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Abstract
The Dutch language has undergone several spelling reforms since the 19th century. Normalizing
19th-century Dutch spelling to its modern equivalent can increase performance on various NLP tasks,
such as machine translation or entity tagging. Van Cranenburgh and van Noord (2022) presented a
rule-based system to normalize historical Dutch texts to their modern equivalent, but building and
extending such a system requires careful engineering to ensure good coverage while not introducing
incorrect normalizations. Recently, pretrained language models have become state-of-the-art for
most NLP tasks. In this paper, we combine these approaches by building sequence-to-sequence
language models trained on automatically corrected texts from the rule-based system (i.e., silver
data). We experiment with several types of language models and approaches. First, we finetune
two T5 models: Flan-T5 (Chung et al., 2022), an instruction-finetuned multilingual version of
the original T5, and ByT5 (Xue et al., 2022), a token-free model which operates directly on the
raw text and characters. Second, we pretrain ByT5 with the pretraining data used for BERTje
(de Vries et al., 2019) and finetune this model afterward. For evaluation, we use three manually-
corrected novels from the same source and compare all trained models with the original rule-based
system used to generate the training data. This allows for a direct comparison between the
rule-based and pretrained language models to analyze which yields the best performance. Our
pretrained ByT5 model finetuned with our largest finetuning dataset achieved the best results on
all three novels. This model not only outperformed the rule-based system, but also also made
generalizations beyond the training data. In addition to an intrinsic evaluation of the spelling
normalization itself, we also perform an extrinsic evaluation on downstream tasks, namely parsing
and coreference. Results show that the neural system tends to outperform the rule-based method,
although the differences are small. All code, data, and models used in this paper are available at
https://github.com/andreasvc/neuralspellnorm

1. Introduction

Nineteenth-century Dutch spelling differs from modern spelling in certain aspects. Many words used
to be written with double vowels, e.g., hooren/horen, loopen/lopen, and oogen/ogen. Some words
ending with -sch are now reduced to -s, such as mensch/mens and Nederlandsch/Nederlands. The
final -n case marking is no longer used, e.g., dien/die or iederen/iedere. Consider the following
fragment of Max Havelaar by Multatuli taken from the OpenBoek corpus (van Cranenburgh and van
Noord, 2022):

(1) Wat drommel kon [ @alt die dien ] [ @alt oude ouden ] heer bewegen , zich uittegeven voor
een aanbidder van mijn zusje Truitje die [ @alt zere zeere ] [ @alt ogen oogen ] had , of van
mijn [ @alt broer broêr ] Gerrit die altijd met zijn neus speelde?

Here the differences between 19th-century and modern Dutch spelling are highlighted in brackets.
While these differences will not render a text unreadable for a human reader, the performance of
NLP systems not trained on or adapted for the old spelling will degrade.
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One approach for dealing with spelling variation is to apply a rule-based system to convert these
old texts to modern spelling. However, building such systems requires careful engineering and a deep
understanding of Dutch grammar and spelling rules. Moreover, a rule-based system is limited to
a predefined set of corrections it can make, and expanding coverage without introducing incorrect
changes is a challenge.

With the recent advancements made in the field of natural language processing (NLP), pretrained
language models have become state-of-the-art for many NLP tasks, such as machine translation,
text classification, or entity tagging. Such models require a large amount of training data. While
human annotation takes a considerable amount of time and resources, we can also utilize a rule-based
system to generate ‘silver’ data for training. Therefore, leveraging the power of language models
combined with silver data from a rule-based system, we may be able to get improved spelling
normalization performance without having to do any additional annotation. Since various language
model architectures exist, ranging from word-based to character-based models, we can experiment
with which approach works best. By developing language model capable of automatically normalizing
19th-century Dutch text, various NLP tasks may benefit from the normalized text, resulting in
improved performance overall.

1.1 Research questions

In this study, we will answer the following research questions:

1. Which type of language model yields the best performance for the task of historical Dutch
spelling normalization?

2. To what extent do the pretrained language models outperform the rule-based system in terms
of spelling normalization performance?

3. Is a pretrained language model finetuned with silver data derived from a rule-based system
able to make generalizations not found in the training data?

4. What is the effect on downstream tasks when normalizing spelling with pretrained language
models, compared to other spelling normalization methods?

1.2 Outline

This paper is structured as follows: In Section 2, we discuss related work on the topic of spelling
normalization and discuss reforms the Dutch spelling underwent in the 19th century. In Section 3,
we discuss the training data for finetuning and pretraining our models, the gold data to evaluate
our models, and the pre-processing steps applied to the data beforehand. In Section 4, we discuss
our two experiments and discuss our evaluation metrics and strategy. In Section 5, we report and
discuss our results, do an error analysis on the actual mistakes, present an extended analysis, and
discuss a combination of both systems; in addition, we evaluate our systems on downstream tasks.
In Section 6, we answer our research questions, discuss limitations, and discuss possible future work.
Lastly, the annotation guidelines can be found in Appendix A.

2. Background

This section is divided into two parts. In the first part, we will discuss the major reforms to the
19th-century Dutch spelling, based on the overview by Nunn (2006, appendix H). In the second part,
we will look into different approaches for the task of spelling normalization, ranging from different
languages and model architectures to spelling correction and OCR post-correction.
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2.1 19th century Dutch spelling reforms

Before the 19th century, there was no standardized Dutch spelling and there were several cases
on which there was no agreement. In 1801 the Dutch government appointed Matthijs Siegenbeek
(professor in linguistics at Leiden University) to devise a uniform spelling. Siegenbeek thought the
Dutch spelling should be similar to the Dutch pronunciation; therefore, he made changes based on
the principles of uniformity, etymology, and analogy. Word uniformity means that words of the same
kind should also be written similarly. Word etymology, or word origin, examines how a word got
its meaning and developed throughout history. Lastly, word analogies look at how two words are
alike by comparing their different aspects. Based on these considerations, the spelling gebrekig was
changed into gebrekkig (flawed), since he argued that the word was already written with double k
in the plural form, and the word gesprekken (conversations) was also written with double k. Other
changes were the introduction of the lange ij (long y), so words like yzer became ijzer (iron). In
1804 the government made Siegenbeek’s spelling official, but it did not become popular. Writers and
poets disagreed with the spelling reforms, such as Willem Bilderdijk; he was against the new spelling.
Moreover, he published some of his own changes, for instance: pligt became plicht (duty) or gooijen
became gooien (to throw). Bilderdijk’s spelling was popular from 1830 to 1840 among some writers
and poets.

In 1851, a conference was held named the Taal- en Letterkundig Congres (Linguistic and Literary
Congress) in Brussels. The Netherlands and Belgian were tasked with creating a comprehensive
dictionary named: (WNT; Dictionary of the Dutch Language) in which different vocabularies of the
past century were published. There was only one problem, which spelling variant to use? There were
two variants: the Siegenbeek and the poet Bilderdijk spelling. To solve this problem, the linguists
Matthias de Vries and L.A. te Winkel merged the two variants into one uniform spelling, later named
the De Vries and Te Winkel spelling. They agreed with Siegenbeek that the spelling shouldn’t differ
much from the pronunciation, meaning they kept numerous rules from Siegenbeek. Words that did
change from the Siegenbeek variant were words with a g-sound, such as kaghel (heater) or lagchen
(laugh). These became kachel and lachen since they argued it suited better with the pronunciation
of the words. Moreover, the g-sound was now written in the same way as for the names: Jochem
or Lochem. Lastly, the De Vries and Te Winkel spelling introduced rules for word hyphenation,
for instance: the word koningen (kings), should it be split in koning-en or konin-gen? Other rules
were about writing specific words as one or as two separate words. In 1864 the Belgian government
accepted the new spelling, six years later the Dutch government followed, making the De Vries and
Te Winkel spelling the official norm.

In 1954, the Dutch spelling was reformed again, and an official word list was published as Het
Groene Boekje (the green book). Words ending with -sch were simplified to -s, double vowels (oo, ee)
were simplified to single vowels (o, e), and the case endings -n became optional.

