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Abstract
This research examines the capabilities of Large Language Models for writing error detection,
which can be seen as a first step towards automated writing support. Our work focuses on Dutch
writing error detection, targeting two envisaged end-users: L1 and L2 adult speakers of Dutch.
We relied on proprietary L1 and L2 datasets comprising writing products annotated with a variety
of writing errors. Following the recent paradigms in NLP research, we experimented with both a
fine-tuning approach combining different mono- (BERTje, RobBERT) and multilingual (mBERT,
XLM-RoBERTa) models, as well as a zero-shot approach through prompting a generative auto-
regressive language model (GPT-3.5). The results reveal that the fine-tuning approach outperforms
zero-shotting to a large extent, both for L1 and L2, even though there is much room left for
improvement.

1. Introduction

Some sort of automated writing support relying on Large Language Models (LLMs) is likely to be-
come an integral part of human written language production in the (near) future. While these models
can definitely assist with revising or even generating text, they cannot replace the critical thinking,
creativity, and effective communication that are inherent to strong human writing skills (Kasneci
et al. 2023). Therefore, both students and adults should learn to develop and maintain their writing
abilities as a key part of their overall language skills.

Research has indicated that good and timely corrective feedback is beneficial for enhancing
writing skills in both L1 and L2 writing (Biber et al. 2011, Kang and Han 2015, Link et al. 2022). But
providing this type of feedback manually can be extremely time-consuming (Godwin-Jones 2022),
even more so when considering the growing class sizes and shortage of teachers.

Today, writing support systems are prevalent thanks to advances in the field of Natural Language
Processing (NLP) and machine learning. Most well-known are the systems for automated essay
scoring (AES) - such as e-rater1 - and automated writing evaluation (AWE) - such as Grammarly2.
AES systems automatically grade writing products with machine learning by extracting linguistic
characteristics from that product. AWE systems use the same techniques to both score a text
and to provide the writer with diagnostic feedback. The latter requires the development of error
detection or correction modules (Bryant et al. 2023). In the research presented here we want to stress
the pedagogical importance of detection over correction, as detection promotes self-correction and
language learning by helping learners identify and understand their mistakes (Volodina et al. 2023).
A reliable and accurate detection system can effectively identify errors in text, enabling targeted
corrections and improving the overall quality of writing (Yuan et al. 2021).

While many systems are readily available for English writing support, research on Dutch is lagging
behind. Most of the current systems for Dutch, Schrijfhulp in particular (De Wachter et al. 2016),

1. https://www.ets.org/erater.html
2. https://www.grammarly.com/
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only apply NLP methods sparingly (Verlinde et al. 2019) and rely mostly on rule-based systems.
This causes the system to incorrectly flag errors where there are none, possibly causing confusion
in users, which might have a negative impact on motivation. In order to make these systems more
intelligent, a machine learning approach could be investigated. However, for Dutch few corpora
comprising authentic writing products are publicly available, let alone corpora which have been
manually labelled with possible writing errors.

In this respect the paradigm shifts the NLP field experienced in recent years open up new oppor-
tunities. While large task-specific training sets with labelled examples were a necessary prerequisite
to develop robust NLP systems, pre-trained large language models (LLMs) which are fine-tuned on
only a fraction of those labelled examples have revealed an impressive performance on a wide variety
of downstream NLP tasks (Min et al. 2023). Moreover, together with the size of these LLMs growing
over 100 billion parameters emerged the belief that these models actually possess reasoning abilities
and are capable of carrying out specific tasks with no fine-tuning at all, also known as zero-shot
learning (Liu et al. 2023).

In this paper we wish to explicitly focus on these two paradigms (fine-tuning and zero-shot
learning) for the task of error detection in Dutch writing products, targeting two envisaged audiences,
namely L1 and L2 adult speakers of Dutch. For the native Dutch speakers we could rely on an
existing dataset (Deveneyns and Tummers 2013). For the learners of Dutch as a second or foreign
language we relied on an in-house dataset from the Leuven Language Institute. For fine-tuning, we
experimented with current state-of-the-art Dutch LLMs as well as with multilingual models. For
zero-shot learning, a generative auto-regressive language model was prompted.

Our results show that fine-tuning outperforms the zero-shot approach to a large extent, both in
the L1 and L2 use case. Moreover, we found that evaluating zero-shot output comes with a high
post-processing cost, even after extensive prompt engineering.

The remainder of this paper is structured as follows: Section 2 discusses related research in the
field of automated writing support. Section 3 then gives a more thorough insight in the two datasets
that were used for this research, while Section 4 demonstrates and explains the chosen approaches for
the experiments. In Section 5 the results are presented and discussed through means of an in-depth
error analysis. Section 6 concludes the paper while also offering prospects for future research.

2. Related Work

Automated writing support systems have been extensively researched for decades, starting in the
1960s (Page 1966). Currently most well-known are the systems for AES and AWE: AES systems
automatically grade writing products, whereas AWE systems both assign a score and provide the
writer with diagnostic feedback. The latter rely on specialised modules capable of either detecting
or correcting errors. Important to note is that this research subfield within NLP is often referred
to as grammatical error detection (GED) or correction (GEC), however, the term grammatical is
used as an umbrella term, encompassing other types of errors, including lexical, orthographic, and
syntactical ones (Bryant et al. 2023). By addressing errors and enhancing language proficiency, both
tasks aim to improve the overall writing proficiency of learners.

