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Abstract

When natural language processing tasks overlap in their linguistic input space, they can be
technically merged. Applying machine learning algorithms to the new joint task and comparing
the results of joint learning with disjoint learning of the original tasks may bring to light the
linguistic relatedness of the two tasks. We present a joint learning experiment with dependency
parsing and semantic role labeling of Catalan and Spanish. The developed systems are based on
local memory-based classifiers predicting constraints on the syntactic and semantic dependency
relations in the resulting graph based on the same input features. In a second global phase, a
constraint satisfaction inference procedure produces a dependency graph and semantic role label
assignments for all predicates in a sentence. The comparison between joint and disjoint learning
shows that dependency parsing is better learned in a disjoint setting, while semantic role labeling
benefits from joint learning. We explain the results by providing an analysis of the output of the
systems.

1. Introduction

In this article we present a series of comparative experiments in which a single natural language
processing architecture is trained to perform dependency parsing and semantic role labeling both in
isolation and jointly. In the joint system, the two labeling tasks are learned as a single joint task, by
merging the syntactic and semantic dependencies. The goal of these experiments is to investigate
the performance of the same architecture in a joint and disjoint setting.

Semantic role labeling and dependency parsing are two well defined tasks as shows the fact that
several CoNLL Shared Tasks have been organised for each of the tasks (Carreras and Màrquez 2004,
Carreras and Màrquez 2005, Nivre et al. 2007) and for the two tasks in combination (Surdeanu et al.
2008, Hajič et al. 2009). In their currently popular definitions, dependency parsing and semantic
role labeling are partially overlapping tasks. The definitions state that they map to differently
structured output spaces: dependency graphs span sentences, while semantic role assignments center
around predicates. Yet, the spaces overlap; in a dependency graph verbal predicates will tend to
have dependency relations with the same modifiers that have a semantic role as argument of that
predicate. In general, even though the labels are different, syntactic dependencies between two words
often co-occur with certain semantic roles. The “subject” dependency relation, for example, often
co-occurs with the “A0” label that denotes the agentive role in the PropBank annotation scheme
(Palmer et al. 2005).

The co-occurrence of semantic roles and syntactic functions is a well studied phenomenon from
a linguistic perspective. According to Linking Theory (Hale and Keyser 1993, Levin and Rappaport
1995, Hale and Keyser 2002, Randall 2009) regular mappings can be established from the semantic
to the syntactic level. The theory assumes a hierarchy of semantic roles which can be mapped to
a hierarchy of syntactic positions. Theories of argument realization (Levin and Rappaport 2005)
assume a close connection between verb meaning and syntactic structure and analyze how semantic
roles map onto syntactic positions. Transposing these insights to the present-day paradigm of
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machine learning of natural language processing, the connection between the semantic and syntactic
component suggests the possibility of jointly learning the two labeling tasks as if they were one.

The learning of semantic and syntactic representations as a single task has been explored before.
Musillo and Merlo (2006) and Merlo and Musillo (2008) present experiments with an enriched
statistical parser that identifies and labels nodes with semantic role labels as well as syntactic labels.
The CoNLL Shared Tasks of 2008 (Surdeanu et al. 2008) and 2009 (Hajič et al. 2009) combined
dependency parsing and the task of identifying and labeling semantic arguments of predicates. In
contrast with Musillo and Merlo (2006) and Merlo and Musillo (2008), the originality of our approach
lies in the fact that a single architecture and single sets of features and parameter settings are used
to perform the two tasks in isolation and jointly, which allows to make a direct comparison of the
joint and non-joint results, all other conditions being equal. Thus we do not focus on producing
optimized results for each of the tasks, but rather on performing a comparative analysis. Another
difference is that we do not need an extra step to build the argument structure of a predicate, since
this information is present in the dependency tree that our system generates. As compared to the
joint systems that participated in the CoNLL Shared Tasks, our joint system concatenates syntactic
and semantic edge labels so that the learning is a single learning process, rather than a two-step
learning process with a non-learning intermediate step.

Setting up semantic role labeling and dependency parsing as a joint task sharing the same output
space implies that the number of labels increases, and the average number of examples per label
decreases. This does not rule out the application of a machine learning classifier to the joint task,
but the classifier should not be too sensitive to a fragmented class space with many labels. This is
the main reason our system relies on memory-based classifiers: they are practically insensitive in
terms of training and processing efficiency to the number of class labels (Daelemans and Van den
Bosch 2005).

Memory-based algorithms have been previously applied to processing semantic and syntactic
dependencies separately. As for semantic role labeling, Morante (2008) describes a memory-based
semantic role labeling system for Spanish based on gold standard dependency syntax; Morante et al.
(2008) report on a semantic role labeling system for English based on syntactic dependencies pro-
duced by the MaltParser system of Nivre (2006), a typical pipeline architecture. As for dependency
parsing, MaltParser uses memory-based learning as one of its optional local classifiers. Canisius
et al. (2006b) present another type of memory-based dependency parser, extended later in (Canisius
and Tjong Kim Sang 2007) to a constraint satisfaction-based dependency parser. The latter parser
combines local memory-based classification with a sentence-global optimization method based on
weighted constraint-satisfaction inference, where the local classifiers estimate syntactic relations be-
tween pairs of words, the direction of the relation from children to parents, and the relations that
parents have with children. The present study adopts this system and extends it to semantic role
labeling and the joint task.

We discuss the issue of joint learning of two tasks in Section 2. The data used for the experiments
are introduced in Section 3. The system combining local memory-based classifiers with weighted
constraint satisfaction is described in Section 4. Section 5 presents the results, in Section 6 we
comment on the results, and in Section 7 we put forward some conclusions and formulate points for
future research.