The most recent spelling reform was in 1995. The major change in this reform concerned the -n
between noun compounds. Before, this was not consistently applied; for example, kippenhok (chicken
coop) but kippesoep (chicken soup). In the new spelling, the -n should generally be used (although
there are exceptions). In addition, variant spellings such as aktie instead of actie were abolished.

2.2 Spelling normalization

Spelling normalization is the task of converting words with various spelling forms into one uniform
variant, ranging from misspelled to historical spelling. In natural language processing (NLP) it can
be an important pre-processing technique since it reduces the text’s out-of-vocabulary (OOV) words.
This can increase the accuracy of other tasks in NLP, such as text classification, machine translation,
or sentiment analysis.
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2.2.1 Rule-based models

Van Cranenburgh and van Noord (2022) presented a rule-based system built for converting 19th-
century Dutch spelling to its modern equivalent. The system was designed to only correct the spelling
of the words, without altering sentence structure. For the construction of the rules, they applied two
techniques. For the first technique they used:

• The DBNL novels corpus (van Cranenburgh et al., 2022), which contains over 130 million
tokens from 1346 Dutch novels from the 18th to 20th century

• The Alpino parser (van Noord, 2006), which is a dependency parser for Dutch and has a lexicon
of 200k words and 350k names

• Rule templates, which contain spelling changes for the 19th century. These are changes such as
-sch → -s.

To construct the spelling rules, they applied the following steps:

1. Parse each novel with Alpino. If Alpino does not recognize a word, check if it meets the
frequency threshold (equal to or greater than 10 in the corpus).

2. Apply the rule templates on the word to check if it can be altered; if so, check if Alpino
recognizes the altered word; if successful, a new spelling rule is added.

This process resulted in a list of roughly 4000 words with old and modern spellings, such as aandeelen
→ aandelen (stocks). For the second technique, they manually inspected the novel Eline Vere by
Louis Couperus to create an additional 432 rules, as well as context-sensitive rules expressed as
regular expression substitutions (sed). The system thus consists of a mix of automatically and
manually constructed rules. The rules are designed to favor precision over recall since the corrections
made had to have a minimum frequency of 10 instances.

2.2.2 BERT models

Van ’t Hof et al. (2022) consider the task of post-correction of optical character recognition (OCR) for
historical Dutch text from the seventeenth up to the twentieth century; i.e., removing mistakes made
by the OCR software. This differentiates from spelling normalization since OCR post-correction can
include missing words or just wrong words. Moreover, the mistakes are less consistent; i.e., the same
word can appear in multiple variants. With spelling normalization, we expect the spelling of words
to be consistent throughout the text (e.g., menschen, humans). Still, OCR post-correction includes
spelling correction, so the techniques used can apply to spelling normalization.

Van ’t Hof et al. (2022) compared three models: dictionary, Word2vec (Mikolov et al., 2013),
and BERTje (de Vries et al., 2019) for three different tasks: error detection, error correction, and
a combination of both. The data comprised Dutch text (newspapers, literature, books, and radio
bulletins). The task involved detecting and predicting the missing or misspelled word. Word2Vec and
BERTje are used to predict missing words based on patterns of word associations in each sentence.
BERTje produces contextual word embeddings that consider the context of the other words in the
sentence. Hence, it generates a unique representation of each word based on the words around it
in the sentence. In contrast, Word2Vec uses a static embedding layer where the representation of
the word is the same for each sentence. BERTje was pretrained for the MLM (masked language
modeling) objective in a self-supervised way, meaning random tokens were masked, and based on the
remaining sentence, it has to predict the missing word. For instance:

• De [MASK] waren hard aan het werk. (The [MASK] worked hard.)

Based on the remaining context, BERTje has to predict the missing word, which should be mensen
(human) in this example. This process was repeated for millions of sentences for multiple epochs.
In the end, BERTje did not outperform Word2Vec for the historical Dutch text with OCR errors,

150



scoring several accuracy and F1 points lower on both error detection and error correction. The reason
BERTje performed worse than Word2vec can be linked to two possible reasons.

First, the historical data comprised multiple periods (16th–19th century), resulting in certain words
having multiple variants because spelling reforms for the Dutch language only became standardized
at the beginning of the 19th century, making it more challenging for BERTje to correctly identify
and correct the OCR mistakes. Second, BERTje was used without first finetuning it on the OCR
correction task. BERTje’s pretraining data did contain Dutch historical novels, but finetuning could
have yielded improved performance.

Threshold Precision Recall

0.25 0.699 0.701
0.50 0.787 0.618
0.75 0.853 0.506
0.95 0.916 0.234

Table 1: Results for the RoBERTa-large token model for error detection on OCR generated texts
(Table taken from Kim et al. 2021)

Kim et al. (2021) also focused on OCR error detection. Their study used a token-based BERT
model, RoBERTa-large (Liu et al., 2019) with a token classification head. The data came from
the HathiTrust corpus, which contains over 96k books. They only selected books for which there
were multiple versions, such they can be compared to each other for any differences (including OCR
mistakes). After selecting these duplicates, they applied sentence alignment, meaning that misspelled
or missing words were aligned for the sentence pair. This resulted in sentence pairs of which one was
used as ground truth and the other had the OCR error(s).

After sentence alignment, they used as input the OCR error and as label the ground truth
from each sentence pair. The last step before training RoBERTa was tokenizing the input and
labels. RoBERTa can tokenize certain words into sub-tokens, meaning that words not in RoBERTa’s
vocabulary are split into sub-tokens. Therefore, sub-tokens from both the input and labels were
aligned, and only OCR error tokens were given an attention value of one. Table 1 shows precision
and recall scores at different thresholds on the test set. At a threshold value of 0.95, the precision
was 91.6%, which the researchers argued is more important than the recall since one would like to
make confident corrections to the text instead of catching all errors. This was also the case for the
rule-based system, favoring confident corrections (precision) over catching all errors (recall).

2.2.3 Seq2Seq models

Soper et al. (2021) focused on OCR post-correction of historical newspapers, which are prone to
spelling errors and missing words. Instead of focusing on a BERT-based approach (encoder model),
they view the problem as a translation task and used a sequence-to-sequence (encoder+decoder) model
named BART (Lewis et al., 2020). BART combines a bi-directional encoder with an auto-regressive
decoder layer, meaning BART can process and generate new sentences, unlike BERT, which is limited
to generating only one token (label) per input sequence. The data came from the ICDAR 2017
Post-OCR Correction Dataset (Chiron et al., 2017), which consists of French and English historical
newspapers. Since BART is pretrained for English, they used English newspapers only, resulting in a
training set of 38,975 sentences. OCR post-correction consists of different corrections made to the
text. The five OCR error types BART was trained for were:

• Over-segmentation, which means words written separately should be merged into one (e.g., in
decent → indecent)
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• Under-segmentation, which is the opposite of the latter described, splitting words that are
written as one (e.g. andjust → and just)

• Misrecognized characters, which are words where one or more characters should be corrected
(e.g. ipto → into)

• Missing characters, which are words where one or more characters are missing (e.g. hat →
what or iterestng → interesting)

• Hallucination, which consists of words or strings that should be deleted altogether.

It should be noted that these errors can also appear together in the text, for instance: words
containing both under-segmentation and missing characters. In the end, BART detected and corrected
all five OCR error types, improving the text accuracy by 29.4%. BART was less consistent with
correcting under-segmentation errors due to the low frequency of these errors in the training dataset.

Kim et al. (2021) also implemented a seq2seq approach, namely T5-base, where the input (source)
was the OCR error sentence, and the output (target) was the corrected sentence. They trained the
base version for only three epochs but added a special <OCR> tag to denote the beginning and end
of an OCR error in the sentence. In the end, the model corrected six times as many errors as it
introduced, which meant it did introduce errors previously not in the text. The authors did mention
that they used a seq2seq model with a sub-word tokenizer, meaning the model encodes words into
sub-words. In contrast, they argued that a character-based model would be a better fit, but this
would be more computationally costly.

3. Data

This section is divided into three parts; first, we will discuss the training corpora used for our two
experiments, namely, a finetuning and a pretraining dataset. Secondly, we discuss the gold data used
to validate and test our trained models. Lastly, we will describe the pre-processing and cleaning
steps applied to the data before using it with our models.

