 1998, Daelemans et al. 2004, Siddharthan
et al. 2004) or enhanced with automatically induced rules (Vandeghinste and Pan 2004). Later
work defines sentence simplification as a monolingual machine translation (MT) task, either on the
phrase-level (Coster and Kauchak 2011, Narayan and Gardent 2014, Wubben et al. 2012) or on the
syntax-level (Zhu et al. 2010). Numerous studies have been conducted on sentence simplification in
various languages, such as Dutch (Bulté et al. 2018, Sevens et al. 2018), Japanese (Kajiwara and
Komachi 2018, Maruyama and Yamamoto 2019), Brazilian Portuguese (Aluisio et al. 2008), Spanish
(Drndarević and Saggion 2012, Martin et al. 2020), or French (Cardon and Grabar 2018, Martin
et al. 2020).

In section 2.1 we describe work on sentence simplification for Dutch. Section 2.2 describes recent
techniques in generic sentence simplification, mainly performed on English. Section 2.3 describes
related work with control tokens.

2.1 Sentence Simplification in Dutch

Research on text simplification in Dutch is scarce. Early approaches in Dutch text simplification were
developed with the goal of syntactic sentence compression for subtitles for hearing-impaired people
(Daelemans et al. 2004, Vandeghinste and Pan 2004). Bulté et al. (2018) developed a knowledge-
based automated lexical simplification tool for Dutch. Their tool consists of several processing
steps such as word sense disambiguation, difficult word estimation, replacement of difficult words
by synonyms, reverse lemmatization, and output annotation. The system of Bulté et al. (2018) is
intended to keep the simplified sentence as close as possible to the original sentence. Their system
successfully replaces complex words like “aanzienlijk” with “groot”, or “deal” with “akoord”. In
the same year, Sevens et al. (2018) proposed a rule-based approach with syntactic parsing and
develop a complete simplification tool for Dutch. Their syntactic simplification module is used as
a pre-processing step in text-to-pictograph transformation. Vandeghinste et al. (2019) created the
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Wablieft corpus, a corpus based on a Belgian easy-to-read newspaper. Vandeghinste and Bulté
(2019) compare the Wablieft easy-to-read newspaper corpus with a standard Dutch newspaper (de
Standaard) and extract the linguistic features that account for readability in simpler text. Their
study shows that syntactic metrics are a better indicator for easy reading than lexical metrics and
the most important feature for sentence simplification is the number of words per sentence.

However, the aforementioned simplification approaches have limitations. Some systems, such
as those by Sevens et al. (2018), rely heavily on rule-based systems for simplification. While rule-
based methods can be effective in certain cases, they often struggle with handling complex linguistic
phenomena or adapting to varied contexts. Automated simplification tools, like the one developed
by Bulté et al. (2018), may not adequately account for individual user preferences or diverse reading
abilities. What constitutes ”simplified” language can vary widely depending on factors such as age,
education level, and cognitive abilities. Critical evaluation and validation of simplification techniques
are crucial to ensuring their utility and reliability in real-world applications. Without the usage of
global simplification metrics, scholarly work is not reproducible and not comparable within and
across languages and simplification approaches.

2.2 Newer Approaches to Sentence Simplification

Nonetheless, English remains the most prevalent language and area of work for sentence simplifi-
cation. In the realm of simplification literature, which primarily focuses on English as the target
language, a distinction is made between pre-neural approaches (Saggion 2017, Stajner 2021), which
leverage extensive parallel corpora of aligned sentences (Martin et al. 2020), and data-driven neural
approaches that emerged after 2015 (Alva-Manchego et al. 2020a, Stajner 2021).

Neural models are primarily based on a sequence-to-sequence architecture. In 2017, Nisioi et al.
(2017) introduced a neural machine translation (NMT) system that used a sequence-to-sequence
architecture for text simplification. Using long short-term memory networks (LSTM), Zhang and
Lapata (2017) trained their model with reinforcement learning to optimize their model toward
grammaticality, simplicity, and adequacy. Zhao et al. (2018) added an external paraphrase database
as a source for real-world simplification rules to guide simplification learning based on a transformer
architecture (Vaswani et al. 2017).

In their multilingual unsupervised sentence simplification (MUSS), Martin et al. (2022) apply
large-scale data mining techniques by searching for simple and complex sentences in CCNet (a snap-
shot of open source web) (Wenzek et al. 2020) to create sentence pairs for supervised training. They
then use these synthetic datasets to fine-tune BART (Lewis et al. 2020) and mBART (Liu et al. 2020)
models and add control tokens from a prior study (Martin et al. 2020). Recent neural approaches are
mostly complete systems that do not emphasize a target population or one simplification technique
(Maddela et al. 2021, Stajner 2021) but have a more technical focus. With some exceptions, most
approaches mentioned above require parallel data, that is, aligned complex and single sentence pairs
to train their models towards learning the sentence simplification task.

2.3 Controllable Sentence Simplification

Controllable sentence simplification differentiates between decoding-based and learning-based ap-
proaches. Decoding-based controllable sentence simplification does not modify the training process
but modifies ”the system during decoding to control a given attribute” (Martin et al. 2020).

In learning-based approaches, on the other hand, model conditioning toward a specific output is
done via training (Martin et al. 2020). In line with prior authors, this work uses a learning-based
approach to control sentence simplification, much in the style of Martin et al. (2020).

Martin et al. (2020) prepend text control tokens to regulate the amount of compression, para-
phrasing, and lexical and syntactic complexity in the target sentence. In this manner, model condi-
tioning toward a specific output is performed via training, and the output generation is additionally
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Train dataset Validation dataset Test dataset
complex simple complex simple complex simple (avg.)

Rows 10,000 10,000 992 992 359 359
Sentences 10,875 10,210 1061 1008 385 463.4
Words 220,806 161,018 22,196 16,305 7292 6116
Characters (w. spaces) 1,412,360 1,008,125 141,954 102,041 46,872 38,119
Avg. sent. length 20.30 15.77 20.92 16.17 18.94 13.20

Table 1: Corpus statistics for all datasets.

controlled during decoding. The authors define the following explicit control tokens: NbChars to
control the compression level, LevSim to control similarity between the source and target sentence,
WordRank to control for word complexity, and DependencyTreeDepthRatio to account for syntactic
complexity.

Similarly, Sheang and Saggion (2021) first pre-train a transformer model on a parallel corpus for
sentence simplification. In a second step, they adopt all control tokens introduced by Martin et al.
(2020) and add a control token Words measuring the words ratio between the source and target
sentence. Finally, Menta and Garcia-Serrano (2022) pre-train a transformer model for sentence sim-
plification in technical domains such as Computer Science and Medicine. With regard to the control
tokens used, they replace the WordRank token with a Language Model Fill-Mask (LMFMR) with
masked token prediction, assuming that word rankings of simple words are lower. As a result, the
lexical complexity is controllable with a Language Model Fill-Mask token that predicts simple words
before their complex counterparts. This work uses a similar approach: we condition the generation
process by pre-training control tokens suitable for Dutch syntax and semantics and manipulate text
generation at decoding time.

3. Data

3.1 Creation of a Synthetic Corpus

Although Dutch is not considered a low-resource language, there is no publicly available paral-
lel corpus in Dutch (Bulté et al. 2018). We turn towards building a synthetic dataset using two
widely used parallel datasets in English, namely WikiLarge (Zhang and Lapata 2017) and ASSET
(Abstractive Sentence Simplification Evaluation and Tuning) (Alva-Manchego et al. 2020b, Martin
et al. 2020) which are automatically translated to Dutch. Translation is often used for creating
synthetic datasets (Cardon and Grabar 2018, Galeev et al. 2021, Sakhovskiy et al. 2021).

As a training and validation set, we use WikiLarge,2 the most extensive parallel simplification
corpus in English (Zhang and Lapata 2017). It consists of 296.402, 2000, and 359 complex-simple
sentence pairs for training, validation, and testing. As a test set, we use a translated version of
ASSET3 (Alva-Manchego et al. 2020b). ASSET contains 2000 validation sentences and 359 test
sentences. In addition, the ASSET dataset contains ten manually edited reference simplifications
per complex source sentence and hence more variations in the rewriting of simplifications. It can be
assumed that the training and test sets are not out-of-domain: The model in this study (t5-base-
dutch) was pre-trained on the mc4 nl cleaned dataset, a crawled dataset from the World Wide Web.
Consequently, the pre-training dataset covers many topics, which is also the case for the training
and test sets, which both originate from Wikipedia. Both training and test sets were translated into
Dutch using Google Neural Machine Translation (GNMT) (Wu et al. 2016).