2. Joint learning

When two tasks share the same feature space, there is the natural option to merge them and consider
the merge as a single task. For example, Sejnowski and Rosenberg (1987) train a back-propagation
multi-layered perceptron network on the joint task of mapping a letter in its context within an
English word onto a joint label representing its phonemic mapping and a marker indicating stress
on that phoneme. Van den Bosch (1997) demonstrates that the joint learning of these two tasks
indeed produces superior generalization performance as compared to learning the letter-phoneme
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task and the stress marker assignment task separately. Buchholz (2002) transposes this idea to
shallow parsing, and shows that POS tagging and base phrase chunking could be learned as a
single task without any significant performance loss. Wang et al. (2008) describe a system that
learns Chinese word segmentation, named entity recognition, and part-of-speech tagging jointly,
outperforming a pipeline architecture baseline. Finkel and Manning show that joint learning of
parsing and named entity recognition produce mildly improved performance for both tasks (Finkel
and Manning 2009, Finkel and Manning 2010). Kate and Mooney (2010) present a system that
extracts entities and relations jointly using a method based on a “card-pyramid” graph. All possible
entities and relations are encoded in a graph so that the extraction task is reduced to jointly labeling
the nodes of the graph.

Merlo and Musillo (2008) approach the learning of semantic and syntactic representations jointly
in two steps. First, they generate trees that contain syntactic and semantic information by extending
a statistical parser. In a second step, they recover the predicate-argument structure of each verb from
the parse tree, because the parse tree does not associate semantic roles to predicates. Their system
is trained and tested on the PropBank corpus of English. They show that the performance of the
parser on the syntactic labels degrades in the joint learning condition (84.4% F1 versus 89.1% F1),
and that the semantic role labeling task can be solved at a level of performance compared to other
approaches. Their experiments do not provide a comparison of the performance of an isolated
semantic role labeler versus a joint one with the same architecture.

Li et al. (2010) perform joint syntactic and semantic parsing of Chinese. Their system integrates
semantic information generated by a semantic parser into the syntactic parser. They show that
incorporating semantic role information into the syntactic parsing model improves the results of
both syntactic and semantic parsing.

Joint learning of syntactic and semantic dependencies has been the attention of the CoNLL
Shared Tasks 2008 and 2009, although, as indicated in the general overview papers (Hajič et al. 2009),
most participating systems did not employ joint approaches. Of the 20 participants in the 2009
edition, only four applied some type of joint learning (Dai et al. 2009, Gesmundo et al. 2009, Llúıs
et al. 2009, Morante et al. 2009), and only one (Morante et al. 2009) applied a truly joint learning
formulation by merging syntactic and semantic edge labels in the output space. The current article
expands on this approach.

The merging of two tasks will typically lead to an increased granularity of discernible class labels,
and thus to a more complex class space. In the worst case, the number of classes in the new class
space is the product of the number of classes in the original tasks. In practice, if two combined tasks
are to some extent related, the increase will tend to be limited, as class labels from the original tasks
will tend to correlate. For instance, the POS tag for “determiner” will typically co-occur with the
chunk marker for “beginning of noun phrase”, and less so, or not at all, with other chunk markers.
Yet, even a mild increase of the number of classes leads to a further separation of the class space,
and thus to less training examples per class label.

Joint learning can therefore only lead to positive results if the data sparsity effect of the separation
of the class space is counter-balanced by an unharmed, or even improved learnability. The latter is
the primary reason for doing joint learning in the first place: certain parts of either of the combined
tasks may be learned with more ease and with better success when it is co-learned with a part
of another task. Learning this new separate part of the class space may in theory be easier than
learning that particular part of the larger unseparated class space of either of the composing tasks.

In this article we consider the joint learning of semantic role labeling and dependency parsing.
This means that our systems generate labels that carry information on semantic roles and on syn-
tactic dependencies. Figure 1 displays a partial Catalan sentence in which it is obvious that some
relations in the dependency graph, shown on top of the words, have a counterpart relation in the
semantic role labeling graph centering around the sentence’s main verb. Our system will be trained
to assign joint syntactic and semantic labels when they coincide, such as the suj (subject) syntactic
dependency and the arg0-agt (agentive) semantic role between the modifier word treballadors and
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Figure 1: The relations between the dependency graph (top) and the semantic role labeling graph
(bottom) of a partial Catalan example sentence.

the main verb iniciat. The notation we adopt in this article for joint labels uses a colon as the
connecting delimiter, as in suj:arg0-agt.

The figure indicates that there are three more cases where syntactic and semantic relations
coincide, among which cd (direct object) and arg1-pat (argument with the thematic role patient).
All three are fairly typical co-occurrences, although common pairs such as suj and arg0-agt do not
occur exclusively with each other, as we detail in the next section.

3. Data

The example sentence in Figure 1 is taken from AnCora1, a manually (and partly semi-automatically)
annotated corpus of Spanish and Catalan news text that uses the same tag sets for the two languages
(Taulé et al. 2008). In the remainder of this article we describe systems trained on data from the
AnCora corpus that were prepared for the CoNLL 2009 shared task (Hajič et al. 2009). This
preparation process involved the conversion of the original constituent-based syntactic annotation
to dependency graphs (Civit et al. 2006), the addition of automatically generated linguistic layers
for part-of-speech tagging using Freeling2, and a split into training data and test data. The Catalan
corpus (AnCora-Ca) is split into a 390,302 token training set and a 53,355 token test set; the Spanish
corpus (AnCora-Es) is split into a 427,442 token training set and a 50,630 token test set.

As Hajic et al. point out, semantic dependencies in AnCora completely match syntactic de-
pendency structures, i.e., no new edges are introduced by the semantic structure. Furthermore,
dependency trees in the AnCora data are projective; no word can be the argument of more than
one predicate in a sentence; only verbal predicates are annotated; and multi-words expressions are
tokenized together (Hajič et al. 2009). We chose the Catalan and Spanish corpora instead of the
corpora of other languages from the CoNLL Shared Task because these characteristics facilitate the
adaptation of the parser that we use to the semantic role labeling only task. We consider this setup
to be valid for a first approximation to the problem, to be further explored for other languages in fu-
ture research. Dealing with non-projective trees and non-overlapping semantic role and dependency
graphs, although not trivial, should be possible within the framework presented here.