3.1 Training data

Since our task involved finetuning for a downstream task, we needed data to train our models. To
the best of our knowledge, no large parallel corpora were available for 19th-century Dutch spelling
normalization; therefore, we collected our own. For this, we used Project Gutenberg, which offers over
60k public domain electronic texts, from which over 1k are 19th century Dutch texts. We selected
books published between 1840–1917; this selection was made since the Dutch language underwent
numerous reforms as explained in Subsection 2.1, therefore picking from each period allowed for a
diverse set of spelling variations. We preprocessed the texts from Project Gutenberg using the Dutch
Literature Pipeline.1 This tool allowed to easily scrape texts from Project Gutenberg by the number
of tokens and clean and convert the text into a standard format accepted by the rule-based system.
An example of how this tool returned a selected part from a novel can be seen in Figure 1.

Here, the small paragraph gets split up into two separate sentences, each with an index value
where the first number refers to the paragraph and the second to the sentence in that paragraph.
Each sentence is tokenized by splitting words and punctuation symbols.

3.1.1 Creating silver data

After collecting the data, we were left with pre-processed 19th-century Dutch sentences split into
paragraphs. We opted to go with an automatic annotation strategy since annotation by hand takes
considerably more time and resources, and the rule-based system by van Cranenburgh and van Noord
(2022) was already shown to be quite effective at normalizing 19th-century Dutch spelling.

1. https://github.com/andreasvc/dutchlitpreproc
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Input Zij gingen samen een paar passen voort; toen haalde Frank den sleutel uit zijn
zak—den sleutel van White-Rose. Hij opende de deur; een zeshoekige Moorsche
lantaren scheen in de vestibule zacht met halve vlam.

Output 26-1|Zij gingen samen een paar passen voort ; toen haalde Frank den sleutel uit
zijn zak - den sleutel van White-Rose .
26-2|Hij opende de deur ; een zeshoekige Moorsche lantaren scheen in de vestibule
zacht met halve vlam .

Figure 1: An example of the input and output of the Dutch Literature Pipeline tool used to scrape
data from Project Gutenberg (example derived from novel Noodlot by Louis Couperus)

Novel Author Published Tokens

1. Noodlot Louis Couperus 1890 8022
2. Camera Obscura Nicolaas Beets 1839 8012
3. Waarheid En Droomen Johanas Hasebroek 1840 8003
4. De kleine Johannes Frederik van Eeden 1885 8022
5. Naar het middelpunt der Aarde Jules Verne 1864 8002
6. De stille kracht Louis Couperus 1900 8021
7. Ferdinand Huyck Jacob van Lennep 1840 8026
8. Een verlaten post Johanna van Woude 1891 8005
9. Slechte Tijden Charles Dickens 1854 8002
10. De lelie van ’s-Gravenhage Jacob Cremer 1878 8002
11. Vogels van diverse pluimage Carel Vosmaer 1872 8009

Total Tokens 5k 88.126

12. In Griekenland De Aarde en haar Volken Anastase Adossidès 1909 2458
13. Instituut Sparrenheide Chris van Abkoude 1917 8002
14. De Ellendigen Victor Hugo 1862 8003
15. De Geschiedenis van Woutertje Pieterse Multatuli 1890 8010
16. Uit het leven van Dik Trom Cornelis Johannes Kieviet 1891 8016
17. Zes maanden bij de commando’s Nico J. Hofmeyr 1903 8002
18. De Pleegzoon Jacob van Lennep 1833 8066
19. Indische Menschen in Holland Maurits 1890 8003
20. Een Twaalftal Samenspraken Desiderius Erasmus 1906 8016
21. Indische Huwelijken Annie Foore 1895 8019

Total Tokens 10k 162.721

Table 2: Literature used to construct the training data (1-11 for train set 5k, and 1-21 for train set
10k), tokens refer to the number of words, including punctuation symbols.

The system works by iterating through a sentence at word level and checking for matches in
the automatic and manual rules; if there is a match, the word is enriched with a meta-annotation
that describeds the normalized version, as shown in Figure 2. In the example, the words oogenblik
(moment/instant) and eenig (only/sole) are normalized. The newly created words between brackets
start with an Alpino meta annotation tag; @alt is the most common form, where the old word (left
one) is to be replaced with the modern one (right side). This format ensures that everything remains
aligned with the original text. Other meta annotation tags are:

• @alt_mwu: Used when two or more words in the original should be merged merged into one,
and there is a different spelling, e.g., [ @mwu_alt zoiets zoo -iets ]
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Input 47-3|Voor het oogenblik schenen die handen zijn eenig verdriet te zijn .

Output 47-3|Voor het [ @alt ogenblik oogenblik ] schenen die handen zijn [ @alt enig
eenig ] verdriet te zijn .

Figure 2: An example of the expected input and output of the rule-based system (example derived
from novel Noodlot by Louis Couperus)

• @mwu: Used when two or more words in the original should be merged into one (but without a
change in spelling), e.g., [ @mwu_alt van daag ]

• @phantom: Used when a word in the original should be split into multiple tokens, e.g.,
[ @phantom op ] [ @phantom te ] [ @alt merken optemerken ]

Table 2 shows the list of novels use as training data. We used two different-sized finetuning
datasets to investigate the effect of increasing the amount of training data. We selected the first 11
novels for constructing our 5k training dataset, which had 88k total tokens, and all novels for the 10k
dataset with 163k tokens. From each novel, we selected the first 8000 tokens, rounded to the next
sentence boundary.

3.2 Pretraining data

Our second experiment involved pretraining, so we needed a large corpus of Dutch text. We used the
pretraining corpus from BERTje (de Vries et al., 2019). BERTje is a monolingual Dutch version of
the standard BERT model (Devlin et al., 2019). It is pretrained on roughly 12GB of Dutch text,
consisting of five sources (books, newspapers, SoNaR, web news, and Wikipedia). It performs for
downstream tasks such as text classification and entity tagging better than the multilingual BERT
model for the Dutch language. We selected only the books and SoNaR corpora since the books
consist of modern and historical novels, the same type as our source and target in the training data.
The SoNaR corpus (Schuurman et al., 2010) is a reference corpus of standard written Dutch which is
the same type as our target sentences in the training data. The Books corpus contained a total of
7054 novels with a total of 60 million sentences. To limit the amount of time required for pretraining,
we selected the first 500 sentences with at least 50 characters from each novel. This leaves us with
2.25 million sentences, from which we selected the first 2 million as training and the last 200k as
validation data. The SoNaR corpus contained 31 million sentences, split out over 20 smaller text
files; therefore, we selected all sentences which were longer than 50 characters, which left us with 18
million sentences. From these remaining sentences, we again select the first 2 million as training and
the last 200k as validation data.

3.3 Gold data

For the gold data, the OpenBoek repository from van Cranenburgh and van Noord (2022) already
contained three manually corrected novel fragments. We used these novels to evaluate our trained
models and the rule-based model by van Cranenburgh and van Noord (2022). The human corrections
have been done by three different annotators; therefore, there are some inconsistencies between them.
To overcome this issue, we updated the annotation guidelines to clear up some ambiguities. The
most important changes in the guidelines are the following cases:

• Leave the hyphenation in hyphenated words unchanged, (e.g. twee-en-negentig, op-zichzelf),
but do correct their spelling where needed (e.g., Noord- Duitschland → Noord-Duitsland,
kampioen-athleet → kampioen-atleet)

• Keep archaic verb conjugation of words if the spelling is correct, e.g., hij zeide, gij kwaamt.
• Remove circumflex accents; e.g., elkaâr or broêr.
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Novel Author Published Tokens

Max Havelaar Multatuli 1860 9977
Sherlock Holmes: De Agra-Schat Conan Doyle 1899 9986
Titaantjes Nescio 1915 11786

Total Tokens Test 31.749

De Uitvreter Nescio 1911 14298
Anna Karenina Lev Tolstoj 1877 10089

Total Tokens Validation 24.387

Table 3: Literature used for the gold data (dev/test data), tokens refer to the number of words,
including punctuation symbols split on whitespace.

• Correct words in French spelling to Dutch alternatives, if possible For example: billardballen
→ biljartballen; million → miljoen.