While early research on GED and GEC tasks focused on rule-based systems that identify specific
types of errors (Rei and Yannakoudakis 2016), advances were mainly made thanks to employing
machine learning approaches and the advent of several shared tasks focusing on GED and GEC,
such as CoNLL (Ng et al. 2014), BEA (Bryant et al. 2019), and the recent MultiGED shared
task (Volodina et al. 2023).

Recent research in GED seems to follow the overall trend in NLP to fine-tune pre-trained LLMs
as they have revealed an impressive performance on a wide variety of downstream NLP tasks (Min
et al. 2023). In the MultiGED shared task consisting of a general GED task on L2 sets from five
different languages: English, German, Italian, Swedish and Czech (Volodina et al. 2023), the most
successful system, by Colla et al. (2023), fine-tuned a pre-trained multilingual language model, XLM-

174



RoBERTa (Conneau et al. 2020), on each language separately, whereas the runner-up fine-tuned a
similar system for all languages at once (Le-Hong et al. 2023). The best approach showed promising
F0.5 scores of up to 82.32% for German and 82.15% for Italian.

Zero-shot learning is also being explored for GED as ever-growing LLMs, such as OpenAI’s GPT
models, have proven to be powerful tools for a variety of NLP tasks (Min et al. 2023). Recent research
analysing the use of these models (specifically GPT-3.5 and GPT-4) for GED (Coyne et al. 2023)
showed some interesting results, with their best performing prompt reaching F0.5 scores of 49.66%
(GPT-3.5) and 52.79% (GPT-4) on the test set from the BEA-2019 (Bryant et al. 2019) shared task
on GEC.

Though work on languages other than English is emerging, most research has been performed
on English data, which creates inequality towards other, lower-resourced languages. In addition,
multilingual LLMs are known to be biased to English as they are often pre-trained on more English
data than any other language (Søgaard 2022, Volodina et al. 2023). Therefore, the focus of the
research presented here is on Dutch. Existing tools for Dutch error correction are mainly rule-based.
Some examples are the L1 and L2 Schrijfassistent3 tools from the Leuven Language Institute (ILT)
of KU Leuven, LanguageTool4 and Sapling5.

The two ILT tools are used by entering a text, processing it and then clicking on specific error
types. Erroneous words are highlighted and depending on the error type some general rules regarding
the inputted sentences are offered as feedback. Moreover, because the tool is mostly based on
database look-ups, it tends to overgenerate. For example, connectives such as “maar” (EN : but)
are always highlighted and then the user is presented with the feedback: “are you sure you want to
express a contradiction here”. The user thus needs to be very engaged and motivated to deduce for
themselves whether the feedback is actually relevant. On top of that, a good command of the Dutch
language is required when reading through the feedback.

With LanguageTool and Sapling, the user also enters a text and after processing, all words
containing errors are underlined with a specific colour. The colour depends on the error type, of
which there are three: spelling, grammar and punctuation. However, besides indicating these specific
error types and their correction, no additional feedback is given. Additionally, these tools tend to
overgenerate. The main problem with these rule-based systems is that they are very labour-intensive
to develop, as with each exception either comes the adaptation of an existing rule, or a whole new
rule.

Research on Dutch is thus lagging behind, which is why we wish to explicitly focus on the two
state-of-the-art NLP paradigms for the task of error detection in Dutch writing products.

3. Datasets

We relied on two existing annotated datasets collected for different purposes. The L1 dataset (Sec-
tion 3.1) was created to map the different writing errors first-year-students in professional bachelor’s
programmes make, as well as their frequency and spread. The L2 dataset (Section 3.2) is output of
an annotation tool used by teachers of Dutch as a second or foreign language to offer feedback on
the first draft of writing exercises. As both datasets had been annotated already, and re-annotation
fell beyond the scope of the current project, the annotations differ considerably. The sets are part
of in-house projects and therefore not publicly available. Table 1 lists the sizes of both datasets,
expressed in number of sentences and tokens, as well the respective error rate at the token level. In
what follows, both datasets are explained in closer detail.

3. https://schrijfassistent.be/, https://nt2.schrijfassistent.be/
4. https://languagetool.org/spellchecking-dutch
5. https://sapling.ai/lang/dutch
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Sentences Tokens Error rate
L1 2534 46531 9.23
L2 5618 102474 13.11

Table 1: Number of sentences and tokens, as well as the error rate for both the L1 and L2 dataset.

3.1 L1

For the L1 data, we relied on a corpus (Deveneyns and Tummers 2013) comprising texts written
by first year native Dutch speaking students in a variety of courses of study, all within professional
higher education programmes at the former Catholic University College Leuven. Students were
prompted to write an argumentative text about social media of around 500 words within a 1 hour
time limit. The texts were written using a computer and participants were allowed to use any
possible tools to aid in this task. The collected texts were screened for plagiarism using TurnItIn,
but the specific tools participants may have used have not been documented. It should be noted
though that this dataset was collected long before the introduction of generative AI, so these kind
of tools were unavailable at the time.