The syntactic tag set consists of 50 syntactic functions. At the semantic side, 45 combinations
of eight semantic arguments and 21 thematic roles (such as agt, agent, pat, patient, and cau, cause)

1. http://clic.ub.edu/ancora

2. http://www.lsi.upc.es/~nlp/freeling
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occur in joint semantic labels3. The total number of unique combinations of syntactic and semantic
labels occurring in the corpus is 130, considerably less than the theoretical upper bound of 50 ×
45 = 2, 250. Many syntactic dependencies never co-occur with a semantic role, as they denote
relations outside the part of the syntactic graph that connects predicates to arguments. At the
same time, a subset of predicative syntactic dependencies always co-occur with a semantic role: cc
(adverbial complement), suj (subject), cd (direct object), ci (indirect object), creg (prepositional
complement), atr (attribute), and cpred (predicative complement). In all these cases, there are
favorite combinations, often mutually. For instance, the syntactic dependency suj occurs 62,652
times, and the semantic role arg0-agt occurs 34,147 times; their combination occurs 32,010 times,
which is 49.8% of all occurrences of suj and 93.7% of all occurrences of arg0-agt, in both cases the
most frequent combination. Similar cases are cd:arg1-pat (direct objects), cc:argm-tmp (temporal
adjuncts), and atr:arg2-atr (attributive objects). Yet, many of the other combinations occur quite
infrequently, and are thus supported by markedly few training examples.

4. System architecture and experimental design

In this section we outline our system which was originally designed for dependency parsing by
Canisius and Tjong Kim Sang (2007), and which is based on local memory-based classifiers and a
constraint satisfaction inference solver. We are able to fully reuse this system for the joint syntactic–
semantic task as the semantic role graphs in the AnCora corpus fully overlap with the dependency
graphs. The joint task then becomes an enriched parsing task for which the same dependency parser
can be used. Processing the corpora of languages for which this overlap does not hold would require
further adaptation of the parser. In this section we first describe the architecture of the system in
Subsection 4.1, and then describe how we set up a comparative experiment in which the same system
is applied to the two tasks of syntactic dependency parsing and semantic role labeling in isolation,
and in combination, in Subsection 4.2.

4.1 Constraint satisfaction inference for dependency structures

Our dependency parser is an adaptation for dependency structures of the constraint satisfaction
inference method for sequential output structures proposed by Canisius et al. (2006a). The technique
uses standard classifiers to predict a weighted constraint satisfaction problem, the solution to which is
a complete dependency structure. The predicted constraints each cover a small part of the complete
structure. Overlap between them ensures that global output structure is taken into account, even
though the classifiers only make local predictions in isolation of each other.

A weighted constraint satisfaction problem (W-CSP) is a tuple (X,D,C,W ). Here, X =
{x1, x2, . . . , xn} is a finite set of variables. D(x) is a function that maps each variable to its domain,
and C is a set of constraints on the values assigned to the variables. For a traditional (non-weighted)
constraint satisfaction problem, a valid solution is an assignment of values to the variables that (1)
are a member of the corresponding variable’s domain, and (2) satisfy all constraints in the set C.
Weighted constraint satisfaction, however, relaxes this requirement. Instead, constraints are as-
signed weights that may be interpreted as reflecting the importance of satisfying that constraint.
The optimal solution to a W-CSP is the solution that assigns those values that maximize the sum
of the weights of satisfied constraints.

To adapt this framework to predicting a dependency structure for a sentence, we construct a
constraint satisfaction problem by first introducing one variable xi for each token of the sentence.
This variable’s value corresponds to the dependency relation that token is the modifier of, i.e. it
should specify a relation type and a head token. The constraints of the CSP are predicted by a

3. The fact that the semantic labels are composed of semantic argument types and thematic roles indicates that at
the outset of our study we are already adopting a merged semantic label set. In Part-of-Speech tagging it is also
typical to merge different types of morpho-syntactic information in single tags.
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classifier, where the weight for a constraint corresponds to the classifier’s confidence estimate for the
prediction.

For the current study, we trained three classifiers to predict three different types of constraints:

1. Cdep(head,modifier, relation), signifying a dependency between head and modifier. The
resulting dependency structure should have a dependency arc from head to modifier la-
beled with type relation. For the example structure in Figure 1, among others the constraint
Cdep(head = iniciat,modifier = treballadors, relation = suj) should be predicted.

2. Cdir(modifier, direction), the relative position of the head of modifier. The structure in
Figure 1 will give rise to constraints such as Cdir(modifier = matinada, direction = LEFT ).

3. Cmod(head, relation), representing a modifying relation of head. In the dependency structure,
head should be modified by a relation of type relation. The constraints generated for the word
vaga in Figure 1 would be Cmod(head = vaga, relation = spec), Cmod(head = vaga, relation =
sp), and Cmod(head = vaga, relation = s.a).

Predicting constraints of type Cdep is essentially what is done by Canisius et al. (2006b); a
classifier is trained to predict a relation label, or a symbol signaling the absence of a relation, for
each pair of tokens in a sentence4. The training data for this classifier consists of positive exam-
ples of constraints to generate, e.g. iniciat, treballadors, suj, and negative examples of constraints
not to generate, using “NONE” as the class label for these cases, e.g. iniciat, Els,NONE or
treballadors, iniciat,NONE. In the aforementioned paper, it is shown that down-sampling the
negative class in the classifier’s training data improves the recall for predicted constraints. The fact
that improved recall comes at the cost of a reduced precision is compensated for by our choice for the
weighted constraint satisfaction framework: an overpredicted constraint may still be left unsatisfied
if other conflicting constraints outweigh its weight.

In addition to giving rise to a set of constraints, this classifier differs from the other two in the
sense that it is also used to predict the domains of the variables, i.e. any dependency relation not
predicted by this classifier will not be considered for inclusion in the output structure. In other
words, the Cdep classifier could work in isolation and produce full output structures. The other two
classifiers, Cdir and Cmod, add constraints that can potentially outweigh and correct constraints
predicted by the Cdep classifier.