Table 1 shows the corpus statistics of the final translated datasets. Again, the statistics for the
ten reference sets in the test set are averaged across the documents. Most importantly, the average

2. https://github.com/XingxingZhang/dress
3. https://github.com/facebookresearch
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Train dataset
BLEU ChrF ChrF++ TER WER

Case sensitive 77.63 89.09 88.14 15.75 0.17
Case insensitive 77.99 89.09 88.37 15.26 0.17

Test dataset
BLEU ChrF ChrF++ TER WER

Case sensitive 77.79 89.66 88.90 16.65 0.18
Case insensitive 78.22 89.79 89.11 16.13 0.18

Table 2: Comparison of translation metrics for the machine-translated train and test dataset with
respect to human translation.

sentence length of the simple sentences across the training, validation, and test set is about 20 percent
lower than for their complex counterparts. The simplified sentences comprise fewer words than the
complex sentences across all three train, validation, and test datasets. However, the number of
sentences in the ten reference sets of the test set diverges with a higher average number of sentences,
containing more sentence splits than the train and validation dataset.

3.2 Human Reference Translation

The quality of the machine-translated corpora is evaluated by comparison with human reference
translations for a sample of the sentences in the data. All sample sentences were chosen from the
set of complex sentences within the training and test datasets randomly from across the whole
dataset. A detailed comparison between the resulting samples and respective statistics can be found
in Appendix B.

For evaluation, the machine-translated output of the sample was compared against the human
reference translation. The metrics BLEU (Papineni et al. 2002), chrF (Popović 2015), chrF++
(Popović 2017), and TER (Snover et al. 2006) were measured with the SacreBLEU package (Post
2018). The Word Error Rate (WER) was calculated with the jiwer package4.The results of the
evaluation are shown in Table 2. All metrics have been computed in a case-sensitive and case-
insensitive version.

Regardless of the casing, the BLEU score for machine-translated corpora is high (77.63 train,
77.79 test). These scores are superior to recent results, where Aiken (2019) reports translation per-
formance results of GNMT from English to Dutch with a BLEU score of 71. It can be concluded that
the machine-translated corpora are similar to their human reference translation. As a consequence,
the machine-translated corpora can be used for fine-tuning a language model.

4. Method

This work aims at the following: First, to apply a large pre-trained language model for sentence
simplification in a low-resource setting in Dutch. Second, to control the decoded sentence structure
by prepending control tokens at encoding time similar to the approaches by Sheang and Saggion
(2021) and Menta and Garcia-Serrano (2022). Third, to steer further text generation by limitations
at the decoding phase. Fourth, to explore sentence simplification performance in a low-resource
setting in Dutch.

4. https://pypi.org/project/jiwer/
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4.1 Model Setup

We fine-tune a pre-trained language model in Dutch in a ”teacher-forcing” manner (Williams and
Zipser 1989) on sentence simplification. This means supervised learning, where a language model is
presented with a complex sentence (source sentence) and then trained toward simplifying this input.
After training, the trained model produces the simplified (target) sentence given the source sentence.
In the following, we use an encoder-decoder architecture (Cho et al. 2014), where the encoder is
trained to encode a complex sentence, and the decoder decodes the input into a simple sentence.
To leverage the knowledge of a pre-trained model in Dutch, we use a pre-trained transformer model
(Vaswani et al. 2017) in Dutch from the Hugging Face Transformers Library (Wolf et al. 2020).
Transformer models require pre-training; hence, any model must be exposed to training data in the
target language before fine-tuning on a specific task. For Dutch, most publicly available transformer
models with an encoder-decoder architecture are variants of T5. T5 is an encoder-decoder text-to-
text transformer (Raffel et al. 2020) that was pre-trained with span corruption and denoising on
unsupervised and supervised tasks such as question-answering translation or summarization. The
following pre-trained Dutch variants of T5 are publicly available in the Hugging Face Transformers
Library (Wolf et al. 2020) and have been explored: flan-t5-base5 (Flan-T5), t5-base-dutch6 (T5-
base), and t5-v1.1-base-dutch-cased7 (T5 V1.1). For evaluating the best model for the task at hand,
performance across models was measured. To do so, all models were trained with the same learning
rate (0.001) and a small set of parallel data. Tests with flan-t5-base and t5-v1.1-base-dutch-cased
model showed a lower performance given the same number of training iterations and training data.
The t5-base-dutch model provided good results on the tests which is in line with prior simplification
research (Sheang and Saggion 2021, Taylor et al. 2022). In the remainder of this work, the t5-base-
dutch model will henceforth be used.

The t5-base-dutch model has an original T5 configuration with 223M parameters, 12 attention
heads, 12 layers, and a sequence length of 512 tokens. The t5-base-dutch model has not been fine-
tuned on a simplification task and was pre-trained on mc4 nl cleaned8 data. The mc4 nl cleaned
dataset originates from the allenai/c49 dataset, a variant of the C4 dataset (Dodge et al. 2021)
comprising sentences from the Common Crawl web scrape10. The Dutch portion of the mc4 dataset
was extracted and stripped from inappropriate words, fill words, javascript code, short sentences, or
exceedingly long words to create this dataset. The model uses a SentencePiece tokenizer (Kudo and
Richardson 2018) with 32,003 tokens.

4.2 Simplification Control Mechanism

Several attributes are essential for sentence simplification. First, in line with the findings of Van-
deghinste and Bulté (2019), the average sentence length of simplified sentences should be shorter
than that of their complex counterparts and contain fewer subclauses. In their study, the average
sentence length for easy text is only 8.31 words per sentence, with 14.19 words per sentence in
standard Dutch sentences. Furthermore, syntax metrics such as dependency tree depth (4.44 for
easy-to-read text, 6.12 for standard text) and length of clauses (8.13 for easy-to-read text, 11.46
for standard text) were found to have a reasonably high effect on readability (Vandeghinste and
Bulté 2019). Consequently, the average dependency tree depth and the length of clauses should be
lower in simple sentences.

Concerning simplification on a lexical level, most work is concerned with identifying difficult
words (complex word identification), which are then chosen to be replaced by easier ones (substi-

5. https://huggingface.co/google/flan-t5-base
6. https://huggingface.co/yhavinga/t5-base-dutch
7. https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased
8. https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned
9. https://huggingface.co/datasets/allenai/c4

10. https://commoncrawl.org/the-data/get-started/
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tution generation) (Bulté et al. 2018, Paetzold and Specia 2016b). Word frequencies are the best
indicator to identify the difficulty of a word (Paetzold and Specia 2016b, Wilkens et al. 2014). Hence,
complex words are replaced with more familiar words to achieve sentence simplification, reducing
lexical complexity. Prior work (Martin et al. 2020, Menta and Garcia-Serrano 2022, Sheang and
Saggion 2021) discerns between five explicit control tokens for sentence simplification: the amount
of sentence compression, word length, the amount of paraphrasing, syntactic complexity, and lexical
complexity.

To control the five simplification attributes, we implement the following explicit control tokens:

• Sentence length (CharLengthRatio/CLR): The number of characters in a sentence and hence
sentence length is a good metric for simplicity (Martin et al. 2018). The average number of
words and syllables is commonly used to evaluate readability (Brouwer 1963, Kincaid et al.
1975). Martin et al. (2020) first implemented the CharLengthRatio, which sets the character
length between the source sentence in relation to the character length of the target sentence.
By controlling the length of the target sentence, the amount of compression on the target
sentence and the deletion of content are controlled as well. A lower CharLengthRatio indicates
a shorter target sentence.

• Number of words (WordLengthRatio/WLR): We adapted the approach of Sheang and Sag-
gion (2021) and include a WordLengthRatio to the control tokens. The WordLengthRatio sets
the length of words in the source sentence in relation to the length of words in the target sen-
tence. This measure is disputed: Whereas Wilkens et al. (2014) showed that for English and
Portuguese, the word length is no predictor of its relative complexity, this does not necessarily
apply to Dutch, which contains compound words (Macken and Tezcan 2018, Pander Maat
et al. 2014). Nevertheless, shorter words are easier to read than longer words for people with
difficulties in reading (Rello et al. 2013). In preliminary tests, adding a WordLengthRatio
to the control tokens effectively replaces long words with shorter substitutes or rephrasing
(Sheang and Saggion 2021). For calculation of the WordLengthRatio, the words have first
been tokenized with the Moses tokenizer from the SacreBLEU (Post 2018) package.11 A lower
WordLengthRatio shows shorter words in comparison between source and target sentence.

• Paraphrasing (LevenshteinRatio/LR): It is preferrable that the generated simplified target
sentence remains close to its source sentence. Doing so, the amount of paraphrasing, meaning
the number of edit operations (paraphrase, edit, delete) between the source and target sentence
(Wubben et al. 2010), is measured by the normalized Levenshtein similarity (Levenshtein 1965).
We follow prior implementations (Martin et al. 2022, Menta and Garcia-Serrano 2022, Sheang
and Saggion 2021), and apply a normalized LevenshteinRatio. The LevenshteinRatio is based
on characters with prior tokenization by the Moses tokenizer in the SacreBLEU package. A
higher LevenshteinRatio indicates a higher similarity between the source and target sentence
and a lower edit distance.