Additional changes were examples already in the guidelines but overlooked by the former annotators.
The complete revised annotation guidelines are in Appendix A.

We applied the updated guidelines to the existing novel fragments to ensure consistency. We
also corrected two extra novels, which were first automatically corrected with the rule-based system;
these novels are used as validation data during the training of our models. The novels used as gold
data are listed in Table 3.

3.4 Data pre-processing

For our training dataset, we used a total of 21 novels. Since the data was automatically annotated,
some sentences were corrupted and omitted from the final datasets. These sentences contained only
punctuation such as empty parentheses, which is not useful as training data. Some sentences also
had corrupted characters. Instead of correcting these sentences, which meant manual correction,
we decided to leave them out altogether to ensure the data was purely silver standard. We did
remove the front matter for each novel, such as titles, authors, and year of publication. In total,
this was less than 0.1% of the data. The pretraining datasets were obtained from BERTje and had
already undergone pre-processing and cleaning. Similarly, the gold data was also already cleaned and
corrected.

4. Method

This section will describe the two experiments run with the datasets, namely, (1) Finetuning FlanT5
and ByT5 with our silver data, and (2) Pretraining ByT5 with monolingual Dutch data and finetuning
it afterward with the same datasets from experiment 1. We will discuss the model’s architecture for
each experiment, the environment we trained in, and the (hyper)-parameters we optimized. Lastly,
we will discuss the evaluation metrics used for inference.

4.1 Experiment 1: finetuning

Our first experiment involved finetuning the two T5 models with the generated silver data as described
in Section 2. We chose the T5 models since T5 comes in different configurations, and is one of the
few that has both word and character based versions. We trained each model twice, first with only
5k sentences from our train dataset and secondly with our entire dataset of roughly 10k sentences, in
order to assess the impact of the amount of traing data. The training was done on the RUG Hábrók
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GPU cluster, which uses high-end GPUs (NVIDIA A100 or V100). For the finetuning we considered
the following hyperparameters:

1. Learning rate: using values from 1e-4 to 5e-5, where higher learning rates performed better
with 5k sentences and lower learning rates were better with the entire dataset.

2. Batch size: using the values 16 or 32; our models performed better when the data was fed in
smaller batches.

3. Sequence length: here we distinguished between the train and validation set. For the train set,
we used a maximum sequence length of 155 since sentences over 150 characters long are split
beforehand. This is to use less computational resources in the training process for the larger
model (ByT5) and speed up the overall training process. For the validation set, we used a
maximum sequence length of 455 because the longest sentence in the development set was 450
characters long. Moreover, applying the same technique on the validation set is better because
both models will predict on the test set without splitting.

4. Training epochs: we implemented an early stopper that monitored the validation set for the
highest value accuracy. We used a patience of three, meaning if the val_accuracy decreased
three consecutive times, the model halted training and loaded the checkpoints with the highest
accuracy. This ensured that overfitting was less likely, and our models could achieve their best
setting.

Figure 3: Overview of the finetuning process
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In Figure 3, a schematic overview of the finetuning process is shown for our ByT5 model; the same
approach is used for FlanT5, except that it uses a subword tokenizer instead of the character-based
one. In the first step, the sentence is normalized with the rule-based system, where the input (source)
is the 19th century spelling and the output (target) is the modern version. Afterward, we apply
the tokenization process, which involves converting the text to numerical data, so our model can
work with it. Since this example uses the token-free model, each character from the sentence gets
tokenized, and since our source sentence is longer than the target, two extra characters and input ids
are present, highlighted in red.

4.1.1 FlanT5

The first model we used was Flan-T5 small, which has 77 million trainable parameters. We chose this
variant of T5 since we work on Dutch, and the original T5 is only pretrained on English (monolingual).
Moreover, since this version is nearly the same size as the original T5 (60.5 million parameters), it is
less computationally heavy than the multilingual version of T5, mT5 (Xue et al., 2021), which has
over 300 million trainable parameters. The only difference between Flan-T5 and mT5, apart from
their architecture and total parameters, is the number of supported languages. Flan-T5 supports
up to 60 languages, while mT5 supports 101 languages. This is because mT5 is pretrained on the
multilingual C4 corpus (mC4), while Flan-T5 is not pretrained but further finetuned for 1.8k tasks
from a newer T5 checkpoint, which is only pretrained on the C4 corpus (English only). This means
we use a further finetuned version of T5 instead of a completely new pretrained model.

Architecture Flan-T5 is based on the newer released checkpoint of T5: T5 version 1.1, which
has 77 million parameters. Version 1.1 is trained with the same C4 dataset, only this time, the
rectified-linear (ReLu) activation function is replaced with a variant of gated-linear-units (GLU)
named GEGLU (Shazeer, 2020). Version 1.1 is also pretrained in an unsupervised way; therefore, it
cannot be used on a downstream task but must be finetuned first. The authors of Flan-T5 finetuned
T5-v1.1 with 473 datasets for 146 different task categories, resulting in 1836 total tasks. They applied
instruction finetuning, which means the model gets finetuned for multiple downstream tasks by
applying a special prefix.

Text mT5 input_ids length ByT5 input_ids length

John [4040] 1 [77, 114, 107, 113] 4
is [339] 1 [108, 118] 2
walking [259, 42822] 2 [122, 100, 111, 110, 108, 113, 106] 7
his [1638] 1 [107, 108, 118] 3
German [20567] 1 [74, 104, 117, 112, 100, 113] 6
Shepherd [320, 125326] 2 [86, 107, 104, 115, 107, 104, 117, 103] 8
. [259, 260] 2 [49] 1

Total seq: 10 31
Vocab size: 250100 384

Table 4: An example of the encoding process (input_ids) for a sub-word model (mT5) and token-free
model (ByT5), special tokens are excluded from the example.

4.1.2 ByT5

The second model we trained was ByT5 small, which has 300 million trainable parameters, comparable
to mT5 small. We chose this model because a character-based model seems like a good fit for the task
of spelling normalization. ByT5 does not use a tokenizer but operates directly on the raw characters;
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Figure 4: Overview of the pretraining method

therefore, the model is not restricted to a single language since the vocabulary is not subwords but
UTF-8 bytes. Moreover, spelling normalization focuses on characters; we have to make corrections on
the character instead of word level. Furthermore, since ByT5 encodes each character of the sentence
separately, it may be able to generalize between spelling mistakes across different words.

Architecture ByT5 is based on the mT5 architecture, a multilingual version of T5. The major
different with mT5 is the lack of a tokenizer. While mT5 uses the SentencePiece tokenizer (Kudo
and Richardson, 2018), ByT5 is fed with bytes (characters) as input directly. This means that ByT5
encoded sequences are longer than mT5 since each word is converted into multiple character tokens
depending on the number of characters, whereas with a subword tokenizer, it depends if the word is
in the tokenizer’s vocabulary. An example of the tokenization process between mT5 and ByT5 can
be found in Table 4; here, both models have advantages. mT5 has a shorter sequence length, which
means the total computational cost is lower, but ByT5 has a smaller tokenizer vocabulary, which
means the chance of having out-of-vocabulary words (<UNK>) is less likely to occur.

Another difference from mT5 is the distribution between the encoder and decoder layers. mT5
has 16 layers evenly distributed between the encoder and decoder, while ByT5 has an encoder with
12 layers and a decoder with just 4 layers. This means that ByT5 relies more on its encoder. Lastly,
regarding the size of the vocabulary, since ByT5-small only uses 384 unique characters in its tokenizer,
the overall percentage of the model’s size dedicated to the vocabulary is only 0.3%, while mT5-small
vocabulary takes up 85% of the total size.