For the experiments presented here, we had access to 90 texts which were manually annotated
with the fine-grained error types as listed and exemplified in Table 2. For a translation of the
examples, please refer to Appendix A. Important to note is that the dataset was annotated using
the codified standard based on established reference works6, rather than a language user’s judgement
to identify errors for the sake of objectivity. This very fine-grained error typology also has the side
effect that some of the instances labelled as errors do not register as writing errors to most native
writers of Dutch.

Error Type Explanation Example (Dutch) %
Spelling Incorrect Dat moet niet perse. 6.53

Capitalisation Incorrect Kortom Ik vindt* het asociaal. 0.67
Missing Dit meldt de morgen.

Lexicon Non-existent Het chat-gedeelde is maar een deel. 27.62
Incorrect usage Dit kan wel is tegenvallen.
Redundant word Zoals bijvoorbeeld bij World of Warcraft.
Contamination Zeker jongeren zijn hier zeer kwetsbaar voor.
Pleonasm Je kan al je vrienden toevoegen die je kent.
Chat language Friend requests worden gedaan*.
Loan word Dit geeft een leuke touch aan je profiel.

Grammar DT-error De wereld bied meer dan vrienden alleen. 41.32
Verb congruence De impact van netwerksites hebben gevolgen.
Anaphora Er zijn niet alleen voordelen aan deze sites.
Incorrect link Om te beginnen wordt het snel verslavend.
New referent Er zijn ook tal van voordelen aan deze sites.

Punctuation Incorrect Moet iedereen alles weten over iedereen. 23.85
Missing Als je het niet hebt hoor je er niet bij.

Table 2: Error types present in the L1 dataset together with their respective proportions

In total, this dataset comprises 2,534 sentences, with 76.25% (n = 1,939) of the sentences having at
least one writing error. Looking at the token level, 9.23% (n = 4,301) of the 46,531 tokens actually

6. Specifically, the reference works used were the Woordenlijst Nederlandse Taal (Van Sterkenburg and Beeken 2005)
for spelling, Van Dale Groot Woordenboek der Nederlandse Taal (Boon and Geeraerts 2008) for lexicon, and the
Algemene Nederlandse Spraakkunst or ANS (Haeseryn 1997) for grammar.

176



constitute writing errors. Considering the error proportions of the overarching error types, following
the annotations, most writing errors are related to grammar (41.32%), followed by lexicon (27.62%),
punctuation (23.85%), spelling (6.53%) and capitalisation (0.67%) errors.

3.2 L2

For the L2 data, we have been in contact with the Leuven Language Institute (ILT) of KU Leuven.
This institute offers a range of Dutch courses for non-native speakers (NT2) and has developed a
designated proprietary tool for giving feedback on writing assignments. The tool is used by all NT2
teachers to annotate erroneous words and potentially offer more specific feedback. While the tool is
able to automatically detect spelling mistakes, most of the feedback is still provided manually by the
NT2 teachers. This is done by highlighting one or more words and assigning an error type according
to a predefined error typology. The full error typology is listed in Table 3. For a translation of the
examples, please refer to Appendix A.

The annotation tool is actively being used since February 2019 and over time, the teachers have
become more consistent in applying the error typology. However, it should be noted that they use
this typology somewhat loosely and, as such, the error annotations are not always consistent. An
example are inverted sentences such as Morgen ik kom niet. (EN : Tomorrow I will not come.), where
some teachers indicate ik as a position error, some kom, some both words as one error and some
both words as separate errors.

Error Type Explanation Example (Dutch) %
Position Incorrect word position Morgen ik kom niet. 46.49
Spelling Incorrect spelling Ik doe het onmiddelijk 14.53
Lexicon Incorrect word usage Engels is mijn moedertong. 17.18
Grammar Incorrect grammar Zij teleurstelde mij. 12.07

Dat is een andere probleem.
Punctuation Incorrect punctuation Vind je dat interessant. 2.09
Redundant Redundant word Dat hangt eraf van het weer. 7.64

Table 3: Error types present in the L2 dataset together with their respective proportions.

For the experiments presented here we had access to 5,618 sentences which have all been error-
annotated following the above-mentioned typology. Important to note is that all sentences in our
dataset contain at least one position error. This is because after interviews with NT2 teachers,
they indicated that position errors are pervasive mistakes and when thinking about more intelligent
writing support, indicating this pervasive error would be the most interesting to include. In total
our dataset consists of 13,433 errors, of 102,474 tokens, amounting to an error rate of 13.11%.

Given that our dataset comprises exclusively sentences with at least one position error, it is no
surprise that this is also the most frequent error type (46.49%). This is followed by word choice
errors (17.18%), spelling errors (14.53%) and grammatical errors (12.07%). Closing the list are re-
dundant words (7.64%) and incorrect punctuation (2.09%).