While the Cdep classifier classifies instances for each pair of words, the classifiers for Cdir and
Cmod only classify individual tokens. The two classifiers differ in the classes they predict. For Cdir,
there are three possible classes: LEFT, RIGHT, ROOT. For Cmod there is a rather large class space; a
class label reflects all modifying relations for the token simultaneously, e.g. cd+suj. Multiple labels
for a single token are uniquely and alphabetically sorted. From this label, as many constraints are
generated as there are different relation types in the label.

We opt for a feature space that is both relatively straightforward and similar across classification
tasks. For all tasks we draw on the lexical identity and the morpho-syntactic tags of the focus words
and their immediately neighboring words. The following list describes the features for the pairwise
Cdep task on the one hand, and for the token-by-token Cdir and Cmod tasks on the other hand:

• For Cdep, given a pairwise instance focusing on a pair of tokens, the feature space contains

– the identity of both focus tokens and their immediate left and right neighboring tokens
(i.e. six tokens in total);

– the main Part-of-Speech tags of these six tokens;

4. To avoid having too many negative instances in the training data, thus to limit the majority effect of the “no
relation” class and to boost the recall of other relational class labels, we follow the approach of Canisius et al.
(2006b) of limiting the maximum distance between a potential head and modifier; we adopt the value of 20 tokens
as the distance limit.

102



– the bigram of the main Part-of-Speech tags of the two focus tokens;

– the bigram of the morphosyntactic subtags of the two focus tokens;

– whether the second token is positioned to the right or to the left of the first;

– the absolute distance in tokens between the positions of the two tokens.

• for Cdir and Cmod, given a focus token, the feature space contains

– the identity of the focus token and its immediate two left and right neighboring words
(i.e. five tokens in total);

– the main Part-of-Speech tags of these five tokens;

– bigrams of the tokens and the main Part-of-Speech tags of the five tokens;

– bigrams of the main Part-of-Speech tags of the focus token and its left and right neighbor
tokens;

– the morphosyntactic subtags of the focus token and its left and right neighbor tokens.

Each task is performed by a memory-based classifier based on the k-nearest neighbor classification
rule5, running a feature-weighted version of the IB1 algorithm (Aha et al. 1991), where the weighting
and other hyperparameters are estimated for the dependency parsing task on heldout material
through wrapped progressive sampling, an automated heuristic hyperparameter method (Van den
Bosch 2004). These settings are kept constant throughout all further experiments. In detail, they
include the use of the mvdm distance metric (Cost and Salzberg 1993), gain-ratio feature weighting,
linearly-inverse distance weighting, and k = 9. The output of each classification is a weighted
distribution of classes occurring in the nearest neighbor set, where each class receives a score that
is the sum of inverse distances of the nearest neighbors labeled with that class.

When a single sentence has been converted to instances of the three tasks, and when these
instances have all been classified with their respective memory-based classifiers, each providing
weighted distributions of output labels, a weighted constraint satisfaction problem can be formu-
lated that, when solved, describes a dependency structure. As we formulated our problem as a
constraint satisfaction problem, any off-the-shelf W-CSP solver could be used to obtain the best
dependency parse. However, in general such solvers have a time complexity exponential in the num-
ber of variables, and thus in the length of the sentence. As a more efficient alternative we chose
to use the CKY algorithm for dependency parsing (Eisner 2000) for computing the best solution,
which has only cubic time complexity, but comes with the limitation of only considering projective
trees as candidate solutions—but as noted earlier, all dependency trees in the AnCora treebank are
projective.

4.2 A single architecture for two isolated and one joint task

As the goal of this study is to assess the efficacy of the joint learning of dependency parsing and
semantic role labeling, the means is to design a comparative experiment between the disjoint and
the joint learning condition. In order to keep the comparison as tight as possible, so that differences
in performance must derive from the task and not from another factor, we use the same overall
architecture for all three tasks, namely the dependency parser architecture described in the previous
subsection, based on three local memory-based classifiers and a weighted constraint satisfaction
inference process. It is straightforward to see the joint task as an enriched type of dependency
parsing, and thus as comparable to the disjoint dependency parsing task. It is less straightforward,
though, to see semantic role labeling as a dependency parsing task, as its output is not a single
dependency graph per sentence, but rather one or more predicate-centered subgraphs per sentence.
We solve this by defining the semantic role labeling task as a full dependency parsing task at the

5. Available from http://ilk.uvt.nl/timbl
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sentence level, where all dependencies, the semantic as well as the non-semantic ones, need to be
established; however, all non-semantic relations receive a dummy label. Thus, the output of the
disjoint task of semantic role labeling is a full dependency graph per sentence, where only the
semantically labeled relations should receive a non-dummy semantic role label.

We set up a matrix of experiments. For both languages, Catalan and Spanish, we develop
three systems: a disjoint dependency parser, a disjoint semantic role labeler, and a joint dependency
parser and semantic role labeler. All 2×3 systems are based on three local memory-based classifiers,
Cdep, Cdir, Cmod. The only difference among the two disjoint and the joint system can be found in the
class labels. Taking the example sentence of Figure 1 as a reference, we exemplify these differences
by focusing on the subject and the main verb tokens, treballadors and iniciat:

• For the joint Cdep classifier, the relation between modifier treballadors and head iniciat is
suj:arg0-agt. For the disjoint dependency parser, this relation is suj; for the semantic role
labeler, this relation is arg0-agt. As mentioned already in Section 2, the semantic part of the
joint label is often empty, as many dependency relations (e.g. between non-verbal tokens) only
have a syntactic type.

• For the Cdir classifier, which operates token by token, the task is the same for all three systems.
The head of treballadors is to the right of the token, regardless of the type of relation, hence
the class label is RIGHT in all three cases.