4.2 Experiment 2: pretraining and finetuning

In our second experiment, instead of only finetuning, we start by pretraining our best model from
experiment 1 (ByT5) and afterward finetune with the same silver data as in experiment 1. Since
pretraining takes considerably more computational power, we limited our pretraining datasets to
only 2 million sentences, as discussed in Subsection 3.2. For pretraining, we made use of the Flax
script from HuggingFace,2 supplied by the authors of T5. Flax is a machine learning library from

2. https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/run_t5_mlm_flax.py
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Google that outperforms TensorFlow and PyTorch in performance and makes pretraining more
computationally efficient. We again used the Hábrók GPU cluster for pretraining and ran on an
A100 NVIDIA GPU for roughly 50 hours. The main difference between pretraining over finetuning
is that pretraining is done self-supervised, meaning ByT5 is fed with unlabeled data from a large
corpus. As mentioned previously, ByT5 has been pretrained with the mC4 corpus, which contains
roughly 277GB of Dutch text. These texts are from the common crawl corpus, which contains
petabytes of data scraped from the internet. Further pretraining on in-domain data can make the
model more suited for the downstream task it will be finetuned for, and since our task involved
spelling normalization for the Dutch language, letting the model pretrain on additional (modern)
Dutch sentences could benefit its overall performance. Figure 4 shows a schematic overview of the
pretraining task. Here, the main difference with our finetuning task is that instead of encoding two
variants of a sentence (19th and modern Dutch) for the source and target, it is based on only one
sentence. The pretraining task is a span-mask denoising task, which involves first corrupting up to
20 characters, which the ByT5 model then has to predict based on the remaining non-corrupted
characters in the source sentence, as shown in the illustration.

4.2.1 Hyperparameters

For pretraining, we considered the following hyperparameters and values:

1. Learning rate: we used a value of 5e-4 in combination with a warm-up step of 10k and weight
decay of 0.001.

2. Batch size: we used a value of 8 per device, meaning for each GPU/CPU.
3. Maximum sequence length: we used a value of 512; longer sentences are truncated
4. Span length of masked tokens: we applied a value of 20, meaning that up to 20 characters may

be corrupted at a time.

We pretrained the models for 25 epochs, saved the weights after every 50k training steps, and
evaluated the validation set after every 10k training steps.

4.3 Spelling normalization evaluation

For the evaluation of the trained systems, we focused on the following four intrinsic metrics: precision
and recall (Reynaert, 2008), Error Reduction Rate (ERR; van der Goot et al., 2021), and character
n-gram F-score (ChrF and ChrF++; Popović, 2015, 2017). For the calculation of the precision and
recall, we calculated it based on the whole text instead of a single sentence, meaning we computed
the precision and recall per novel instead of averaging it per sentence. We used the precision_score
and recall_score functions from the Scikit-learn library (Pedregosa et al., 2011).

Since our task focused on text normalization, the total number of tokens that had to be normalized
per novel can differ. This means that an accuracy of 95% on one dataset can be quite good, while on
another, it might be useless since we do not consider the total of corrections actually made to the
text. Therefore, we also report ERR; this metric is the accuracy normalized by the number of words
that must be corrected in the text. The formula for the ERR is as follows:

ERR =
%accuracy − %words_not_normed

100− %words_not_normed
(1)

Here %accuracy is the percentage of correctly spelled words (standard accuracy), and %words_not_normed
is the percentage of words that did not need to be normalized (baseline accuracy). Therefore, the
ERR requires three versions of the test set: (1) the original, (2) the gold, and (3) the predictions.
The baseline accuracy is calculated between the original and gold, and the standard accuracy is
calculated between the gold and the prediction. We used the script from van der Goot et al. (2021)
to calculate the ERR.
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Lastly, we computed ChrF and ChrF++ scores for each sentence, which are based on character
6-grams. The formula for the ChrF is as follows:

chrFβ = (1 + β2)
chrP · chrR

β2 · chrP + chrR
(2)

Here chrP stands for the character n-gram precision, and chrR for the character n-gram recall.
The β value indicates the importance of recall, where a higher β value means more importance on
the recall, and a β value of one means that precision and recall have the same weight for calculating
the F-score. The ChrF++ score is a newer variant which not only considers character 6-grams, but
also word bigrams. The scores for each sentence are averaged into a macro F-score.

It should be noted that for the computation of the latter described metrics, before calculating
the metric, we first split the sentences into words and ensure that they are of equal length. Since
both T5 models append the punctuation marks to the end of the word, we first pre-processed the
data before evaluation. We also had differences in output length due to words being split or merged
in the process of spelling normalization (e.g., op te merken vs. optemerken), resulting in longer or
shorter sentences for the output. To overcome this issue, we applied the following pre-processing
steps beforehand:

1. Split words and punctuation marks, but keep punctuation that should be part of the word
(e.g., etc., IX.)

2. Align sentences by merging/separating words on white space that should be considered as one
between the source and target (e.g., "op" "te" "merken" → "op te merken").

Prediction (11) "En", "dan", "kon", "je", "ervan", "opaan,", "dat", "Bavink", "over", "Lien", "begon."
Gold (14) "En", "dan", "kon", "je", "ervan", "op", "aan", ",", "dat", "Bavink", "over", "Lien", "begon", "."

Prediction (13) "En", "dan", "kon", "je", "ervan", "opaan", ",", "dat", "Bavink", "over", "Lien", "begon", "."
Gold (14) "En", "dan", "kon", "je", "ervan", "op", "aan", ",", "dat", "Bavink", "over", "Lien", "begon", "."

Prediction (13) "En", "dan", "kon", "je", "ervan", "opaan", ",", "dat", "Bavink", "over", "Lien", "begon", "."
Gold (13) "En", "dan", "kon", "je", "ervan", "op aan", ",", "dat", "Bavink", "over", "Lien", "begon", "."

Figure 5: An example of a prediction and gold pair before and after applying pre-processing steps for
evaluation. Upper row is beforehand, middle row is applying step 1, lower row is applying
step 2, number in brackets refers to the sentence length (example derived from Titaantjes
by Nescio)

An example of the pre-processing steps is shown in Figure 5. Here the final punctuation is
part of the last word begon (began) for the prediction, and the words op aan (on) are seen as two
words in the ground truth. First, the punctuation is split, and second the words op aan are joined
together. Note that the whitespace remains, since for the evaluation opaan vs. op aan are treated as
different tokens. If, after pre-processing, the prediction and ground truth are still unequal in length
on word-level due to hallucinations of the models, we discard the prediction and use the original
sentence (19th century) instead. This ensured that we could evaluate the whole test set, without
skipping any sentence. Hallucinations were mostly sequences of words repeated multiple times from
the input, resulting in longer sentences of up to 15 words. Since the rule-based output also made
corrections where old spelled words were combined or separated, we applied the same pre-processing
steps. The only difference was that the rule-based system didn’t have any hallucinations.

5. Results & Discussion

In this section, we will report and discuss the results for our two experiments. We first discuss the
results obtained by finetuning the initial two models for experiment 1 (Subsection 4.1). Second, we
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report the results of our pretrained models from experiment 2 (Subsection 4.2). For both experiments,
we compare the obtained results with the rule-based system by van Cranenburgh and van Noord
(2022) and report the results on the four metrics mentioned in Subsection 4.3. Lastly, we discuss
the error analysis for the actual spelling mistakes and do an extended analysis, diving deeper into
specific predictions from the test set.

Novel Model ERR (%) Precision (%) Recall (%)
5k 10k 5k 10k 5k 10k

Max Havelaar 1. Rule-Based 70.63 96.02 96.20
2. FlanT5 55.44 61.52 94.19 94.85 94.76 95.21
3. ByT5 (orig) 67.59 67.59 95.73 95.74 95.99 95.99
4. pretrain ByT5 SoNaR 67.09 69.37 95.67 95.91 95.92 96.20
5. pretrain ByT5 Books 67.09 71.39 96.03 96.04 96.28 96.39

Sherlock Holmes 1. Rule-Based 69.73 96.54 97.00
2. FlanT5 59.18 62.50 94.94 95.53 96.00 96.32
3. ByT5 (orig) 72.07 72.27 96.93 96.93 97.58 97.59
4. pretrain ByT5 SoNaR 72.27 72.27 96.97 96.89 97.52 97.56
5. pretrain ByT5 Books 71.29 74.02 96.81 97.28 97.58 97.87

Titaantjes 1. Rule-Based 62.70 97.93 98.27
2. FlanT5 72.02 77.29 96.36 96.89 97.11 97.46
3. ByT5 (orig) 82.11 83.03 97.69 97.81 98.13 98.31
4. pretrain ByT5 SoNaR 83.94 85.55 98.08 98.21 98.30 98.59
5. pretrain ByT5 Books 84.17 85.32 98.04 98.26 98.47 98.57

Table 5: ERR (error reduction rate), precision, recall results for 5k/10k trained models: 1. Rule-
Based system by van Cranenburgh and van Noord (2022), 2. Flan-T5-small, and three
ByT5-small models (3. ByT5 original weights, 4. pretrained ByT5 with the BERTje books
corpus, 5. pretrained ByT5 with SoNaR).