Even though we rely on both an L1 and L2 dataset to test the current capabilities of LLMs
in this paper, it is important to note that the sets differ inherently in various ways. Therefore
their performance cannot be compared. The sets have been collected for different purposes, and
the writing products come from a different target audience. Additionally, though the error types
are comparable, native speakers and learners fundamentally differ in the mistakes they make. For
example, the L1 set does not contain any position errors, whereas this is a pervasive error type
for learners of Dutch. With regards to the error typology, there are two other differences. Firstly,
incorrect capitalisation is a separate error type in the L1 data, whereas for L2, those errors are
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classified as spelling errors. Secondly, the error types word choice and redundant word error types
in the L2 dataset are included in the lexicon error type group in the L1 dataset.

4. Experiments

Our main objective is to explore LLMs capabilities for token-level error detection in Dutch texts
written by both L1 and L2 writers. This boils down to a binary token classification task, where
each token is assigned either the label correct (c) or incorrect (i). To this purpose two approaches
have been investigated, representing two recent paradigms in NLP research (Min et al. 2023): fine-
tuning both state-of-the-art Dutch monolingual and multilingual LLMs on the datasets at hand
(Section 4.1) versus directly prompting a generative LLM (Section 4.2). A multi-class classification
task with the various error types was considered, but discarded due to insufficient data.

For the experiments presented in this paper all data had been previously split at the sentence
level, and we ensured that all sentences were present in the sets only once. Both datasets were split
in a 80:10:10 training, validation, and test set respectively (see Table 4 for the error distribution
in both sets). The training and development split were used for the fine-tuning experiments. The
resulting model was evaluated on the held-out test set. Given that zero-shot learning does not
require any training, the held-out test split was directly used to evaluate that approach.

train dev test
c i c i c i

L1 33850 3418 3634 364 4752 513
L2 73496 10560 7036 1318 8509 1555

Table 4: Number of correct (c) and incorrect (i) tokens in the different data splits

4.1 Fine-tuning

For the fine-tuning experiments, we required LLMs which have been pre-trained on Dutch data.
To this purpose we relied on four LLMs, more specifically two Dutch or monolingual LLMs –
BERTje (de Vries et al. 2019) and RobBERT (Delobelle et al. 2020) – and two multilingual ones –
mBERT (Devlin et al. 2019) and XLM-RoBERTa (Conneau et al. 2020).

As for the monolingual models, BERTje (de Vries et al. 2019) and RobBERT (Delobelle et al.
2020) were employed. BERTje was pre-trained on a total of around 2.4 billion words (12GB) of high-
quality Dutch texts which include the Dutch Sonar-500 (Oostdijk et al. 2013) and TwNC (Ordelman
et al. 2007) corpora, Wikipedia data, historical fiction and a large collection of Dutch online news-
paper articles collected over a four-year period. RobBERT, on the other hand, was pre-trained
on around 6.6 billion words (39GB) coming from the Dutch section of the Common Crawl cor-
pus (Suárez et al. 2019). For the experiments presented here, we relied on the updated version of
RobBERT-v2 (77GB), as it comprises more data overall, but also specifically takes into account
evolving language use, e.g. covid-related terms (Delobelle et al. 2022). Considering the difference in
pre-training size RobBERT-v2 is thus trained on over six times the amount of Dutch data compared
to BERTje.

This brings us to the multilingual models: Multilingual BERT (mBERT, Devlin et al., 2019) and
XLM-RoBERTa (Conneau et al. 2020) have both been pre-trained on a multitude of languages (104
and 100, respectively). For mBERT, pre-training was performed on the text passages from the top
104 languages with the largest Wikipedias. While no documentation exist on the exact input used
for training mBERT, we do know that the entire Wikipedia dumps at that time were employed.
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Considering that the current Dutch Wikipedia has an approximate size of 3.44GB7, we expect the
input for mBERT to have been of a somewhat smaller size. XLM-RoBERTa (Conneau et al. 2020)
was pre-trained on the entire Common Crawl corpus, with a total size of 2.5TB, of which 5,025
million Dutch tokens (31.46GB).

Considering the amount of pre-training data, it is clear that mBERT comprises much fewer
data than all three other LLMs. This explains why in previous research (de Vries et al. 2019), the
monolingual Dutch model BERTje has been found to outperform multilingual BERT on downstream
NLP tasks, i.e., mainly because it is trained on a larger and more diverse dataset of Dutch tokens. In
the case of XLM-RoBERTa, the Dutch pre-training set is considerably larger than the one used for
BERTje (31GB vs 12GB), but much smaller than the RobBERT-v2 one (77GB). Recent research in
grammatical error detection revealed that multilingual models, and especially XLM-RoBERTa, often
outperform their monolingual counterparts when applied to languages other than English (Volodina
et al. 2023).

Figure 1: System architecture.

All fine-tuning experiments were performed in Flair using Hugging Face’s Transformerwordem-
beddings. A linear classification layer was added on top of the different LLMs, with a dropout layer in
between (p=0.1), as well as a locked dropout layer at the end (p=0.5), to prevent overfitting (Allein
et al. 2020). Finally, a cross-entropy loss function was utilised to minimise the negative log proba-
bility of the correct label, following previous research on error detection (Bell et al. 2019, Kaneko
and Komachi 2019, Knill et al. 2019). Figure 1 depicts the architecture.