• Lexical complexity (WordRankRatio/WRR): Paetzold and Specia (2016a) have shown that
word frequencies are best for assessing the complexity of words. Especially for people with
learning difficulties, frequent words are easier to read and more understandable than infrequent
words (Rello et al. 2013). We follow the approach of Martin et al. (2020) as implemented by
Sheang and Saggion (2021) and apply a WordRankRatio. The WordRankRatio is the third-
quartile of log-ranks (inverse frequency order) of all words in the target sentence divided by
the inverse frequency order of all words in the source sentence (Martin et al. 2020). This
was implemented using a word embedding vocabulary. In word embedding vocabularies, more
frequent words have a lower rank and, consequently, a lower log-rank. Hence sentences that
employ more frequent words have a lower WordRankRatio.

11. https://github.com/mjpost/sacrebleu

37



Source sentence CLR 0.41 WLR 0.41 LR 0.32 WRR 0.85 DTDR 0.67 De storm kwam met
maximale kracht aan land in het zuidwesten van Florida, waardoor het de
sterkste orkaan was die de Verenigde Staten trof sinds de orkaan Andrew
twaalf jaar eerder, in 1992, Florida trof.

Target sentence Dit maakte het tot een sterke orkaan van categorie 4 op de schaal van
Saffir-Simpson.

Table 3: An example of a complex and a simple sentence.

A comparison of several word embedding vocabularies has been conducted; results are listed
in Appendix A. The word embedding vocabulary12 from Fares et al. (2017) scored best,
probably due to its extensive vocabulary and wide coverage of topics. The word embedding
vocabulary was constructed for CONLL17 based on Common Crawl Data in Dutch. The
model is a Word2Vec Continuous Skip-gram model with a vector dimension size of 100 (Fares
et al. 2017).

Arguably, the word rank can only be applied if the word is found in the vocabulary, which means
a word without a match is not considered. If the complex sentence is longer than the simple
sentence and applies many fill words, the WordRankRatio can be misleading: If these fill words
are frequently used words, their word rank is lower, and the complex long sentence receives
a lower complexity score than its simpler counterpart. To sum up, a lower WordRankRatio
indicates the usage of more frequent words in the target sentence and is preferrable.

• Syntactic complexity (DependencyTreeDepthRatio/DTDR): Martin et al. (2020) used De-
pendencyTreeDepthRatio to approximate syntactic complexity. Their experiments showed
that deeper dependency trees imply longer spans and correspond to more sophisticated sen-
tences (Martin et al. 2020). For Dutch, dependency tree depth is a strong differentiator
between easy-to-read and standard newspaper articles (Vandeghinste and Bulté 2019). De-
pendencyTreeDepthRatio measures the maximum depth of the target sentence’s dependency
tree divided by the source sentence’s maximum tree depth (Martin et al. 2020, Sheang and
Saggion 2021). For the implementation of the dependency tree, the Dutch model pipeline
‘nl core news sm’ from spacy13 was used. A minor score for DependencyTreeDepthRatio indi-
cates a better result, meaning the target sentence is less syntactically complex than its original
counterpart.

Following the implementation of Martin et al. (2020) and Sheang and Saggion (2021), the
above-defined ratios are always the control token values for the target sentence divided by
their respective values for the source sentence. For example, the number of words in the target
sentence is divided by the number of words in the source sentence to compute the word ratio.
The desired ratio must be provided for each control token before encoding. To steer these five
simplification attributes, the aforementioned control tokens are implemented and prepended
to the training data as individual information to each complex sentence for training. Table 3
shows an example of tokenization.

4.3 Decoder Search

Finally, text generation can be steered by limitations at the decoding phase. Decoding refers to the
generation of a meaningful and factual sequence from tokens at inference time. Several decoding
strategies are relevant to exploring.

12. http://vectors.nlpl.eu/repository
13. https://spacy.io/models/nl
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Greedy decoding In a greedy search, the word wt with the highest probability

wt = argmaxwP (w|w1:t−1)

is chosen at each timestep t. Greedy decoding can generate grammatical sentences. However, they
are more likely to contain errors if the distributions are not learned properly, which results in the
accumulation of errors in stepwise sampling (Shao et al. 2017). Moreover, greedy decoding ignores
more suitable words with a lower probability in favor of the word with the highest probability. As
a result, the quality of output sentences can vary highly and be factually wrong.

Combination of top-p and top-k sampling In top-k sampling (Fan et al. 2018), the most likely
k words are filtered, the probability mass is distributed over those k sampled words, and the words
with the highest probability are returned. In top-p (or nucleus) sampling, the smallest set of words
whose cumulative likelihood is greater than the given threshold probability p (Holtzman et al. 2019)
is determined. The probability is distributed over this set of words in the next step, and the best
is chosen. The combination of top-p sampling followed by top-k sampling, as used in Yang et al.
(2021) and Keskar et al. (2019), helps to avoid low-ranked words and gives some dynamic selection
options to the model promoting diversity.

Beam search decoding In line with prior research (Menta and Garcia-Serrano 2022, Sheang and
Saggion 2021), beam search is explored. Beam search keeps the most likely n-beams of tokens in a
sequence based on conditional probability at each iteration. The option with the highest probability
for the entire sequence is chosen. However, these mainly stem from one beam with a high probability
value, resulting in outputs that only contain small changes to the sentence. Hence, beam search does
not promote diversity and could lead to copying the original sentence (Vijayakumar et al. 2016).

4.4 Scarce Data

Several studies explore simplification in a low-resource setting: Surya et al. (2019) build their custom
sequence-to-sequence autoencoder model specifically for low-resource settings and use a combination
of 10,000 parallel training sentences from Simple Wikipedia (Hwang et al. 2015) and the Split
rephrase set by Narayan et al. (2017). For their neural simplification system, Palmero Aprosio
et al. (2019) use a training set of 30,000 and 53,000 rows for Italian and Spanish. Maruyama and
Yamamoto (2019) report satisfactory results from pre-training a custom transformer language model,
which is fine-tuned on 3000 examples of parallel data. Unfortunately, the authors did not further
specify their transformer language model architecture nor publish their code. Model performance
based on limited training data is vital because parallel corpora are expensive to create and require
sufficient qualitative written text pairs, which can be a bottleneck in low-resource target languages.
As a benchmarking test, this work explores sentence simplification results with varying dataset sizes
of 2000, 6000, and 10,000 rows of data.

5. Experiments

5.1 Automatic Evaluation

We use the Easier Automatic Sentence Simplification Evaluation (EASSE) framework14 by Alva-
Manchego et al. (2019) to evaluate the quality of the generated sentence simplifications.

SARI (Xu et al. 2016) measures sentence simplicity based on add, keep, and delete operations.
SARI compares the system-generated simplified output sentences to its source sentence and multiple
reference sentences. The metric averages the F1 scores of add, keep and delete operations in relation
to the generated output sentences. The EASSE package also implements improvements on the

14. https://github.com/feralvam/easse
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initial SARI implementation15 as published by Xu et al. (2016), where normalization is applied to
the source, prediction, and reference sentences.

The Flesch-Kincaid Grade Level (FKGL) (Kincaid et al. 1975) is a measure that is frequently
reported with simplification publications (Kumar et al. 2020, Martin et al. 2022, Martin et al. 2020,
Rashid and Amirkhani 2023). In this work, the Flesch-Kincaid Grade Level is used as an auxiliary
metric, given that it relies on average sentence lengths, favors shorter sentences, and does not
account for grammaticality and meaning preservation in simplified sentences (Wubben et al. 2012).
The Flesch-Kincaid Grade Level is the result of a linear regression between the number of words and
the number of syllables per word over a simple sentence. A lower score indicates higher readability.

BLEU (Papineni et al. 2002) measures correct sentence generation by calculating the n-gram
matches between the generated sentence and several reference sentences. It has been proven that
the more reference translations used, the higher the BLEU score (Papineni et al. 2002, Post 2018).
Although frequently reported in sentence simplification (Kumar et al. 2020, Martin et al. 2022, Surya
et al. 2019), BLEU is not suitable as a primary simplification metric (Alva-Manchego et al. 2020a),
given that it correlates poorly with simplicity when sentence splitting was performed. Despite
this, BLEU was found to correlate highly with a human estimation of grammaticality and meaning
preservation but favors longer simplifications with n-grams that are present in reference sentences
(Xu et al. 2016). We evaluated sentence simplification using SARI and add, keep, and delete ratios.
Average scores on BLEU and FKGL are published for comparison.