5.1 Experiment 1

For experiment 1, we finetuned FlanT5 and ByT5, both from their original pretrained checkpoints.
We finetuned each model first with the 5k silver data and later with the full 10k dataset. The results
are in rows 2–3 of Table 5 and 6. In the following discussion we focus mainly on the ERR since it
reflects only the tokens that need to be normalized.

For the 5k dataset, ByT5 outperformed FlanT5 on ERR, precision, and recall for all three novels,
where the most significant difference can be seen for the novel Sherlock Holmes, scoring 21.8% higher
on ERR. Precision and recall scores lie closer together, where precision scored 2.1% and recall 1.65%
higher, but this is expected since it takes into account all the words in the novel. The same goes for
the ChrF results; ByT5 performed better on all three novels for both ChrF scores.

For the 10k dataset, again, ByT5 scored the highest, where the most significant deviation for the
ERR is again the novel Sherlock Holmes, scoring now only 15.6% higher. Finetuning FlanT5 with
twice the data did benefit its performance for all three novels, whereas ByT5 had minimal increases,
scoring for the novel Max Havelaar the same ERR and for the other two only a minimal increase of
0.3 & 1.10 percent, respectively.

Comparing the finetuned models with the rule-based model shows that FlanT5 only scored higher
for the novel Titaantjes, both with the 5k and 10k dataset. ByT5 scored higher on 2 out of 3 novels
(Sherlock Holmes and Titaantjes) when compared with the rule-based model.
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Novel Model ChrF (%) ChrF++ (%)
5k 10k 5k 10k

Max Havelaar 1. Rule-Based 98.86 98.68
2. FlanT5 98.43 98.58 98.14 98.34
3. ByT5 (orig) 98.79 98.80 98.59 98.60
4. pretrain ByT5 SoNaR 98.77 98.86 98.56 98.67
5. pretrain ByT5 Books 98.80 98.92 98.60 98.74

Sherlock Holmes 1. Rule-Based 98.83 98.52
2. FlanT5 98.42 98.54 98.01 98.16
3. ByT5 (orig) 98.87 98.89 98.60 98.62
4. pretrain ByT5 SoNaR 98.85 98.84 98.58 98.58
5. pretrain ByT5 Books 98.83 98.92 98.55 98.67

Titaantjes 1. Rule-Based 98.39 98.12
2. FlanT5 99.21 99.34 99.01 99.19
3. ByT5 (orig) 99.45 99.47 99.34 99.36
4. pretrain ByT5 SoNaR 99.26 99.54 99.23 99.45
5. pretrain ByT5 Books 99.53 99.56 99.43 99.46

Table 6: ChrF and ChrF++ results for 5k/10k trained models: 1. Rule-Based system by van
Cranenburgh and van Noord (2022), 2. Flan-T5-small, and three ByT5-small models (3.
ByT5 original weights, 4. pretrained ByT5 with BERTje books corpus, 5. pretrained ByT5
with SoNaR).

5.2 Experiment 2

For experiment 2, we first pretrained ByT5 with two different datasets, the BERTje books corpus
and SoNaR. Afterward, we finetuned both models in the same way as experiment 1. Results for the
ERR, precision, recall, and ChrF(++) can be found in Table 5 and 6, rows 4–5, where again we
mainly focus on ERR.

For the 5k dataset, for the novel Max Havelaar, both models have the same ERR score, but ByT5
pretrained on books achieves 0.38% higher on both precision and recall, and similarly for ChrF(++).
For the novel Sherlock Holmes, pretrained SoNaR performed better on ERR (1.37% higher), and
for Titaantjes, pretrained books performed better on ERR (0.27% higher). Resulting in pretrained
books performing better for 2 out of 3 novels.

For the 10k dataset, the pretrained books version extends its lead, where its performance for the
novel Max Havelaar on ERR is 2.9% higher over pretrained SoNaR. For Sherlock Holmes, pretrained
SoNaR has a minimal increase, while pretrained books achieve 2.42% higher ERR over the pretrained
SoNaR. For the last novel, Titaantjes, pretrained SoNaR has a more significant gain over books,
scoring 0.27% higher on ERR. Therefore, finetuning with the bigger train set resulted in a larger
deviation between the pretrained versions. Where pretrained books performed better overall for 2
out of 3 novels and had a minimal difference of only 0.27% in ERR.

Lastly, comparing the rule-based system with the two pretrained versions shows that both systems
outperform it for the novels Sherlock Holmes and Titaantjes. Still, pretrained SoNaR didn’t perform
better for Max Havelaar. The only model capable of beating the rule-based system in all three novels
was pretrained ByT5 books.
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Novel Rule-based top 10 mistakes ByT5 top 10 mistakes
prediction ground truth freq prediction ground truth freq

Max Havelaar zo -iets zoiets 5 meisjen meisje 5
op-eens opeens 4 op-eens op eens 4
duitsch/duitsche Duits 4 korrespondentie correspondentie 3
korrespondentie correspondentie 3 optemerken op te merken 3
optemerken op te merken 3 moeielijker moeilijker 3
moeielijker moeilijker 3 luî lui 2
luî lui 2 konnexie connectie 2
ouden oude 2 duitsche Duitse 2
konnexie connectie 2 enigen enige 2
enigen enige 2 solieden solide 2

Total mistakes: 116 113

Sherlock Holmes zei zeide 24 zei zeide 24
ene een 13 ene een 13
enigen enige 7 enige enige 7
uwe/uwen uw 6 uwe/uwen uw 6
dezen deze 4 dezen deze 4
gene geen 3 bizonder bijzonder 3
haren haar 3 oudsten oudste 3
onzen onze 3 gene geen 3
te zamen tezamen 2 onzen onze 3
zoëven zo-even 2 zoëven zo-even 2

Total mistakes: 155 133

Titaantjes hij -ie 93 der van de 15
der van de 15 onzen onze 2
onzen onze 2 verten verte 2
zooiets zoiets 2 anderen andere 2
verten verte 2 opaan op aan 1
anderen andere 2 der er 1
opaan op aan 1 effe effen 1
koeienoogen koeienogen 1 geprakkizeerd geprakkiseerd 1
der er 1 bizonder bijzonder 1
effe effen 1 metdertijd mettertijd 1

Total mistakes: 163 63

Table 7: Top 10 most common spelling mistakes for the rule-based system and our best-performing
model of each novel. Total mistakes are the total number of spelling mistakes present in the
novel for the system, e.g., for Max Havelaar ; the rule-based had 116 incorrect and ByT5
only 113.

5.3 Error analysis

The previously described results only give us a limited view of our model’s performance; therefore,
we report the actual spelling mistakes the systems made on the word level, see Table 7. We compare
the rule-based system with our best model for each novel’s top 10 most common mistakes, including
the total mistakes. The total mistakes are the sum of all wrong (precision) and missing (recall)
normalizations. For the novel Max Havelaar, the top 10 is almost identical, meaning the difference
has to be due to less frequent errors. The only difference is the first row, where zoiets (something
like that) is done incorrectly by the rule-based, and meisje (girl) by the ByT5 model. For the first
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case, the rule-based system does not correct the word, where it only corrected the first part: zoo →
zo. For the second case, the word meisje does get corrected by the rule-based system, and since our
model used it to generate the training data, it should have corrected the word. But due to the word
not appearing in one of the 21 novels of the training data, our models never learned to correct it,
the same problem Soper et al. (2021) described for their under-segmentation class. The difference
for this novel is also the smallest, with only three fewer incorrect words, but this novel was also the
oldest from the test set.