• For the Cmod classifier, also operating token by token, the joint classifier should generate
for the word iniciat a compound class label of joint labels representing all syntactic and
semantic relations of which iniciat is the head, i.e. cc:argm-tmp|cd:arg1-pat|f: |suj:arg0-agt|v: ,
where | is the delimiter symbol between joint labels. The disjoint syntactic classifier should
generate a compound label of syntactic relations, i.e. cc|cd|f|suj|v, while the disjoint semantic
classifier should generate dummy: |dummy:arg0-agt|dummy:arg1-pat|dummy:argm-tmp. Recall
that syntactic relations should be labeled with a dummy value by the semantic role labeler,
and that the compound label uniquely sorts all occurring relations of a head token. As iniciat
is the head of two non-semantic relations they are uniquely sorted under the single dummy:
part of the compound label.

Each experiment results in a trained system which is subsequently applied to unseen test data.
We adopted the particular splits into training and test data made by the CoNLL-2009 shared task
organizers (Hajič et al. 2009). To evaluate the performance of our system, we used the CoNLL-
2009 shared task evaluation scripts6 to enable the comparison of joint versus disjoint learning.
Generalization performance on the joint task is measured in terms of macro precision and recall by
averaging the labeled precision and recall for semantic dependencies with the Labelled Attachment
Score (LAS) for syntactic dependencies. The macro labeled F1 is computed as the harmonic mean
of the labeled macro precision and the labeled macro recall. Dependency parsing is evaluated in
terms of labeled attachment score, which is a token-based score that measures the relative amount
of tokens that is assigned both a correct head and the correct dependency relation with that head,
of unlabeled attachment score (where the correctness of the dependency relation is ignored), and of
label accuracy (where the correctness of the head is ignored). Semantic role labeling is evaluated in
terms of the precision, recall, and F-score (β = 1) of correctly identified and labeled semantic roles.

Besides reporting the “joint” score provided by the evaluation software of the joint system, we
also report the separate evaluation of dependency parsing and semantic role labeling. Thus, in the
next section we present separate comparisons of the scores on dependency parsing of the joint system
versus the disjoint dependency parser, and the scores on semantic role labeling of the joint system
versus the disjoint semantic role labeler.

6. Available from http://ufal.mff.cuni.cz/conll2009-st/scorer.html
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To gain more insight into the relative effect of the size of the training set, which for both languages
is reasonably large (about 400 thousand tokens), we performed learning curve experiments of each
of the three classifiers in each of the six systems, so that we are able to measure system performance
at increasing training set sizes. Counting in training sentences, we ran pseudo-exponential learning
curves with 100, 200, 500, 1, 000, 2, 000, 5, 000, and 10, 000 sentences, and ended the learning curves
with the maximum available 13, 200 (Catalan) and 14, 329 (Spanish) sentences.

5. Results

We start by comparing the generalization performance on dependency parsing of the joint versus
disjoint systems for both languages as shown in Table 1.

Catalan Spanish
System LAS UAS LA LAS UAS LA
Joint 82.14 85.12 90.64 80.82 83.83 89.80
Disjoint 82.63 85.65 91.04 81.50 84.51 90.38

Table 1: Dependency parsing generalization performance in terms of labeled attachment score
(LAS), unlabeled attachment score (UAS), and label accuracy (LA), by the joint (syn-
tactic and semantic) systems versus the disjoint dependency parsing systems.

Table 1 displays the various scores on the maximal training set size. The results show that in
terms of labeled attachment score, the disjoint systems for Catalan and Spanish dependency parsing
outperform their joint learning counterparts with a difference of about half a percentage point (a
relative error reduction of 2.7% for Catalan, and 3.5% for Spanish). The results on unlabeled
attachment score and label accuracy follow the same trend.

Catalan Spanish
System LPrec LRec LF1 LPrec LRec LF1
Joint 78.09 73.22 75.58 77.01 72.25 74.55
Disjoint 78.35 71.88 74.98 76.37 69.42 72.73

Table 2: Semantic role labeling generalization performance in terms of labeled precision (LPrec),
labeled recall (LRec), and labeled F-score with β = 1 (LF1), by the joint (syntactic and
semantic) systems versus the disjoint semantic role labeling systems.

Table 2 lists the results on semantic role labeling for disjoint versus joint learning for both
languages. Apart from the fact that the disjoint Catalan system attains a higher precision, in
terms of labeled F-score the joint learning systems for Catalan and Spanish perform better than
their counterpart disjoint systems. For Catalan, the difference is about half a percentage point (or
2.4% error reduction) in labeled F-score; for Spanish, the advantage of joint learning is larger: 1.8
percentage points, or 6.7% error reduction.

Figure 2 compares the learning curves of the joint and the disjoint systems for Catalan depen-
dency parsing, in terms of labeled attachment score; the curves are the top two lines in the figure.
The results show a positive correlation between the amount of training data (the logarithmic x-axis)
and generalization performance. The relation is not entirely log-linear; the performance increases
tend to decrease slightly with more data. Figure 2 also shows the learning curves of the joint and
disjoint systems for semantic role labeling (the bottom two lines), indicating that the generaliza-
tion performances of the joint and disjoint systems follow the same upward trend as those of the
dependency parsing systems, except for the fact that the curves have swapped positions.
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Figure 2: Learning curves of dependency parsing in terms of labeled attachment score, and of se-
mantic role labeling in terms of labeled F-score, of the joint systems (continuous line)
versus the disjoint systems (dashed line) for Catalan.