5.2 Training Details and Hyperparameter Search

Task-specific fine-tuning has been done on Google Colab Free Version, with a T4/K80 GPU with
15GB available RAM. All models were trained using the Hugging Face Transformers library (Wolf
et al. 2020). Hyperparameter tuning was done with Optuna (Akiba et al. 2019) and logging with
WandB (Biewald 2020). The average training time was 21 minutes, depending on the size of the
dataset. No task prefix has been added during fine-tuning.

The seed was set to 12 to compare results across runs, and gradient accumulation was done
after four training steps in every run. Gradient accumulation is the number of steps the gradient
is collected before a backward pass is performed. This reduces memory size during training. We
completed a hyperparameter search for the number of training epochs, the learning rate, the eval-
uation batch size, the training batch size, and the warmup steps. To evaluate the effect of reduced
training data, we trained with varying lengths of the dataset containing 2000, 6000, and 10,000
rows. Several variations in warmup steps were tested. Warmup steps are the number of steps before
the linearly increasing learning rate reaches the set learning rate. Like in prior studies (Menta and
Garcia-Serrano 2022, Sheang and Saggion 2021), the best results were achieved with five warmup
steps.

For training, two optimizers were tested. Following prior research (Menta and Garcia-Serrano
2022, Sheang and Saggion 2021), we used the AdamW optimizer with fixed weight decay (Loshchilov
and Hutter 2017) with its default parameters. Then we tested the Adafactor optimizer (Shazeer
and Stern 2018), given that it is used in the original T5 model (Raffel et al. 2020) using the default
configuration. The best parameter configurations of the hyperparameter search for the optimizers
AdamW and Adafactor are indicated in Table 4.

During training, all models were evaluated on the evaluation loss. The best-performing check-
point was logged and stored for each combination of optimizer and dataset size. Next, each model
checkpoint was used to test the simplification quality on the test set. The token limit was set to a
maximum length of 128 tokens without further specification of generation parameters. The average
time for generating simplified sentences on the test set (359 rows) was 45 minutes; the resulting
SARI scores were documented.

15. https://github.com/cocoxu/simplification
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Parameter Search Space AdamW Adafactor
Seed – 12 12

Gradient accumulation [1,4] 4 4
Learning rate [1e-3 - 1e-5] 0.0001 0.0001

ϵAdamW [3e-7 – 1e-8] 1.000e-8 na
epsAdafactor – na 1e-30, 1e-3

Betas (β1, β2)AdamW – 0.9, 0.999 na
Batch size [6,8,12,18] 6 6 (8 with 10,000)

Weight decay – 0.1 0.0
Epochs [1,2,3,4] 4 4

Warmup steps [0, 5, 2000, 5000] 5 5
Dataset size [2000, 6000, 10,000] 10,000 10,000

Table 4: Best parameter configurations for optimizers AdamW and Adafactor after hyperparameter
search. Note that for 10000 rows, a batch size of 8 was used.

Optimizer Dataset size Eval loss SARI↑ Add↑ Keep↑ Delete↑ FKGL↓ BLEU↑
2000 1.413 25.05 3.05 59.08 13.02 6.86 48.60

Adafactor 6000 1.460 25.07 1.86 58.12 15.23 7.27 57.08
10,000* 1.412 26.04 3.35 59.30 15.47 6.27 48.32

2000 1.615 32.26 4.24 56.91 35.62 6.72 41.84
AdamW 6000 1.472 34.65 2.26 55.59 46.09 8.95 78.95

10,000 1.423 23.43 0.34 58.06 11.88 10.42 88.96

Table 5: Model performance on the test set using only 2000, 6000, and 10,000 training examples.
The best result in each column is bolded, and the best model is marked with *. Thse scores
are not yet indicative, given that the models have been pre-trained on a fixed set of control
tokens. (↑ Higher is better, ↓ lower is better.)

Overall, based on the evaluation loss, the training performance with the Adafactor optimizer was
better than with the AdamW optimizer. For the Adafactor optimizer, the training loss with only
2000 rows of training data was equal to that with 10000 rows of data, applying the same parameter
configuration. Furthermore, the SARI value of the Adafactor model with 2000 rows of training
data (25.05) is not much lower than with 10000 rows of training data (26.04). To conclude, for the
Adafactor optimizer, the best results are generated with 10000 rows of data. Regarding AdamW,
the model performs even better on 6000 rows of training data (34.65) and on 2000 rows of data
(32.25) than with 10,000 rows of training data (23.43) when measured by SARI.

However, the metrics for sentence simplification (SARI, FKGL, BLEU) are not indicative, given
that the models have only been pre-trained on an exemplary set of control tokens and not on the
final set of tokens. Moreover, no adjustment to the decoder has been made yet. Consequently, the
best-performing model has been chosen by manual assessment of the generated output rather than
by the SARI score. A cross-check on the generated output texts of all models reveals hallucinations
and repetitive sentences (AdamW, 6000 rows; AdamW, 2000 rows). The model trained with the
Adafactor optimizer on 10,000 rows of data contained the least number of hallucinations and rep-
etitions and performed best on the test set (evaluation loss 1.412). Consequently, this model was
chosen as the baseline for further simplification experiments.

Table 5 displays model performance without prior configuration of the control token on the
test set (best-performing model* Adafactor, 10000 rows of data). Table 6 displays an example of
the generated text of the best-performing model. The model successfully reproduces the original
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Original Zijn volgende werk, zaterdag, volgt op een bijzonder veelbewogen dag in het leven
van een succesvolle neurochirurg.

Simplified Zijn volgende werk, zaterdag (zaterdag) volgt op een bijzonder veelbewogen dag in
het leven van een neurochirurg. Het is de laatste werkdag die hij heeft doorgebracht
als neurochirurg bij een ziekenhuis. Hij was erg onder de indruk toen hij

Original Daar stierf hij zes weken later, op 13 januari 888.
Simplified Hij stierf zes weken later, op 13 januari 888. Daar stierf hij zes weken eerder dan

zijn vader in de jaren zestig had gedaan. Zes weken later stierf hij daar. Dat was een
jaar na zijn dood

Original Ze zijn cultureel verwant aan de kustbewoners van Papoea-Nieuw-Guinea.
Simplified Ze zijn cultureel verwant aan de kustbewoners van Papoea-Nieuw-Guinea. De zee

is kleiner dan het vasteland in Nieuw-Guinea, maar wel groter als een eilandje bij
elkaar. Het wordt ook gebruikt om te vissen op zand

Table 6: Examples of generated simplifications with the best model without prior configuration of
the control tokens. Incorrect transformations (lost or changed meaning) are marked in
bold.

sentence with minor simplifications yet generates additional sentences containing hallucinations or
reformulations of the original sentence.

5.3 Controllable Generation with Control Tokens

As described in section 4.2, the implemented control tokens are CharLengthRatio, WordLengthRatio,
LevenshteinRatio, WordRankRatio, and DependencyTreeDepthRatio. The control token values from
prior studies cannot be used as these token values have been optimized for English text but not
for Dutch text. To understand the effect of control tokens on output generation for Dutch text, a
detailed analysis of the control tokens is performed. We do so by keeping all token values at 0.9 and
modifying only the values of the control token under examination. Table 7 lists original complex
sentences from the test set, which serve as a reference for the following modifications. In the tables
that follow, the corresponding reference number of the original sentence is indicated in the rightmost
column.

Experimenting with different values for LevenshteinRatio and WordRankRatio, we observe the
same effects as Martin et al. (2020): If the LevenshteinRatio and WordRankRatio are set to low
values (0.4 for LR and 0.2 for WRR), the output is ungrammatical, and the sentence produced
is nonsensical. Hence, the value for Levenshtein similarity needs to be carefully chosen, avoiding
extreme values. Table 8 shows that low WordRankRatio values (0.2) in combination with medium
values (0.6, 0.7) for LevenshteinRatio values cause erroneous sentences that are ungrammatical or
factually wrong. On the other hand, combining the LevenshteinRatio of 0.7 and WordRankRatio
value of 0.4 produces grammatical sentences with correct meaning and represents the minimum
viable combination.

Table 9 shows the effects of a reduction of token values for CharLengthRatio and WordLength-
Ratio. For CharLengthRatio, with CLR = 0.7, subclauses are shortened, and with CLR = 0.4, one
subclause has been entirely omitted. It is difficult to spot any modification in word length as an ef-
fect of reducing the WordLengthRatio token value, such as a replacement of a long word by a shorter
word. It would have been expected that longer words, such as “belangrijkste” or “toegangspoort”
would be replaced by shorter words.