Looking at the novel Sherlock Holmes, the most frequent word is zeide (said). Both corrected it
to zei, which is a correct alteration, but due to changes made in the annotation guidelines, we kept
the original archaic verb conjugation if they were spelled correctly. Other differences between the
two systems are the words: haar (her) and bijzonder (special). The rule-based system lacks a rule
for correcting haren → haar, but it did have a rule for cases such as hare → haar. It also contains a
rule for bizonder → bijzonder, but our training data for ByT5 only had one instance in it, which
proved too little.

Lastly, the novel Titaantjes had the most significant difference, but this is due to the first case,
the correction -ie → hij is a correct alteration, but again, we kept instances such as these since it is
still valid for modern Dutch. Leaving this case out of the total mistakes, our best model still has
seven mistakes less (70 vs 63). Other interesting cases were metdertijd (over time) and koeienogen
(cow eyes). The rule-based system had a rule for correcting metdertijd, but again, the training-set
lacked such instances. The word koeienogen is not corrected by the rule-based system, but since our
model has seen cases for the word ogen (eyes), it was able to make the correct prediction.

5.4 Extended analysis

In Figure 6, predictions of sentences from the three novels can be found; here, the output is shown
for the rule-based system and our best FlanT5 and ByT5 models. Since our models used silver data
originating from the rule-based system, the correct spelling of the word tooneelmenschen is not in
our model’s training corpus; neither are all words marked in red for the rule-based (RB) system.
However, our models are capable of correcting certain cases that the rule-based system does not.
This can be because in our model’s training data, words where a similar correction applies, such as
-sch → -s or removal of double vowels oo → o, the system can generalize it to different cases. While
FlanT5 and ByT5 are both capable of making corrections not found in the training data, we can
still see that our character-based model performs better in certain situations. In sentences 3, 5, 8, 9,
and 10, ByT5 corrects words FlanT5 does not, indicating that character-based models are better at
making such generalizations. Still, there is one instance where FlanT5 performed better. The word
mijnheer (sir) is normalized correctly by both the rule-based system and FlanT5, while ByT5 did
not correct it.

5.5 Rule-based + ByT5

Our ByT5 model performed the best on all three novels based. However, there were cases were the
rule-based system corrected words ByT5 could not fix. Combining the output of ByT5 with the
rule-based system could result in even better performance. For this, we iterated over each word
in each novel’s prediction from the rule-based and ByT5 model. If there was a disagreement, we
favored the ByT5 prediction over the rule-based one. Since ByT5 can correct more unique words,
favoring ByT5 decisions could lead to better performance. In the end, this combined system did not
outperform our best model, with a lower ERR score for all three novels. This was mainly due to
the systems having different unique words that they predicted correctly or incorrectly. And since
we only could decide on favoring one model over the other for cases of disagreement, we introduce
both correct and incorrect cases. For example: if there was a disagreement about the word bijzonder
(exceptional), and we favored the ByT5 (bizonder) over the rule-based (bijzonder) system, we would
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5.5 rule-based + byt5 22

Orig 1. - Zelfs als die tooneelmenschen armoede willen voorstellen, is hun voorstelling altijd leugenachtig.
RB 1. - Zelfs als die tooneelmenschen armoede willen voorstellen, is hun voorstelling altijd leugenachtig.

FlanT5 1. Zelfs als die toneelmensen armoede willen voorstellen, is hun voorstelling altijd leugenachtig.
ByT5 1. - Zelfs als die toneelmensen armoede willen voorstellen, is hun voorstelling altijd leugenachtig.

Orig 2. - Het was me bijzonder aangenaam u weer te zien , m’nheer ...
RB 2. - Het was me bijzonder aangenaam u weer te zien , mijnheer ...

FlanT5 2. - Het was me bijzonder aangenaam u weer te zien , mijnheer ...
ByT5 2. - Het was me bijzonder aangenaam u weer te zien , m’nheer ...

Orig 3. Toen ik ’t laatst op gindschen grond

RB 3. Toen ik ’t laatst op gindschen grond
FlanT5 3. Toen ik ’t laatst op gindschen grond

ByT5 3. Toen ik ’t laatst op gindse grond

Orig 4. Zoo’n meisjen is natuurlijk de heldin .

RB 4. Zo’n meisje is natuurlijk de heldin .
FlanT5 4. Zo’n meisjen is natuurlijk de heldin .

ByT5 4. Zo’n meisjen is natuurlijk de heldin .

Orig 5. Toch kwamen wij , jongens van quarta , altijd ’s avends op de Westermarkt om dat meisje te zien .
RB 5. Toch kwamen wij , jongens van quarta , altijd ’s avends op de Westermarkt om dat meisje te zien .

FlanT5 5. Toch kwamen wij , jongens van quarta , altijd ’s avends op de Westermarkt om dat meisje te zien .
ByT5 5. Toch kwamen wij , jongens van quarta , altijd ’s avonds op de Westermarkt om dat meisje te zien .

Orig 6. ’t Eerste licht in moederoogen ?

RB 6. ’t Eerste licht in moederoogen ?
FlanT5 6. ’t Eerste licht in moederogen ?

ByT5 6. ’t Eerste licht in moederogen ?

Orig 7. Over het PERPETUUM MOBILE , de cirkelkwadratuur en den wortel van wortellooze getallen .
RB 7. Over het PERPETUUM MOBILE , de cirkelkwadratuur en de wortel van wortellooze getallen .

FlanT5 7. Over het PERPETUUM MOBILE , de cirkelkwadratuur en de wortel van wortelloze getallen .
ByT5 7. Over het PERPETUUM MOBILE , de cirkelkwadratuur en de wortel van wortelloze getallen .

Orig 8. Ziet dezen krans met paarlen bezet , naast de kinine-flesch .
RB 8. Ziet dezen krans met paarlen bezet , naast de kinine-flesch .

FlanT5 8. Ziet dezen krans met paarlen bezet , naast de kinine-flesch .
ByT5 8. Ziet dezen krans met paarlen bezet , naast de kinine-fles .

Orig 9. De Beij van Tunis kreeg een kolijk als hij het wapperen hoorde van de nederlandsche vlag .

RB 9. De Beij van Tunis kreeg een kolijk als hij het wapperen hoorde van de nederlandsche vlag .
FlanT5 9. De Beij van Tunis kreeg een kolijk als hij het wapperen hoorde van de nederlandsche vlag .

ByT5 9. De Beij van Tunis kreeg een kolijk als hij het wapperen hoorde van de nederlandse vlag .

Orig 10. Over het SANSKRIT , als moeder van de germaansche taaltakken .

RB 10. Over het SANSKRIT , als moeder van de germaansche taaltakken .
FlanT5 10. Over het SANSKRIT , als moeder van de germaansche taaltakken .

ByT5 10. Over het SANSKRIT , als moeder van de germaanse taaltakken .

Figure 10: 10 example sentences from the test sets for the Rule-based (RB) system and our
best word-based and character-based model (FlanT5 finetuned with 10K (FlanT5),
pretrained ByT5 finetuned with 10K (ByT5)). Underlined words in the original
(Orig) are the old spelled words, words marked red are incorrect, and words
marked green are correct.

Figure 6: 10 example sentences from the test sets for the Rule-based (RB) system and our best
word-based and character-based model (FlanT5 finetuned with 10k (FlanT5), pretrained
ByT5 finetuned with 10k (ByT5)). Underlined words in the original (Orig) are the old
spelled words, words marked red are incorrect, and words marked green are correct.

select an incorrect instance. But for the word hardstenen (bluestones), we favored ByT5 (hardstenen)
over the rule-based (hardsteenen), we would select the correct version.

5.6 Evaluation on downstream tasks

Similar to van Cranenburgh and van Noord (2022), we report the effect of spelling normalization
on two downstream tasks: parsing and coreference resolution. For parsing, we report the labeled
dependency F1 score. We only report parsing scores for Titaantjes, since this is the only text for which
we have manually corrected parse trees available. For coreference, we report mention identification
performance with the span F1 score and coreference performance with the CoNLL score (Pradhan
et al., 2012). We consider four versions of each text:

1. the original text
2. a normalized version produced by the rule-based system
3. a normalized version produced by the best neural system (pretrain ByT5 Books 10k)
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Text Spelling Dep F1 Mention F1 CoNLL

Titaantjes original 86.44 86.40 66.39
rule-based 89.73 88.42 67.39
neural 89.80 88.43 67.98
manual 89.97 88.61 68.17

Max Havelaar original 84.47 64.89
rule-based 85.98 66.02
neural 85.89 65.98
manual 86.33 66.55

De Agra Schat original 84.24 57.32
rule-based 86.44 59.44
neural 86.58 59.51
manual 87.51 60.12

Table 8: The effect of spelling normalization on downstream tasks.