As the experiments were performed on data used in the CoNLL-2009 shared task, we compare
the performance of our joint learning system against the performances of the overall best performing
systems (Dai et al. 2009, Gesmundo et al. 2009, Che et al. 2009), as well as with an alternative
memory-based joint system (Morante et al. 2009), in Table 3. None of the three best systems
performs joint learning in the sense that we use it in this study, with a joint task with unified labels.
Dai et al. (2009) perform the individual tasks disjointly, and iterate each task with input from other
tasks in the previous iteration. Gesmundo et al. (2009) present a system that initially generates
separate derivations for semantic and syntactic dependencies and then synchronizes these derivations
for each word based on a generative latent variable model of joint syntactic–semantic dependency
parsing. Che et al. (2009) implement a relatively straightforward pipeline of a dependency parser, a
predicate sense classifier, and a semantic role labeler. Although the main point of this contribution
is to present an all-else-being-equal comparison between joint and disjoint learning of semantic role
labeling and dependency parsing, it is clear that our system is outperformed by the best three
CoNLL-2009 shared task systems: joint learning does not seem to be a winning strategy.
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Catalan Spanish
System LAS LF1 LmF1 LAS LF1 LmF1
Dai et al. (2009) 85.88 80.10 83.01 86.29 80.29 83.31
Gesmundo et al. (2009) 87.86 77.44 82.66 87.64 77.19 82.43
Che et al. (2009) 86.56 77.10 81.84 87.33 76.47 81.90
Joint 82.14 75.58 78.88 80.82 74.55 77.71
Morante et al. (2009) 77.33 70.14 73.75 73.07 68.48 70.78

Table 3: Scores on dependency parsing (LAS), semantic role labeling (LF1), and the joint task
(LmF1, for LmacroF1) for the overall three best-performing systems in the CoNLL-2009
shared task, compared to our joint system and an alternative memory-based system.

Morante et al. (2009) is a similar system to the one presented here; it does not make use of
constraint satisfaction inference, but rather builds on the output of a joint Cdep classifier, an unla-
beled variant of the Cdep classifier, and a variant of the Cmod classifier, and adopts local re-ranking
heuristics to select an optimal joint graph. The improvement of the current joint system over the one
of Morante et al. (2009) indicates the relative effectiveness of the constraint satisfaction inference
method.

6. Analysis of results

In this section we report on a closer analysis of the results of the systems for Catalan dependency
parsing and semantic role labeling, trained on the maximal amount of data. Our goal is to explain
what is the major cause for the differences in performance between the joint and disjoint systems.

6.1 Joint versus disjoint dependency parsing

As shown in Section 5, disjoint learning of syntactic dependency parsing outperforms joint learning.
An intuitive explanation for this is that the disjoint dependency parsing task discerns 50 different
relation types, while the joint task combines these 50 types with semantic relation types into a
total of 130 relation types. Learning a task with more relations and consequently less examples per
relation should be harder. Here we make an attempt to analyze in more detail where this difference
leads to the largest differences.

The first place to seek differences between the two approaches is the three memory-based clas-
sifiers, Cdep, Cdir, and Cmod. Table 4 displays the classifier accuracy scores, i.e. the percentage of
correctly classified test instances, of the three classifiers in the joint versus disjoint condition. The
disjoint classifiers are clearly more accurate than their joint learning counterparts. This difference
must lie at the basis of the better performance of the disjoint system in terms of labeled attachment
score.

System Cdep Cdir Cmod

Joint 89.33 92.27 81.90
Disjoint 95.74 94.12 85.77

Table 4: Classifier accuracy scores on test data of the Cdep, Cdir, and Cmod classifiers trained on
joint and disjoint Catalan dependency parsing.

Entering a finer level of analysis, we analyze the F1 scores of the systems per dependency relation.
Table 5 contains the F1 scores for dependency relations with more than two hundred occurrences
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in the test corpus. For most relations the scores of the disjoint system are slightly higher (< 1.0),
and for three relations the scores are markedly higher: cc (+4.06), cpred (+3, 89) and sadv (+4.36).
Only in one case, conj, the joint system outperforms the disjoint system.

DEPREL # F1 J F1 D F1 D-J
sn 8828 92.82 92.81 -0.01
spec 7911 98.94 98.96 0.02
f 6291 64.94 65.06 0.12
sp 4843 78.55 80.33 1.78
suj 3834 86.08 86.81 0.73
cc 3083 61.08 65.14 4.06
cd 2536 78.09 78.10 0.01
S 2484 66.02 65.95 -0.07
s.a 2291 96.16 96.18 0.02
v 1872 96.75 97.11 0.36
ROOT 1862 76.84 77.71 0.87
coord 1575 62.26 62.58 0.32
conj 788 90.70 89.75 -0.95
creg 703 67.79 68.48 0.69
atr 534 82.14 83.64 1.50
grup.nom 489 72.30 72.28 -0.02
mod 430 88.43 88.70 0.27
pass 375 93.26 93.26 0.00
morf.pron 355 96.00 96.40 0.40
d 293 96.20 96.20 0.00
ao 270 33.91 35.21 1.30
ci 239 53.21 53.79 0.58
sadv 206 62.47 66.83 4.36
cpred 205 66.67 70.56 3.89

Table 5: Number of occurrences (#) per dependency relation (DEPREL), F1 of the joint (J) and
disjoint (D) dependency parsers, and difference in F1 (D-J) for classes with more than 200
occurrences, measured on test data.

The score with the highest impact in the difference in performance of the joint and disjoint
systems is that of the relatively frequent cc dependency relation, which we analyze in detail. cc
stands for adverbial adjunct. An adjunct is an optional complement of the predicate that usually
expresses the circumstances under which the event expressed by the predicate takes place. In 1 we
show two examples of cc that perform a temporal role (cc:argm-tmp), and one example that performs
a location role (cc:argm-loc). They express the circumstances associated with the event faran.

Example 1 Les conferències es faran [tots els divendres cc:argm−tmp], [entre les set i les deu

cc:argm−tmp], [també a la Torre LLuvià cc:argm−loc]. English: ‘Conferences will take place on Friday,
between seven and ten, also in Torre LLuvià’ .