For varying WordRankRatio token values, we observe a replacement of complex words. Thus
some level of lexical simplification is present: In Table 10, complex words such as “Desalniettemin”
are produced with higher values of WordRankRatio while not present with lower values. However, a
word like “emuleerde” is not replaced, whereas “vertegenwoordigt” is replaced by “is”. The desired
effect only occurs with very low token values (0.2) for WordRankRatio.
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Original sentences (complex version) Example
Zijn volgende werk, zaterdag, volgt op een bijzonder veelbewogen dag in het leven van een succesvolle
neurochirurg. 1
Sinds 2000 ontvangt de ontvanger van de Kate Greenaway-medaille ook de Colin Mears Award ter waarde
van £ 5000. 2
Fives is een Britse sport waarvan wordt aangenomen dat deze dezelfde oorsprong heeft als veel
racketsporten. 3
Beide namen werden opgeheven in 2007 toen ze werden samengevoegd tot The National Museum of
Scotland. 4
Jeddah is de belangrijkste toegangspoort tot Mekka, de heiligste stad van de islam, die valide moslims
minstens één keer in hun leven moeten bezoeken. 5
Veel soorten waren tegen het einde van de negentiende eeuw verdwenen, met Europese vestiging. 6
Perry Saturnus (met Terri) versloeg Eddie Guerrero (met Chyna) om het WWF European Championship te
winnen (8:10) Saturnus drukte Guerrero vast na een duikelleboog. 7
Desalniettemin emuleerde Tagore talloze stijlen, waaronder handwerk uit het noorden van New Ireland,
Haida- gravures van de westkust van Canada (British Columbia) en houtsneden van Max Pechstein. 8
Men denkt dat de Grote Donkere Vlek een gat vertegenwoordigt in het methaanwolkendek van Neptunus. 9
In zuivere vorm komt dextromethorfan voor als een wit poeder. 10
De drummers worden gevolgd door dansers, die vaak de sogo spelen (een kleine trommel die bijna geen
geluid maakt) en de neiging hebben om een uitgebreidere - zelfs acrobatische - choreografie te hebben. 11

De BZÖ verschilt echter een beetje in vergelijking met de Partij voor de Vrijheid, zoals voor een referendum
over het Verdrag van Lissabon maar tegen een terugtrekking uit de EU. 12
Ze zijn cultureel verwant aan de kustbewoners van Papoea-Nieuw-Guinea. 13
Reizen door zeer afgelegen gebieden, op afgelegen wegen, vereist echter planning vooraf en een geschikt,
betrouwbaar voertuig (meestal een vierwielaandrijving). 14
Alessandro (’Sandro’) Mazzola (geboren op 8 november 1942) is een voormalig Italiaans voetballer. 15

Table 7: Extract of complex sentences from the test set.

CLR 0.9 WLR 0.9 Hij is neurochirurg en studeerde aan de Universiteit van Californië 1
LR 0.4 WRR 0.2 Colin Mears Award (1999) is een onderscheiding van de Britse actrice en 2
DTDR 0.9 actrice Kate Greenaway.
CLR 0.9 WLR 0.9 Fives is een Britse sport. 3
LR 0.6 WRR 0.4 Hij is neurochirurg en vindt zijn weg naar de top. 1
DTDR 0.9 Het National Museum of Scotland werd opgeheven in 2007. 4
CLR 0.9 WLR 0.9 Fives is een sport waarvan wordt aangenomen dat deze dezelfde oorsprong heeft als 3
LR 0.7 WRR 0.2 veel racketsporten.
DTDR 0.9 Hij is een neurochirurg. 1

Het National Museum of Scotland werd opgeheven in 2007 4
CLR 0.9 WLR 0.9 Fives is een sport waarvan wordt aangenomen dat deze dezelfde oorsprong heeft als 3
LR 0.7 WRR 0.4 veel racketsporten.
DTDR 0.9 Hij is een neurochirurg. 1

Beide namen werden opgeheven in 2007 toen ze samengevoegd werden tot het National 4
Museum of Scotland.

Table 8: Lower LevenshteinRatio tokens cause shorter sentences and contain hallucinations. Incor-
rect transformations (lost or changed meaning) are marked in bold.

CLR 0.7 WLR 0.7 Jeddah is de belangrijkste toegangspoort tot Mekka, de heiligste 5
LR 0.9 WRR 0.9 stad van de islam.
DTDR 0.9 Veel soorten waren tegen het einde van de negentiende eeuw verdwenen, met 6

Europese vestiging.
CLR 0.4 WLR 0.4 Jeddah is de belangrijkste toegangspoort tot Mekka, de heiligste 5
LR 0.9 WRR 0.9 stad van de islam.
DTDR 0.9 Veel soorten waren tegen het einde van de negentiende eeuw verdwenen. 6

Table 9: Effect of different token values for CharLengthRatio and WordLengthRatio. Incorrect trans-
formations (lost or changed meaning) are marked in bold.
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CLR 0.9 WLR 0.9 Perry Saturn (met Terri) versloeg Eddie Guerrero (met Chyna) om het WWF 7
LR 0.9 WRR 0.2 European Championship te winnen.
DTDR 0.9
CLR 0.9 WLR 0.9 Perry Saturn (met Terri) versloeg Eddie Guerrero (met Chyna) om het WWF 7
LR 0.9 WRR 0.7 European Championship te winnen (8:10) Saturnus drukte Guerrero vast na een
DTDR 0.9 duikelleboog.
CLR 0.9 WLR 0.9 Tagore emuleerde veel stijlen, waaronder handwerk uit het noorden van New Ireland, 8
LR 0.7 WRR 0.2 Haida-gravures van de westkust van Canada (British Columbia) en houtsneden van
DTDR 0.9 Max Pechstein.
CLR 0.9 WLR 0.9 Desalniettemin emuleerde Tagore veel stijlen, waaronder handwerk uit het noorden 8
LR 0.7 WRR 0.4 van New Ireland, Haida-gravures van de westkust van Canada (British Columbia)
DTDR 0.9 en houtsneden van Max Pechstein.
CLR 0.9 WLR 0.9 Men denkt dat de Grote Donkere Vlek een gat is in het methaanwolkendek van 9
LR 0.9 WRR 0.2 Neptunus.
DTDR 0.9
CLR 0.9 WLR 0.9 Men denkt dat de Grote Donkere Vlek een gat vertegenwoordigt in het 9
LR 0.9 WRR 0.9 methaanwolkendek van Neptunus.
DTDR 0.9

Table 10: Effect of different token values for WordRankRatio. Incorrect transformations (lost or
changed meaning) are marked in bold.

CLR 0.9 WLR 0.9 Dextromethorfan is een wit poeder. 10
LR 0.7 WRR 0.5 De drummers worden gevolgd door dansers, die vaak de sogo spelen (een kleine 11
DTDR 0.9 trommel die bijna geen geluid maakt) en de neiging hebben om meer uitgebreide

choreografieën te hebben.

De BZÖ is een beetje anders dan de PVV, net als vóór een referendum 12
over het Verdrag van Lissabon.

CLR 0.9 WLR 0.9 Dextromethorfan is een poeder. 10
LR 0.7 WRR 0.5 De drummers worden gevolgd door dansers, die vaak de sogo spelen (een kleine 11
DTDR 0.7 trommel die bijna geen geluid maakt) en de neiging hebben om meer uitgebreide

- zelfs acrobatische - choreograf

De BZÖ is een beetje anders dan de PVV, net als vóór een referendum 12
over het Verdrag van Lissabon.

CLR 0.9 WLR 0.9 Dextromethorfan is een poeder. 10
LR 0.7 WLR 0.5 De drummers worden gevolgd door dansers, die vaak de sogo spelen (een kleine 11
DTDR 0.6 trommel die bijna geen geluid maakt).

De BZÖ is een partij die voorstander is van een terugtrekking uit de EU. 12

Table 11: Effect of different token values for DependencyTreeDepthRatio. Incorrect transformations
(lost or changed meaning) are marked in bold.

Tests on the DependencyTreeDepthRatio in Table 11 show that a low token value causes the
sentence to be split into multiple shorter sentences or advances the creation of shorter sentences.
Also, subclauses are omitted, which is a desired effect of simplifying sentence structure.