Following best practices in deep learning (Ulmer et al. 2022) the models were fine-tuned ten
times (five for each dataset) in order to be able to report the mean and standard deviation over
multiple runs.

4.2 Zero-shot

For the zero-shot experiments, we explored prompting a generative auto-regressive decoder-only
language model in order to carry out the error detection task. To this purpose, we relied on OpenAI’s

7. As of February 2024, Dutch Wikipedia comprises 2,151,891 articles. With an average of 1,598 bytes per article,
the current size can be estimated at 3.44GB
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GPT-3.5 Turbo model with the default temperature parameter (n = 1) as this is the LLM underlying
OpenAI’s free and widely used ChatGPT interface8. Given that generative models are very good at
generating human-like text (Herbold et al. 2023), we were mainly interested in exploring whether
these models can also be used for grammatical error detection, as previous research on using zero-
shot methods for grammatical error correction has shown promising results (Coyne et al. 2023).
That study, however, was focused on English benchmark datasets for grammatical error correction.
As far as we can tell, writing error detection, especially on Dutch text, has been less-studied.

Though prompting generative language models is a brittle task, best prompt engineering practices
are emerging. In this respect, we were able to follow the recommendations from Coyne et al. (2023)
which conclude that especially a higher level of detail increases the prompt’s performance. Regarding
the prompt language, we decided to compare both Dutch and English versions of the prompt in
order to verify which language works best. Though OpenAI has not released exact details about
the proportions of training data for each of the languages in GPT-3.5, it is assumed that it follows
the representation of those languages on the World Wide Web, i.e. much more English compared to
Dutch. When prompting, it is also important to consider how input and output will be specified, as
this highly influences the level of manual post-processing which will be required afterwards.

We experimented with two different types of input. Our first experiments only included the
sentences as such in the prompt, however, we quickly noticed that punctuation was not always
recognised as a separate token even when this was explicitly stated in the prompt. This is why we
decided to include a pre-tokenised version of the sentence so that tokenisation was not left to GPT-
3.5. To this purpose, we relied on the sentence’s tokenisation as provided in the original datasets.
The model was asked to format the output as a table which contains the tokens of the sentence in
the first column and the corresponding labels (correct or incorrect) in the second one. Though this
format was not always consistently used and required some additional post-processing, it turned out
to offer the most reproducible results for evaluation after experimenting with other output types
such as the json format.

"Pretend you are a Dutch language teacher correcting sentences.9

Given are the following Dutch writing errors:

- spelling

- ...

And the following labels:

- "juist"

- "fout"

Create a table with all tokens from the sentence, assigning one

of the aforementioned labels to each token. If a token contains

one of the given writing errors, it receives a "fout" label, all

other tokens are "juist". Do not use any numbering or enumeration

marks and only analyse the following sentence: {text piece} The

tokens for this sentence are: {tokenised text piece}"

Figure 2: Full English base prompt given to GPT-3.5 Turbo

Figure 2 illustrates the final fine-grained prompt used for our experiments. Please note that the
final prompts are distinct from one another in two ways: (i) the prompt language (English versus

8. During its Developer Conference on 6 November 2023 OpenAI announced that the ChatGPT service has a 100
million active weekly users.

8. This sentence was not included in the Dutch prompt.
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Dutch) and (ii) the dataset (L1 versus L2) and thus also the different possible Dutch writing errors
that were given to the model, which correspond to the errors listed in Table 2 and 3.

4.3 Evaluation

Given the high class imbalance in the error detection task at hand (see Table 4) we cannot rely on
accuracy as a suitable evaluation metric for this task. An alternative is to use F-score as this measure
combines precision (the indicated errors that are actually errors) and recall (how many of the actual
errors have been indicated as such). Traditionally, balanced F-score or F1 is reported resulting in
a harmonious mean of precision and recall. For this task, however, we rely on token-based F0.5,
allocating twice as much weight to precision than recall, following previous research surrounding
GED (Volodina et al. 2023), as in Kaneko and Komachi (2019), Rei and Yannakoudakis (2016),
Ng et al. (2014). Proposing erroneous corrections can, namely, have a much more negative impact
than missing a few errors (Bell et al. 2019), and accurate feedback is thus more important than high
coverage in error detection (Kaneko and Komachi 2019, Ng et al. 2014). However, the balance is
kept through the use of the F0.5-score.

Precision, recall and F0.5 are computed using the total numbers of true positives (TP), false
positives (FP) and false negatives (FN). Equations 1-3 demonstrate this.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F0.5 = 1 + 0.52 ∗ Precision ∗Recall

(0.52 ∗ Precision) +Recall
(3)

An important note when using token-based classification, is that multi-word edits are counted as
separate errors, possibly influencing the results. As Volodina et al. (2023) mention, it might be
more realistic to consider those as a single error. However, since single word errors are much more
common than multi word errors, the impact should be minimal (Volodina et al. 2023).