One of the characteristics of the dependency relation cc is that semantically it combines with a
wide variety of semantic roles. Additionally, it can occupy different positions as adjunct of the verb.
This means that while in the disjoint setting the system has to learn one class, in the joint setting
the system has to learn as many as 20 classes7, with markedly fewer examples per class. As listed

7. Classes in which the dependency relation cc is involved in the joint setting: cc: , cc:arg1-null, cc:arg2-atr, cc:arg2-
fin, cc:arg2-loc, cc:arg2-null, cc:arg3-ein, cc:arg3-loc, cc:arg3-ori, cc:arg4-des, cc:arg4-efi, cc:argL-null, cc:argm-
adv, cc:argm-cau, cc:argm-ext, cc:argm-fin, cc:argm-ins, cc:argm-loc, cc:argm-mnr, cc:argm-tmp.
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in more detail in Table 6, the balance between precision and recall scores on cc classes is different
between the two systems. The joint system is more precise (+5.57), while the disjoint system has a
better coverage (+10.64). It might be the case that for some applications a system that produces less
false positives is more adequate than a system that produces more. Overall, these results confirm
the intuitive hypothesis that a disjoint setting outperforms the joint setting, especially where the
class space becomes very fragmented in the joint setting. The disjoint system generalizes better for
the cc class, though it also produces more false positives.

System # cc classes TP FP Precision Recall
Joint 20 1625 613 72.61 52.71
Disjoint 1 1953 960 67.04 63.35

Table 6: Total number of joint classes with the cc dependency relation, true positives (TP), false
positives (FP), precision and recall of the joint and disjoint dependency parsers.

In order to further test the hypothesis, we analyze the results of other dependency relations that
have a relatively fragmented class space in the joint setting. These are: cd (direct object) with six
labels; ci (indirect object) with three; cpred (predicative complement) with four; creg (prepositional
complement) with ten; and suj (subject) with seven. For all these dependency relations the disjoint
system scores better. For the cpred relation the advantage of the disjoint system is almost as high
(+3.89) as for cc, despite the fact that the class space for cpred is less fragmented in the joint
setting (4 versus 20 classes). For the cd relation the advantage of the disjoint system is negligible,
despite the fact that the class space in the joint setting is fragmented into six classes. This would
suggest that fragmentation, though important, is not the only factor that plays a role in the different
performance of the systems.

In order to find other potential factors we analyze the differences in the predictions of the joint
and disjoint systems for cpred and cd. As for cpred, a translated typical example sentence for this
relation is 2, where tired is the argument of the predicate arrived.

Example 2 The president arrived [tired cpred:arg2−atr].

Although the disjoint system outperforms the joint system (+3.89 in terms of F1), the actual
difference between the joint and disjoint systems for this relation is that the joint system has six
more false negatives and six more false positives than the disjoint system; the high increase in F1
is based only on a small number of token-level differences. Overall, both systems make similar
errors on cpred. The most common ones are assigning sp (prepositional phrase) and atr (attribute)
instead of cpred. Sp is assigned when there are attachment errors as well, such as in 3, where the
systems attach the prepositional phrase de “perfecte example” to segrest instead of to the predicate
qualificava.

Example 3 La nota qualificava el segrest [de “perfecte exemple” cpred:arg2−atr]. English: ‘The note
qualified the kidnapping as a perfect example’.

Atr is assigned frequently instead of cpred, which is to be expected, since these dependency
relations participate in constructions that are similar. The difference is that atr is assigned to
complements of the verbs ser and estar (‘to be’). A translated typical example sentence for atr is
4, where tired is the argument of the predicate is.

Example 4 The president is [tired atr:arg2−atr].

The dependency relation cd denotes the direct object. A typical example is shown in 5, where
his speech is the cd of the predicate reads.
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Example 5 The president reads [his speech cd:arg1−tem].

There can only be one cd relation per predicate. In the joint system it splits into six classes with
different distributions: cd:arg1-ext (5), cd:arg1-pat (1,998), cd:arg1-tem (250), cd:arg2-atr (223),
cd:arg2-ext (27), and cd:argl-null (33). Despite the fragmentation, the scores for the joint and
disjoint system are similar. An explanation for this is that of the five cd classes in the joint system
one of them (cd:arg1-pat) is much more frequent, which might boost the global scores of cd for the
joint system. Of the 2,536 occurrences of cd, 2,025 are predicted correctly by both systems, 80
by the disjoint system and 85 by the joint system. Of the correct 2,025 cases generated by both
systems, 1,670 have the role arg1-pat, which accounts for 83.6% of the occurrences of cd:arg1-pat.
The fact that both systems generalize well for this class would suggest that examples of the class are
consistent, which compensates for the fragmentation in the class space. The most frequent common
error that both systems commit is assigning suj instead of cd, which happens in 45.1% of the cases.

For example, in 6 both systems assign suj to els seus estudis musicals and attach it to vulguin
instead of assigning cd to it and attaching it to acabar.

Example 6 Els alumnes que vulguin acabar [els seus estudis musicals cd:arg1−pat] a Reus o a Tortosa
[...]. Engish: ‘The students who would like to finish their music studies in Reus or Tortosa’.

Similarly, in 7 both systems attach complement veritats cient́ıfiques to contradir, but assign to
it suj instead of cd.

Example 7 [...] els interessos poĺıtics no poden contradir [veritats cient́ıfiques cd:arg1−pat] [...].
English: ‘[...] political interests cannot contradict scientific certainties [...]’.

Until now we have explored the hypothesis that the fragmentation in the class space of the joint
system might be the cause of its lower performance. However, not all dependency relations that get
a lower performance in the joint system are fragmented. For example, as shown in Table 5, sadv
scores 4.36 higher in the disjoint system, whereas the class space is not fragmented, since in both
systems there is only one class.

System # sadv classes TP FP Precision Recall
Joint 1 134 89 60.09 65.05
Disjoint 1 134 61 68.72 65.05

Table 7: Total number of joint classes with sadv as dependency relation, true positives (TP), false
positives (FP), precision and recall of the joint and disjoint dependency parsers.

Table 7 shows that the cause of the disadvantage for the joint system is a lower precision. In
both systems, the false positives are mostly caused by assigning sadv instead of cc, but this error
is more frequent in the joint system. So, even though the sadv class is not fragmented, the scores
of this class are partly linked to the scores of the cc class, which is very fragmented; it seems that
the relative higher frequency of sadv versus the fragmented cc classes in the joint system causes the
latter system to overpredict the confusable sadv class.