5.4 Hyperparameter Search of Control Tokens

Following this prior experimentation, the best set of control tokens was identified with a hyperpa-
rameter search using Optuna (Akiba et al. 2019) and logging using WandB (Biewald 2020). The
hyperparameter search for the best combination of control token ratios works as follows: A trial
study with target ratios for each control token between 0.2 and 1.0 was set up. Then, the hyper-
parameter search was guided with independent sampling with the tree-structured parzen estimator
algorithm (Bergstra et al. 2011) using an incremental search value of 0.05. For each trial, given
a set of target ratios (CharLengthRatio, WordLengthRatio, LevenshteinRatio, WordRankRatio, and
DependencyTreeDepthRatio), the control tokens per sentence are generated and prepended to the
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Control Tokens Scores
CLR WLR LR WRR DTDR SARI↑ Add↑ Keep↑ Delete↑ BLEU↑ FKGL↓
0.7 0.6 0.6 0.55 0.75 37.40 2.35 53.90 55.93 80.88 7.92
0.55 0.75 0.6 0.7 0.7 37.31 2.33 54.53 55.04 82.84 8.13
0.8 0.75 0.6 0.5 0.75 36.99 2.29 54.45 54.22 82.89 8.21
0.7 0.6 0.6 0.55 - 37.36 2.51 53.00 57.00 81.15 7.84
0.75 0.55 0.6 0.7 - 36.85 2.27 54.59 53.68 83.71 8.16
0.7 0.5 0.6 0.65 - 36.78 2.13 54.28 53.92 83.04 8.16
0.85 0.7 0.55 - - 36.32 2.26 54.02 52.67 80.35 8.34
0.65 0.7 0.65 - - 35.36 2.08 55.12 48.90 83.55 8.49
0.65 0.85 0.8 - - 35.17 2.04 55.66 47.81 84.30 8.77
0.7 0.6 - - - 37.32 2.18 52.62 57.16 78.98 7.62
0.55 0.85 - - - 36.30 2.12 53.64 53.15 80.64 8.16
0.6 0.75 - - - 35.50 1.83 54.91 49.75 83.73 8.49

Table 12: Results of hyperparameter search on the best-performing model with varying control token
values.

complex sentence, e. g. the complex sentences get a prefix that consists of the control tokens. This
creates an individual train set for each combination of control tokens. The best-performing model
is trained on this training set in the subsequent step. The training parameters are identical to the
best-performing model with the Adafactor optimizer trained on 10,000 rows of data, as described in
Table 5.

For testing, the complex sentences of the test set are prepended with the respective control tokens
for a given target ratio, as described in section 4.2 and shown in Table 3. These sentences are then
fed into generation using the pre-trained model. Next, each generated set of output sentences was
evaluated on the SARI score. In addition, we also report the respective SARI add, keep, and delete
scores (Fadd, Fkeep, and Fdelete) and FKGL and BLEU scores. Finally, the token values that
achieved the best scores on the test set were selected. Table 12 shows the control token values after
the hyperparameter search. The resulting best set, based on SARI, was the following combination
of tokens: CLR = 0.7, WLR = 0.6, LR = 0.6, WRR = 0.55, DTDR = 0.75, with a resulting SARI
score of 37.40. Hence, adding control tokens significantly improves the performance (SARI +11.27).

Table 13 shows the individual influence of each token on SARI performance. Each token has a
significant influence on performance improvement (avg. +6.65 SARI). With only one token added,
LevenshteinRatio performs best on the test set (+8.16), which is in concordance with the results of
(Sheang and Saggion 2021). Overall, the results designate that adding control tokens significantly
improves simplification performance, and all control tokens are essential to the overall simplification
result. Like prior studies, LevenshteinRatio and WordRankRatio are the best single tokens (Martin
et al. 2020, Sheang and Saggion 2021).

A significant improvement is made with two control tokens added (SARI 37.52). With four
control tokens, CLR, WLR, LR, and WRR, the SARI score is almost as high as with all tokens
(37.36). The best result is produced with all control tokens added (SARI 37.40). Interestingly,
adding LR as a third control token does lower the SARI score. This could be because the alignment
of sentences in the original English test dataset (ASSET) is good, and the test dataset itself does not
contain much reordering compared to other datasets (Zhao et al. 2022). Moreover, the compression
ratio in the original test set is high (Alva-Manchego et al. 2020b, Zhao et al. 2022), so control tokens
related to sentence length should bring a change in performance. Thus, CharLengthRatio and
DependencyTreeDepthRatio should be of equal importance to the other tokens, which is confirmed
by the average improvement in SARI across single control tokens compared to that of WLR, LR,
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Control Tokens Scores
CLR WLR LR WRR DTDR SARI↑ Add↑ Keep↑ Delete↑ BLEU↑ FKGL↓
0.7 0.6 0.6 0.55 0.75 37.40 2.35 53.90 55.93 80.88 7.92
0.7 0.6 0.6 0.55 - 37.36 2.51 53.00 57.00 81.15 7.84
0.7 0.6 0.6 - - 35.08 1.89 54.98 48.36 81.15 7.84
0.7 0.6 - - - 37.32 2.18 52.62 57.16 78.98 7.62
0.7 - - - - 32.88 1.67 55.83 41.13 85.04 9.21
- 0.6 - - - 34.02 1.85 55.28 44.94 85.28 8.96
- - 0.6 - - 34.20 1.86 54.85 45.90 84.19 8.86
- - - 0.55 - 34.46 1.95 54.47 46.98 81.82 8.77
- - - - 0.75 32.34 1.51 56.24 39.29 85.78 9.46

Table 13: Relative feature importance of the best result and each single control token.

Zijn volgende werk, zaterdag, volgt op een bijzonder veelbewogen dag in het leven van een succesvolle 1
neurochirurg. Het is een bijzonder veelbewogen dag. Het is een bijzonder veelbewogen dag.

Table 14: An example of sentences generated with wrong meaning after control token training.

and WRR (see Table 13). The test dataset also contains a high degree of substitution, replacing
complicated words with simpler words (Zhao et al. 2022).

Consequently, the token WordRankRatio should significantly affect the final simplification result.
In their paper, Sheang and Saggion (2021) noted that the addition of the WordLengthRatio token
fulfills its purpose of replacing words with shorter words. Yet adding the WordLengthRatio token
also lowered the SARI score in their study, which is not corroborated by the results of this work.

5.5 Decoder-constrained Sentence Generation

Finally, the generation of simplified output is steered by constrained decoding at inference time. The
test showed that the generated output of sequence-to-sequence transformer models such as T5-base
is repetitive. This seems to be a flaw in the training method used, where some tokens are assumed
to be more challenging to learn than others (Jiang et al. 2020) or a mistake in the corresponding
probability distribution (Welleck et al. 2019). This is also the case with the current model. An
exemplary output sentence is shown in Table 14.

The model’s repetitiveness could not be remedied by additional padding at encoding and decoding
time nor by limiting the length of the output sequence. Given that the complex sentences are of
varying size, this is also the case at inference time, and the simplified output sentences vary in
length. As of now, the generation of several output sentences could be helped by setting the end of
sentence token equal to 4, which corresponds to a dot (“.”) and defines the end of a sentence. Yet
this solution is error-prone because any sentence containing a dot will be cut off directly afterward.
To find the proper control mechanism, several decoding strategies have been assessed, among which
are greedy decoding, a combination of top-p and top-k search, as well as beam search decoding. A
hyperparameter search with various combinations for each decoding strategy has been executed to
evaluate the best decoding strategy. In the first evaluation step, each decoder output for a given
parameter combination has been assessed manually on its factuality and grammaticality. The set of
determined parameters during the search for all three decoding strategies is listed in Table 15.

Several parameter configurations have been evaluated for greedy decoding, with the final set of
parameters listed in Table 15. The generated output of greedy decoding varies highly in quality
and can be factually wrong, as demonstrated in Table 16. With top-p and top-k sampling, the
outcome sentences were often incoherent and nonsense, where hallucinated words were added to the
sentence that had not been part of the source sentence. Therefore, the combination of top-p and
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Decoding do top-k top-p num repetition early max length min length
parameters sample beams penalty stopping
Greedy False – – – – – 50 3
decoding

Top-p & top-k True 5 0.98 – – – 50 3
sampling
Beam False – – 8 1.2 True 50 3
search

Table 15: Decoding parameters for the three decoding strategies.

Greedy decoding Ze zijn cultureel verwant aan Papoea-Nieuw-Guinea. 13
Reizen door zeer afgelegen gebieden, op afgelegen wegen, vereist echter planning vooraf. 14
Hij speelt voor het nationale team van Italië. 15

Top-p Ze zijn cultureel verwant aan Papoea-Nieuw-Guinea. 13
& top-k Het vereist echter voorbereiding vooraf en een goed voertuig. 14
sampling In 1982 werd hij ontslagen uit het nationale team van Italië. 15
Beam search Ze zijn cultureel verwant aan Papoea-Nieuw-Guinea. 13

Reizen door zeer afgelegen gebieden, op afgelegen wegen, vereist echter planning vooraf. 14
Hij speelt voor het nationale team van Italië. 15

Table 16: An example of sentences generated with the three decoding methods. Incorrect transfor-
mations (lost or changed meaning) are marked in bold.

top-k sampling should not be considered. However, sampling methods often produce repetitive and
gibberish output (Holtzman et al. 2019). The decoding strategy with beam search generated a stable
result with fewer hallucinations. Multiple configurations have been assessed, with the final set of
parameters listed in Table 15.