5. Results & Discussion

In this section we first present the results of the fine-tuning experiments on the held-out test set,
after which these are compared to directly prompting GPT-3.5 Turbo. We end this section with a
thorough error analysis to shed more light on the (in)capabilities of the LLMs for GED (Section 5.1).

Table 5 and 6 present the results of the fine-tuning experiments for both datasets. The best
results are indicated in bold. The results show that, both for L1 and L2, BERTje, RobBERT and
XLM-RoBERTa yield similar results, whereas mBERT clearly falls behind, with on average -2.76%
F0.5 for L1 and -4.18% for L2. As explained in Section 4.1, this is in line with expectations as
both BERTje, RoBERTa and XLM-RoBERTa have been pre-trained on more (diverse) Dutch data.
Interesting, and in line with the outcome of the MultiGED shared task (Volodina et al. 2023), is
that XLM-RoBERTa also outperforms the best monolingual model on the L2 dataset.

P R F0.5 SD
BERTje 0.6491 0.3973 0.5761 ± 0.0084
RobBERT 0.6522 0.3680 0.5640 ± 0.0134
mBERT 0.6248 0.3583 0.5438 ± 0.0131
XLM-RoBERTa 0.6545 0.3863 0.5741 ± 0.0108

Table 5: L1 results fine-tuning experiments.
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P R F0.5 SD
BERTje 0.6572 0.5062 0.6202 ± 0.0057
RobBERT 0.6842 0.5124 0.6412 ± 0.0015
mBERT 0.6442 0.4510 0.5930 ± 0.0076
XLM-RoBERTa 0.6880 0.5097 0.6429 ± 0.0020

Table 6: L2 results fine-tuning experiments.

When comparing the monolingual LLMs, it is somewhat surprising that BERTje and RobBERT
yield similar scores, which is especially the case for the L1 dataset where BERTje even outperforms
RobBERT (56.40%) with an F0.5 of 57.61%. This is remarkable given their difference in Dutch
pre-training data size (12GB versus 77GB, respectively). However, we hypothesise that the bet-
ter performance of BERTje for L1 stems from the underlying pre-training data and the inherently
different errors produced by L1 and L2 writers. The L1 data, as well as the accompanying error
annotations, are more formal and strict than the L2 data and annotations, which aligns with the
more formal pre-training input from BERTje versus the more colloquial data on which RobBERT is
pre-trained. With an overall best performance of 57.61% for L1 and 64.29% for L2, the fine-tuned
LLMs show that there still is much room for improvement.

When looking at the output of the zero-shot experiments (Tables 7 and 8), where the best results
are again indicated in bold, we observe that performance is significantly worse. For L1, the best F0.5

is only slightly over 16% (compared to 57.61% when fine-tuning), and for L2 it barely reaches 30%
(compared to 64.29% when fine-tuning). Fine-tuning is thus more suited for error detection, both
in terms of error retrieval (recall) and relevance of the errors (precision).

P R F0.5
GPT-3.5 - English 0.2158 0.0799 0.1610
GPT-3.5 - Dutch 0.0957 0.0819 0.0926

Table 7: L1 results zero-shot experiments

P R F0.5
GPT-3.5 - English 0.3439 0.1749 0.2882
GPT-3.5 - Dutch 0.3662 0.1742 0.3001

Table 8: L2 results zero-shot experiments

In addition to the low zero-shot performance, we would also like to draw attention to the high
level of post-processing the output demanded before it could be evaluated. A few examples are: (i)
the absence of consistent formatting, (ii) skipping tokens and thus not giving them any label, (iii)
inserting new tokens or entire sentences and then labelling them, and (iv) changing or correcting
tokens directly instead of merely labelling them.

In order to be able to compare the evaluation of the zero-shot to the fine-tuned models, we
decided to label all the skipped, inserted or changed tokens as unknown (unk). This unknown label
was then each time evaluated as a misclassification, i.e. if the reference label was correct, it was
counted as an incorrect label, and vice versa.

One of the main reasons that the English and Dutch prompts perform so differently for L1 (F0.5-
scores of 16.10% versus 9.26%) is that there were a lot more instances in the output from the Dutch
prompt where tokens or even entire sentences were skipped or mistokenised compared to the output
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from the English prompt (290 versus 27). This was not as outspoken in the L2 dataset (F0.5-scores
of 28.82% versus 30.01%).

5.1 Error Analyses

We decided to take a closer look - both quantitatively and qualitatively - at the false positives (actual
correct tokens classified as incorrect) and the false negatives (actual incorrect tokens classified as
correct) of both approaches. For the fine-tuning approach, we considered the predictions of the best
models, i.e. BERTje for L1 (F0.5 of 57.61%) and XLM-RoBERTa for L2 (F0.5 of 64.29%). For the
zero-shot approach, the output coming from the best prompts was analysed, i.e. the English prompt
for L1 (F0.5 of 16.10%) and the Dutch one for L2 (F0.5 of 30.01%).

5.1.1 Error Analysis on L1

Looking at the confusion matrices presented in Figure 3, especially the difference in the number
of true positives (TP) stands out. With 205 TPs for the fine-tuned model and only 41 for the
prompt-based method, it is clear why the zero-shot approach has such a low F0.5-score.