4. a manually normalized version

Each version of this text is parsed by Alpino, and coreference is resolved using the dutchcoref
system (van Cranenburgh, 2019). Before the texts can be parsed by Alpino, some massaging of the
data is required. In our setup, Alpino expects the original text with any normalizations indicated
using meta annotations; see (1) for an example. Getting the data in this format requires alignment
of the original and the normalized sentence, and adding the right meta annotations.3 We perform
these postprocessing steps using several ad hoc scripts; for details, see the Github repository.4

The results are in Table 8. The scores mostly follow the expected pattern; i.e., manual spelling
normalization gives best results, followed by the neural system, the rule-based system, and finally
the original non-normalized text. However, the differences between the normalization methods are
quite small.

6. Conclusion

In this section, we will first answer our research questions posed in the introduction, second, we
discuss the limitations of our work, and lastly, discuss possible future research.

Our first research question was: Which type of language model yields the best performance for
the task of historical Dutch spelling normalization? We trained four different models: FlanT5, a
word-based model, and three versions of the token-free model ByT5, where two were pretrained first.
Each model was finetuned with two sizes of the same dataset, 5k and 10k sentences, respectively.
Our best models were the pretrained ByT5 models. The model pretrained with books achieved the
best results on the novels Max Havelaar and Sherlock Holmes, whereas the pretrained version with
the SoNaR corpus achieved the best results on the novel Titaantjes. Therefore, we can conclude
that for historical Dutch spelling normalization, a pretrained ByT5-small model, which has been
finetuned afterward, is the best approach. However, if time and computational resources are limited,
the original ByT5, pretrained on the whole mC4 corpus, still achieves good results—far better than
the subword model FlanT5.

3. In future work, it might be better to train the neural system to directly produce the normalized sentence in the
format which Alpino expects, but this would still require postprocessing, to ensure the output contains syntactically
correct meta annotations.

4. https://github.com/andreasvc/neuralspellnorm
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Our second research question was: To what extent do the pretrained language models outperform
the rule-based system in terms of spelling normalization performance? This question related to
whether language models trained on data from a rule-based system are able to beat that same
rule-based system. Here we make the distinction between our word-based and character-based models.
For the word-based model (FlanT5), training on the silver data did not lead to better results than
the rule-based system. For the character-based models (ByT5), only the model pretrained with the
BERTje books corpus and finetuned with our largest dataset could outperform the rule-based system
on all three novels if we consider all four metrics. The original ByT5 version could only outperform
it for the novels: Sherlock Holmes and Titaantjes, which were from the later periods (1899 & 1915).
Therefore, we can conclude that a pretrained monolingual Dutch ByT5 model finetuned for spelling
correction can outperform the rule-based system for 19th-century spelling normalization. However,
considering the hallucinations these models have to deal with, something the rule-based system
doesn’t affect, the risk of having situations where the output is drastically different is something to
keep in mind.

The third research question was: Is a pretrained language model trained with silver data derived
from a rule-based system able to make generalizations not found in the training data? This question
related to the capability of our trained models to correct spelling mistakes that were not present
in their training corpora. Both FlanT5 and ByT5 are capable of making corrections not found in
the training data. Between the word-based and character-based models, our character-based model
(ByT5) is, to this end, better at correcting mistakes not present in the training data. This means that
all of our trained models can make generalizations not found in the train set, where the token-free
models have the upper hand.

Lastly, our final research question was: What is the effect on downstream tasks when normalizing
spelling with pretrained language models, compared to other spelling normalization methods? We find
that in most cases, normalizing spelling with pretrained language models improves performance in
coreference resolution and parsing. However, the differences are small.

6.1 Limitations

Our initial research plan was only to finetune two T5 versions for 19th-century Dutch spelling
normalization, but due to lack in performance, we opted to also pretrain our token-free model. But
since we started pretraining later in our research, we had to limit our pretraining corpus to 2 million
sentences, whereas most pretrained models use larger corpora (20+ million sentences), which can
result in better performance overall. Another limitation was our computational power for pretraining.
We had to rely on the Hábrók GPU cluster, but there was a time limit of 72 hours, and training
with only 2 million sentences was already pushing the system with the smallest version of ByT5
available. Therefore, having access to more compute power could enable pretraining a larger version
of ByT5 with more data. We also used two dataset sizes for finetuning datasets (5k and 10k), but
since our 10k corpus performed better on almost all models, more training data could have given even
better performance. We also saw in the extended analysis that our models lacked performance due
to insufficient instances in the training data; increasing the data and ensuring the model learns more
cases can benefit its generalization capability. Lastly, taking into consideration the hallucinations
and the amount of data and computational costs of our models, one can argue that extending the
rule-based system may be more effective. The rule-based system, as discussed in Section 2, has both
manual and automatic rules; extending the latter would make the model even better without many
extra resources required.

6.2 Future research

Due to the restrictions just described, future research possibilities could focus on pretraining ByT5
for the Dutch language with more data, with a corpus well above 20+ million sentences. This could
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benefit not only performance for spelling normalization but also other tasks in NLP. Tasks such
as entity tagging, or label classification, which for now are mainly done with encoder models (for
Dutch, BERTje or RobBERT, Delobelle et al. 2020). A high-quality Dutch monolingual seq2seq
model could open the doors for many more NLP tasks, such as machine translation. Other work
could focus entirely on the token-free model and pretraining or finetuning a larger variant of ByT5;
since it comes in different sizes (small, base, large, XL), we only focused on the smallest version due
to resource limitations. Lastly, an extension to this study could be to focus exclusively on gold data
rather than silver data, which could show the difference between training with automated data and
the best possible data available. Or, instead of focusing on an ML approach, extend the existing
rule-based system.
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Appendix A. Historical Dutch Spelling Normalization Annotation
Guidelines

This annotation guideline describes the rules for correcting silver data or annotating historical
Dutch 19th-century texts. These rules only apply to changing the spelling of the text, not
rephrasing the sentence, changing the grammar, etc. The spelling corrections take the form of
instructions to the Alpino parser. There are five instructions relevant for spelling normalization:
@alt, @alt_mwu, @mwu, @phantom, and @postag. For the full documentation, see the section on brack-
eted input in the Alpino User Guide5

1. When two words are merged into one, combine the words and place them after the @alt_mwu
placeholder (right side); the old spelled words are added after (left side): [ @alt daarom daar
om]

2. When one word should be split into multiple words, apply @alt to the most important word,
and insert the other words with @phantom:
[ @phantom aan ] [ @phantom te ] [ @alt spreken aantespreken ]

3. When the silver spelling correction offers multiple possibilities, pick the correct one:
de aralia's en palmen van [ @alt ~de~den den ] corridor
de aralia's en palmen van [ @alt de den ] corridor

4. In case of doubt about any word or phrase, consult the Historical Dutch dictionary6 to check
for the correct instance.

5. Leave the hyphenation in hyphenated words unchanged, (e.g. twee-en-negentig, op-zichzelf).
But do correct single words which are written in old Dutch, (e.g., Noord- Duitschland →
Noord-Duitsland, kampioen-athleet → kampioen-atleet)

6. Normalize adjectives ending in -en, for example: gespierden → gespierde

7. Normalize grammatical cases, for example: uwen, uwer, uwe → uw; onzen → onze

8. Keep archaic verb conjugation of words if the spelling is correct, for example: gij kwaamt, gij
zijt, hij zeide

9. Remove circumflex accents; for example: broêr → broer; weêr → weer; elkaâr → elkaar

10. Correct words in French spelling to Dutch alternatives, if possible. For example: billardballen
→ biljartballen; million → miljoen

5. https://www.let.rug.nl/vannoord/alp/Alpino/AlpinoUserGuide.html
6. Woordenboek der Nederlandsche Taal (WNT): https://ivdnt.org/woordenboeken/historische-woordenboeken/
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