In the next step, the set of 84 randomly sampled sentences (see section 4.4) from the test dataset
was taken to generate text based on each of the three decoding strategies. Then, the sentences were
manually compared to their original sentence and scored on factuality (Devaraj et al. 2022) and
grammaticality. The result of the comparison is shown in Table 17.

Manual inspection showed that greedy decoding suffers from an extreme shortening of sentences
where subclauses are mostly cut off. Greedy decoding, however, effectively replaces complex words
such as “onmisbaar” with “belangrijk”. The result from the decoder with a combination of top-p
and top-k sampling revealed more hallucinations than other decoders, yet provided factually correct
summarization of facts, especially in subclauses. The decoding strategy with beam search mainly
consisted of nearly identical copying of sentences where some minor words are replaced. An extract
of output sentences is shown in Appendix C. To conclude, no decoding strategy provides error-
free results. Beam search should be chosen for a solution that is factually primarily correct. For a
solution that offers significant shortening, greedy decoding is most suitable.

Factuality Grammaticality
Decoding method Correct Wrong Hallucination Correct Wrong
Greedy decoding 69 14 1 81 3
Top-p & top-k sampling 57 24 3 82 2
Beam search 78 6 0 83 1

Table 17: Comparison of sampled simplifications between three decoding methods on factuality and
grammaticality.
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Data SARI↑ Add↑ Keep↑ Delete↑ FKGL↓ BLEU↑
Identity baseline 19.79 24.72 59.38 0.0 10.75 90.11
Trained baseline 26.04 3.35 59.30 15.47 6.27 48.32
Trained baseline with control tokens 37.40 2.35 53.90 55.93 80.88 7.92
Greedy decoding 36.26 2.05 54.93 51.77 8.30 83.37
Top-p & top-k sampling 38.04 3.26 49.56 61.30 7.84 66.16
Beam search 36.85 2.28 54.14 54.15 8.05 83.38
Reference baseline 53.20 24.72 62.94 71.95 7.28 100.00

Table 18: Output generated with different decoding strategies compared with the identity and ref-
erence baseline.

6. Results

6.1 Evaluation of Dutch Sentence Simplification

After fine-tuning on Dutch data, the best model is the T5 base model for Dutch, which has been
trained with an Adafactor optimizer for four epochs with a training set of 10000 rows (trained
baseline in Table 18). After hyperparameter search, the trained model plus all tokens CLR = 0.7,
WLR = 0.6, LR = 0.6, WRR = 0.55, DTDR = 0.75 performs best on the test set with a resulting
SARI score of 37.40 (trained baseline with control tokens in Table 18). Therefore, adding control
tokens significantly improves the performance on SARI (+11.27), and adding all tokens is best. It
needs to be mentioned that a complete evaluation of the simplification output on the SARI score
alone is insufficient. For example, although the decoder with top-p and top-k sampling scores high
in SARI (38.04), its simplifications are factually incorrect. In this case, a result with a lower SARI
ranking is favored instead of a higher one. In conclusion, simplification results should not only be
chosen by their SARI score but also require evaluation of factuality and grammaticality. The decoder
that generates (factually) correct results is beam search followed by greedy decoding, where most
(but not all) results are accurate. The final output by beam search generates a 36.85 SARI score,
and the output with greedy decoding scores a 36.26 score on the test set.

For further benchmarking, we compare the final simplification results to the identity baseline and
the reference baseline. The identity baseline takes the original sequence as a simplification, and the
reference baseline is a randomly chosen reference simplification from the reference simplifications
of the test set. All simplification results score better than the identity baseline but worse when
compared to the reference baseline (reference set no. 4) when compared with SARI. The results are
shown in Table 18.

A similar approach in English language (Sheang and Saggion 2021) shows that the T5 base
model performs best on the final token set of CharLengthRatio, WordLengthRatio, LevenshteinRatio,
WordRankRatio, and DependencyTreeDepthRatio with a SARI score of 45.04 on the original ASSET
dataset. The best token values in their study are CLR = 0.95, WLR = 0.5, LR = 0.75, WRR =
0.75, DTDR = 0.75. For comparison, this combination generates an output with a SARI score of
32.22 if the ASSET dataset is translated into Dutch.

Menta and Garcia-Serrano (2022) report a SARI value of 37.40 on a T5-small model with a
combination of the following tokens CLR = 0.6, WLR = 0.75, LR = 0.6, DTDR = 0.95 but replace
the WordRankRatio token with a Language-Fill Mask token (LMFMR = 0.75) for simple word
prediction. A similar combination with the base Dutch data of this work and a WRR token value
of 0.75 instead of the LMFMR token generates an output that scores 33.38 in SARI on the original
ASSET dataset. To conclude, the control token values for Dutch language differ from token values for
English language, suggesting that these are language dependent. Unfortunately, other simplification
approaches in Dutch do not report a SARI score; a comparison to former simplification approaches
in Dutch is not possible.
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6.2 Discussion

Finally, the study was limited in several aspects. First, text generation with transformer models such
as T5 faces the issue that text generation is highly repetitive. The reasons for repetitive generation
remain unclear, and research in this field is still in its infancy. One approach to mitigating repetitive
generation is modifying the training loss (Welleck et al. 2019). To prevent repetitive outcomes, an
end-of-sentence token was introduced. This leads to the resulting model not handling splits well and
only returning one sentence simplification each.

Furthermore, the system’s quality depends on the training method and data on which the model
has been trained. The base data for the training dataset (WikiLarge) and the test dataset (ASSET)
differ to some extent. As such, the split ratio in WikiLarge is much lower (0.1) than in ASSET (0.3)
(Zhao et al. 2022). It can be argued that the used training set has limited suitability for sentence
simplification, given that it is found to be noisy (Xu et al. 2016) and contains many poorly aligned
sentence pairs (Zhao et al. 2022). The original (English) training dataset is also known to drop
words and apply drastic shortening in simplified sentences.

Contrary to this, the test dataset was found to be of high quality (Vásquez-Rodŕıguez et al. 2021,
Zhao et al. 2022), containing sentence splitting, paraphrasing, and a high degree of compression
(Alva-Manchego et al. 2020a). Overall, structurally similar datasets would have been more suitable.
Hence the model and control tokens would not have been trained and evaluated on differing datasets.
Moreover, since the pre-training data consisted of Dutch news, no prior pre-training for domain-
specific words was needed. In the hypothetical case that an existing domain shift between pre-
training data and fine-tuning data has been overlooked, pre-training in the style of (Maruyama and
Yamamoto 2019) could help towards better fine-tuning performance.

Additionally, this work has shown that a minimum of 2000 rows of parallel data are required to
provide mediocre results, and 10,000 rows of data are required for better results. Given that this
work was based on translation data, a high-quality parallel dataset containing at least 2000 parallel
sentence pairs is needed to further Dutch sentence simplification. With the absence of the latter,
further research could assess a fully unsupervised approach by applying techniques that do not
require parallel data or focus on synthetic parallel corpus creation. Moreover, NMT engines such as
Google Translate stick to the syntactic structure of their source sentence (Webster et al. 2020). This
creates a limitation: typical Dutch syntactic constructions might not be present in the translated
dataset, and hence the system might not perform well for sentences with typical Dutch syntactic
constructions. As a consequence, further research should include datasets with original Dutch syntax.

The implemented explicit control tokens cover the features that have been found to make the
differentiation between standard and easy texts in Dutch (Vandeghinste and Bulté 2019), have been
stated as central features in sentence simplification (Shardlow 2014), and implemented in prior
controllable simplified sentence generation (Martin et al. 2020, Menta and Garcia-Serrano 2022,
Sheang and Saggion 2021). The control token values for Dutch language in this study differ from
token values for English language, suggesting that these values are language dependent. Further
research should identify whether there are even more suitable control tokens for Dutch. This work
deployed hyperparameter search to identify optimal control token values. An area of further research
is the identification of precomputed control token values based on the input text and their automated
use/inclusion into training. An isolated test of each control token (see Table 13) has shown that each
control token contributes to sentence simplification. However, the individual effect of each control
token is hard to quantify, given that there is not only one “correct” reference simplification which,
in turn, makes the deduction of a perfect set of control tokens in hyperparameter search difficult. In
that sense, evaluating generated outputs solely on SARI can be misleading, as it does not account
for grammaticality and overall meaning preservation.

The authors did not have access to resources for a human-based evaluation of simplification re-
sults. Hence, this work relies solely on automatic evaluation metrics. However, automatic evaluation
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metrics have limited suitability for assessing sentence simplification as discussed in section 5.1. An
inclusion of human-based simplification evaluation in further research is desirable.