Figure 3: Confusion matrices of the predictions on L1 held-out set using the best fine-tuning (left)
and zero-shot (right) approach.

Upon closer inspection of the erroneously classified tokens, it stood out that some of the wrong
labels were actually due to issues with the annotations in the reference data. We manually verified
all these instances for both models. For the fine-tuned BERTje model, this amounted to 56 (13.21%)
out of the 424 misclassifications, bringing the total number of actual false positives back to 94 (22
instances removed) and of the false negatives to 274 (34 instances removed). For the zero-shot
approach, 50 instances were considered to not be misclassified by the model, bringing the total
number of incorrectly labelled tokens back to 118 actual false positives (31 instances removed) and
453 the actual false negatives (19 instances removed). Some of the most notable issues with the data
were:

• Certain error types, specifically those that consist of multiple tokens (e.g. wrongly split verbs,
anaphora and the incorrect links), were not always annotated on the same token, because
multiple tokens could be classified as erroneous, but only one was labelled as such.

• Some errors present in the data were simply missed by the annotators, but correctly identified
as errors by the model.
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Because those annotation inconsistencies can have a significant impact on the models’ performance,
we deemed it interesting to examine the false positives and false negatives for both approaches after
excluding the inconsistent annotations.

Regarding the remaining false positives for the fine-tuned model, we could not really identify any
clear systematic problems with certain error types. For the zero-shot output the same holds as most
false positives could be related to (i) erroneously labeling punctuation marks as a writing error, (ii)
misclassifying tokens written all caps or (iii) tokenisation errors present in the reference set.

Type Fine-tuning Zero-shot
FN % FN %

Spelling 18 6.57 26 5.74
Capitalisation 1 0.36 2 0.44
Lexicon 99 36.50 116 25.61
Grammar 88 32.12 191 42.16
Punctuation 68 24.82 118 26.05

Total 274 100 453 100

Table 9: Remaining FNs per error type (L1)

If we consider the proportions of the missed error types (false negatives) in Table 9 we observe
that mostly Lexicon, Grammar and Punctuation errors are missed. Comparing both approaches, we
discern that in the fine-tuned model, the Lexicon errors constitute the largest problem, followed by
Grammar; whereas the opposite is true for the zero-shot approach.

5.1.2 Error Analysis on L2

Figure 4: Confusion matrices of the predictions on L2 held-out set using the best fine-tuning (left)
and zero-shot (right) approach.

As can be derived from the confusion matrices presented in Figure 4, the fine-tuned model yielded
8,142 true negatives and 802 true positives, whereas the zero-shot model had 8,040 true negatives,
and only 271 true positives. This shows that the zero-shot model has more difficulties with identifying
the actual errors (TP). Additionally, the fine-tuned model performs better with regards to the false
positives (367 versus 469) and the false negatives (753 versus 1,284). The zero-shot system thus
misclassifies more tokens (1,753 or 17.42% instances) than the fine-tuned one (1,120 or 11.12%
instances), which is supported by the much lower scores for precision (36.62% versus 68.80%), recall
(17.42% versus 50.97%) and F0.5 (30.01% versus 64.29%) as presented in Table 6 and 8.
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Through further examination of the wrongly classified tokens (FP & FN) for both the fine-tuned
and zero-shot model, it soon became apparent that also in the L2 dataset there are some annotation
inconsistencies.

In total, 427 (38.13%) of the 1,120 incorrectly labelled instances could be considered annotation
inconsistencies for the fine-tuned model, bringing the actual false negatives back to 574, and the
actual false positives to 248. Of the zero-shot output, 153 (8.73%) tokens were part of such incon-
sistencies. This brings the actual false positives for the GPT-3.5 output down to 351 and the actual
false negatives to 1,249. The most common inconsistencies, which have mainly been caused by a
lack of clear annotation guidelines, were that:

• The system indicated one word as erroneous, while the teacher had indicated the other.

• In some sentences, the system indicated two or more words that should be in another spot,
whereas the teacher indicated one or more different words, that would amount to the same
result, when switched.

• Some errors were simply not annotated as such by the teachers, yet correctly identified by the
models.

Since those annotation inconsistencies can considerably affect the results (as explained in Subsection
5.1.1), we excluded them again for the analysis of the false positives and false negatives for both the
fine-tuned and zero-shot output.

Regarding the false positives, the same tendencies were present as with the L1 data. For the
false negatives, we inspected the error types of the erroneous tokens that the models did not identify
as such. The distribution of those errors is presented in Table 10. The proportions show that the
fine-tuned model is much better at identifying position errors than the GPT-3.5 model, which makes
sense because of the overall high proportion of position errors in the training and development set,
since every sentence in all sets contained at least one position error. Since no fine-tuning took place
with the GPT-3.5 prompting, it is not surprising that it has more issues identifying the position
errors.

Type Fine-tuning Zero-shot
FN % FN %

Position 198 34.50 722 57.49
Spelling 84 14.63 109 8.68
Lexicon 126 21.95 188 14.97
Grammar 84 14.63 124 9.87
Punctuation 19 3.31 16 1.27
Redundant 63 10.98 97 7.72

Total 565 100 1256 100

Table 10: Remaining FNs per error type (L2)

6. Conclusion

With this paper, we aimed to explore the capabilities of current state-of-the-art Large Language
Models on the task of error detection in Dutch writing products, targeting L1 and L2 adult speakers
of Dutch.

Throughout this research, we explored the field of Grammatical Error Detection and its relevance
in language education, driven by the increasing demand for effective error feedback. Since current
research on automated writing support mainly focuses on English data and models, we aimed to
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emphasise the importance of research on languages other than English, namely Dutch. As existing
systems for Dutch are mainly rule-based, we wanted to examine the possibilities of both monolingual
Dutch (BERTje & RobBERT) and multilingual (mBERT, XLM-RoBERTa & GPT-3.5) LLMs, as
these have also shown to exhibit state-of-art performance in GEC for English.

To that end, we compared two recent paradigms in NLP research, (i) fine-tuning the LLMs on the
L1 and L2 datasets, and (ii) directly prompting the generative GPT-3.5 model. The results indicate
that fine-tuning outperforms zero-shotting on error detection tasks, with higher scores and a much
lower post-processing load. We thus conclude that zero-shot prompting does not work efficiently for
grammatical error detection.

Considering the top results we observe that for L1 writing products error detection works
best when employing BERTje which has been pre-trained on edited data. For L2, on the other
hand, XLM-RoBERTa outperforms the monolingual models, which is in line with previous re-
search (Volodina et al. 2023). However, for both L1 and L2, multilingual XLM-RoBERTa scores
quite comparably to the best scoring monolingual model for that dataset (BERTje and RobBERT,
respectively). The choice in model should thus depend on what the end goal is. If the model is to
be solely used for Dutch error detection, it might be best to choose a monolingual Dutch model.
Whether the language in the data is more formal or colloquial can then be used to determine to opt
for BERTje or RobBERT. If the model is also needed for error detection on other languages, the
multilingual XLM-RoBERTa is the better option.

The error analyses demonstrated that the proprietary datasets we had been given access to
have both been annotated relatively inconsistently, which directly impacts the fine-tuned models’
effectiveness. Therefore, we want to stress the importance of creating representative and consistently
annotated Dutch datasets of writing products for future research.
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Appendix A. English translations

Nl = Original Dutch sentence
En = English translation

Error category Example

Incorrect spelling Nl: Dat moet niet perse.
En: That is not necessarily the case.

Incorrect capitalisation Nl: Kortom Ik vindt* het asociaal.
En: In short, I find it antisocial.

Missing capitalisation Nl: Dit meldt de morgen.
En: This is what de morgen reports.

Non-existent lexicon Nl: Het chat-gedeelde is maar een deel.
En: The chat part is only part of it.

Incorrect word usage Nl: Dit kan wel is tegenvallen.
En: This may well disappoint.

Redundant word Nl: Zoals bijvoorbeeld bij World of Warcraft.
En: Like for example in World of Warcraft.

Contamination Nl: Zeker jongeren zijn hier zeer kwetsbaar voor.
En: Young people in particular are vulnerable to this.

Pleonasm Nl: Je kan al je vrienden toevoegen die je kent.
En: You can add all the friends that you know.

Chat language Nl: Friend requests worden gedaan*.
En: Friend requests are being sent.

Loan word Nl: Dit geeft een leuke touch aan je profiel.
En: This gives a nice touch to your profile.

DT-error Nl: De wereld bied meer dan vrienden alleen.
En: The world offers more than friends alone.

Verb congruence Nl: De impact van netwerksites hebben gevolgen
En: The impact of network sites has consequences.

Anaphora Nl: Er zijn niet alleen voordelen aan deze sites.
En: These sites do not only have advantages.

Incorrect link Nl: Om te beginnen wordt het snel verslavend.
En: To start with, it becomes addictive quickly.

New referent Nl: Er zijn ook tal van voordelen aan deze sites.
En: There are also many advantages to these sites.

Incorrect punctuation Nl: Moet iedereen alles weten over iedereen.
En: Does everyone have to know everything about everyone?

Missing punctuation Nl: Als je het niet hebt hoor je er niet bij.
En: If you do not have it you don’t belong.

Table 11: Error types present in the L1 dataset with example sentences, including English transla-
tions. Errors were not transposed.
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Error category Example

Incorrect word position Nl: Morgen ik kom niet.
En: I am not coming tomorrow.

Incorrect spelling Nl: Ik doe het onmiddelijk
En: I will do it immediately.

Incorrect word usage Nl: Engels is mijn moedertong.
En: English is my mother tongue.

Incorrect grammar Nl: Zij teleurstelde mij.
En: She disappointed me.
Nl: Dat is een andere probleem.
En: That is a different problem.

Incorrect punctuation Nl: Vind je dat interessant.
En: Do you find that interesting?

Redundant word Nl: Dat hangt eraf van het weer.
En: That depends on the weather.

Table 12: Error types present in the L2 dataset with example sentences, including English transla-
tions. Errors were not transposed.
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