Moreover, tests have shown that the effect of the WordLengthRatio is only effective with very low
token values (0.2). Concerning word frequency estimation in the WordRankRatio token, compound
words in Dutch (Macken and Tezcan 2018, Pander Maat et al. 2014) remain an obstacle. One
option could be to split complex compound words into their components (Macken and Tezcan 2018,
Vandeghinste 2002), so the frequency of these split words could be determined more quickly and
return a complexity score based on more matches in the frequency database. On the other hand,
the resulting complexity score falsifies the overall result.

7. Conclusions

We conditioned a Dutch sequence-to-sequence model (T5) on sentence simplification in this work.
The primary focus was on incorporating control tokens into the training data to enable the generation
of simplified text. These control tokens targeted various attributes, including sentence compression,
word length, paraphrasing, and lexical and syntactic complexity. Furthermore, the values of these
control tokens are adjustable, allowing customization according to the requirements of diverse target
audiences. This adaptability allows to cater to a range of users with varying levels of language
proficiency or specific simplification needs.

To evaluate the system performance, synthetic datasets for Dutch were created. These datasets
were domain-general and created from datasets commonly used in English sentence simplification
tasks. The goal was to assess the model’s capabilities when trained and tested on these Dutch-
specific datasets. The results clarified the data requirements for achieving satisfactory outcomes:
Mediocre results necessitated approximately 2000 rows of parallel data, while better performance was
attainable with a larger dataset of 10000 rows. This information is especially valuable for estimating
the data collection efforts for future model applications and shows that synthetically generated data
can be used for training and testing.

In general, the evaluation of the model’s performance on the test dataset revealed promising
results, with a SARI score of 37.40 after adjusting the control tokens. In the final configuration,
the system achieved a slightly lower SARI score of 36.85, depending on the parameter configuration
of the decoder. Although the proposed approach did not outperform its own reference baseline, it
demonstrated the potential for sentence simplification tasks. Moreover, the simplification results
indicate that evaluating generated outputs solely on SARI can be misleading, as it does not account
for grammaticality and overall meaning preservation.

To conclude, all control tokens play a vital role in enhancing the simplicity of the generated
output, which led to the identification of a specific set of control tokens tailored for the Dutch
language. However, the individual effect of each control token is hard to quantify, assuming the
effectiveness of the implemented control tokens at varying levels and token values. Further research
should identify whether there are even more suitable control tokens for Dutch. This work provides
insights into applying supervised training on parallel data based on large language models for sen-
tence simplification in Dutch language. Furthermore, the results contribute to understanding data
requirements and the impact of control tokens for simplification systems, thereby paving the way
for future advancements in Dutch language simplification.
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gorithms for hyper-parameter optimization, in Shawe-Taylor, J., R. Zemel,
P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, Vol. 24, Curran Associates, Inc.
https://proceedings.neurips.cc/paper files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-
Paper.pdf.

Biewald, L. (2020), Experiment tracking with weights and biases. software available from wandb.com.
https://www.wandb.com/.

Brouwer, R.H.M. (1963), Onderzoek naar de leesmoeilijkheden van Nederlands proza, Pedagogische
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Vandeghinste, Vincent and Bram Bulté (2019), Linguistic Proxies of Readability: Comparing Easy-
to-Read and regular newspaper Dutch, Computational Linguistics in the Netherlands Journal
9, pp. 81–100. https://clinjournal.org/clinj/article/view/97.

Vandeghinste, Vincent and Yi Pan (2004), Sentence compression for automated subtitling: A hy-
brid approach, Text Summarization Branches Out, Association for Computational Linguistics,
Barcelona, Spain, pp. 89–95. https://aclanthology.org/W04-1015.

57
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Appendix A. Dutch Word Embeddings

Several Dutch word embedding vocabularies have been tested. The final choice was the embedding
vocabulary from Fares et al. (2017), as explained in section 4.2. In the following, the remaining
evaluated word embeddings are listed.
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• The Dutch fastText model (called cc.nl.300 model in the code), which contains 2,000,000 words,
is trained on Common Crawl and Wikipedia data using fastText (Grave et al. 2018). The em-
bedding is trained with CBOW using position weights and a dimension of 300. The embeddings
are hosted on fastText and available under https://fasttext.cc/docs/en/crawl-vectors.
html and referred to in scholarly work (Reusens et al. 2022).

• The Dutch word embeddings called “coosto” (called coosto model in the code) contains 250,479
words. The embeddings are derived from Dutch social media messages from news, blogs,
and forum posts extracted in 2017 out of 624 million messages from 660 million texts. The
data is available at: https://github.com/coosto/dutch-word-embeddings. The Coosto
model is frequently used in scholarly work where it achieves competitive results (Reusens
et al. 2022, Ruitenbeek et al. 2022, Ten Oever and Martin 2021).

• The Dutch word embeddings from Tulkens et al. (2016) (called comb 320 model in the code)
contain 989,820 words from a combination of the Roularta corpus, a Wikipedia dump, the
SoNaR corpus, the COW corpus, and a social media dataset (see paper for sources). Available
under: https://github.com/clips/dutchembeddings. The embeddings are also used in
scholarly work (Ten Oever and Martin 2021).

Appendix B. Sample Set Statistics

Table 19 shows sample set statistics between the original training dataset (WikiLarge) and the
test dataset (ASSET) in English and the respective machine translation and the human reference
translation in Dutch. The numbers have been calculated on detokenized input over all documents.
The number of characters includes spacing. Given that the original test dataset only contains 359
sentences, a sample size of 84 was chosen.

Sample of the training dataset
WikiLarge Machine Translation Human Translation
(English) (GNMT, Dutch) (Dutch)

Sentences 106 107 108
Words 2049 2032 2035

Characters (w. spaces) 12177 13139 13049
Avg. sent. length (w/sent) 19.33 18.99 18.84

Sample of the test dataset
ASSET Machine Translation Human Translation
(English) (GNMT, Dutch) (Dutch)

Sentences 84 84 84
Words 1389 1377 1348

Characters (w. spaces) 8339 9045 8936
Avg. sent. length (w/sent) 16.54 16.39 16.04

Table 19: Statistics of the sampled corpora for the training and test data

Appendix C. Examples of Decoder Output

Table 20 shows example sentences generated by the three decoding methods tested in the experiments
for decoder-constrained sentence generation in section 5.5. The corresponding reference numbers of
the original sentence can be found on the right side.
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Decoding Output sentences
method
Greedy Zijn volgende werk, zaterdag, volgt op een bijzonder veelbewogen dag in zijn leven. 1
decoding De Kate Greenaway-medaille (1999) is een onderscheiding van de Britse actrice Kate Greenaway. 2

Fives is een sport waarvan wordt aangenomen dat deze dezelfde oorsprong heeft als veel racketsporten. 3
Beide namen werden opgeheven in 2007 toen de naam werd veranderd. 4
Jeddah is de belangrijkste toegangspoort tot Mekka, de heiligste stad van de islam. 5
Veel soorten verdwenen tegen het einde van de negentiende eeuw. 6
De 20e Perry Saturn (met Terri) versloeg Eddie Guerrero na een duikelleboog. 7
Desalniettemin emuleerde Tagore veel stijlen, waaronder handwerk uit het noorden van New Ireland,
Haida-gravures van de westkust van Canada (British Columbia) en outsneden 8

Top-p Hij werkt op een bijzonder veelbewogen dag in zijn leven. 1
& top-k In 2000 kreeg de ontvanger van de Kate Greenaway-medaille ook de Colin Mears Award. 2
sampling Fives is een Britse sport die wordt beschouwd als een racketsport. 3

Beide namen werden opgeheven in 2007 toen de naam werd veranderd. 4
Jeddah is de belangrijkste toegangspoort tot Mekka, de heiligste stad van de islam. 5
Veel soorten verdwenen tegen het einde van de negentiende eeuw. 6
De Perry Saturn (met Terri) versloeg Eddie Guerrero na een duikelleboog. 7
Tagore emuleerde veel stijlen, waaronder handwerk uit het noorden van New Ireland,
Haida-gravures van de westkust van Canada (British Columbia) en sneden van Max Pechstein. 8

Beam Zijn volgende werk, zaterdag, volgt op een bijzonder veelbewogen dag. 1
search De winnaar van de Kate Greenaway-medaille ontvangt ook de Colin Mears Award ter waarde van £ 5000. 2

Fives is een sport waarvan wordt aangenomen dat deze dezelfde oorsprong heeft als veel racketsporten. 3
Beide namen werden opgeheven in 2007. 4
Jeddah is de belangrijkste toegangspoort tot Mekka. 5
Veel soorten verdwenen tegen het einde van de negentiende eeuw. 6
Het WWF European Championship (8:10) Saturnus drukte Guerrero vast na een duikelleboog. 7
Desalniettemin emuleerde Tagore tal van stijlen, waaronder handwerk uit het noorden van New Ireland,
Haida-gravures van de westkust van Canada (British Columbia) en hout 8

Table 20: Example sentences generated by the three decoding methods
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