Another category that deserves attention is conj, since it is the only category on which the
joint system fares better. The cause for the slightly better performance of the joint system for this
category is better attachment. Both systems predict the label at the same performance level if
attachment is not taken into account, but the results favor the disjoint system when attachment is
taken into account, as shown in Table 8.
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Label+Attachment Label
System Precision Recall Precision Recall
Joint 91.05 90.36 98.59 97.84
Disjoint 90.04 89.47 98.60 97.97

Table 8: Precision and recall scores for the conj dependency relation of the joint and disjoint depen-
dency parsers with and without evaluating attachment.

6.2 Joint versus disjoint semantic role labeling

Whereas the dependency parsing results show that the disjoint setting is more favorable than the
joint setting, the semantic role labeling results show that this task in fact profits from the joint
setting. In order to find out why this happens, we analyze the results in more detail.

Contrary to what happens with the dependency parser, a comparison of the performance of the
three memory-based classifiers, Cdep, Cdir, and Cmod does not explain the advantage of the joint
approach in the semantic role labeling task. Table 9 displays the classifier accuracy scores of the
three classifiers in the joint versus disjoint condition. As in the dependency parsing experiments,
the disjoint classifiers are more accurate than their joint learning counterparts. Yet, the joint setting
produces a better performance of the final semantic role labeling system.

System Cdep Cdir Cmod

Joint 89.33 92.27 81.90
Disjoint 94.26 94.12 91.69

Table 9: Classifier accuracy scores on test data of the Cdep, Cdir, and Cmod classifiers trained on
joint and disjoint Catalan semantic role labeling.

An alternative explanation can be explored by comparing the F1 scores of the disjoint and joint
semantic role labelers. Table 10 lists the F1 scores for semantic roles with more than two hundred
occurrences in the test corpus. The results per semantic role show that the joint system, while
overall better, does not outperform the disjoint system in all classes. The frequent semantic roles
with the most marked advantage for the joint system are v+argm-tmp, v+argm-loc, v+argm-adv,
and v+argm-fin. In what follows we analyze the scores per semantic role from the perspective of
class fragmentation in order to check whether fragmentation plays a role as it did in dependency
parsing.

In Section 6.1 we showed that some dependency relations were considerably fragmented in the
joint setting. However, this does not apply to semantic roles in the joint setting. Whereas a syntactic
function can be associated with several semantic roles, a semantic role is mostly associated to one
syntactic function. Of the 32 semantic roles, only 11 are fragmented, and from these only three are
fragmented in more than two classes: arg2-atr splits into cc:arg2-atr, cpred:arg2-atr, cd:arg2-atr, and
atr:arg2-atr; arg2-loc splits into cc:arg2-loc and creg:arg2-loc; and argL-null splits into suj:argL-null,
cpred:argL-null, creg:argL-null, cc:argL-null, and cd:argL-null. The joint system scores higher for
the three, despite the fact that the classes to be learned are more fragmented for this system. So,
fragmentation does not hinder the performance of the joint system.

Another aspect to explore is whether the better perfomance of the joint system on particular
classes is due to a better precision or to a better recall. The global results presented in Table 2
indicate that the joint system attains a relatively higher recall. Table 11 presents the precision and
recall measures for the aforementioned four semantic roles. For the role v+argM-fin the advantage
is equally spread over precision and recall, while for the other three roles the advantage is somewhat
more pronounced in recall.
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POS pred + sem role # F1 J F1 D F1 J-D
v + arg1-pat 2336 73.27 72.72 0.55
v + arg0-agt 1845 76.47 75.53 0.94
v + arg1-tem 1568 68.93 69.95 -1.02
v + argM-tmp 868 64.02 60.46 3.56
v + arg2-atr 841 73.86 73.75 0.11
v + argM-loc 616 42.83 36.35 6.48
v + argM-adv 580 29.03 23.69 5.34
v + arg2-null 322 58.74 60.10 -1.36
v + arg2-ben 203 50.27 50.00 0.27
v + arg1-null 191 62.19 62.99 -0.80
v + argM-cau 170 11.06 8.90 2.16
v + argM-fin 161 42.86 19.13 23.73
v + argM-mnr 143 50.22 44.96 5.26
v + arg2-loc 139 33.98 39.64 -5.66
a + arg0-agt 122 78.76 73.13 5.63
v + arg0-cau 100 35.29 40.85 -5.56

Table 10: Number of occurrences (#) per semantic role , F1 of the joint (J) and disjoint (D) semantic
role labeler, and difference in F1 (J-D) for classes with more than 100 occurrences on test
data.

Semantic role Prec J Prec D J-D Rec J Rec D J-D
v+argm-fin 54.29 31.88 22.41 35.40 13.66 21.74
v+argm-loc 45.75 41.54 4.21 40.26 32.31 7.95
v+argm-tmp 68.01 69.57 -1.56 60.48 53.46 7.02
v+argm-adv 37.64 34.90 2.74 23.62 17.93 5.69

Table 11: Precision (Prec) and recall (Rec) of four semantic roles in the joint (J) and disjoint (D)
systems.

An error analysis per semantic role does not yield more information about why the recall of the
joint system is slightly higher than the recall in the disjoint system. The types of errors made by the
two systems are similar. The most common errors for the v+argM-fin semantic role are confusing
it with the NONE class or with the v+argM-adv role. The v+argM-tmp role gets confused mostly
with v+arg1-pat, v+arg2-atr, v+argM-loc, and v+arg1-tem. For the v+argM-loc and the v+argM-adv
roles the errors are more diverse.

A lack of a clear explanation leads us to explore a factor that is more technical in nature that
might explain the difference in recall scores: the F scores of the NONE and dummy: class of the
Cdep classifier. Recall that NONE is the label associated with pairs that have no semantic or
syntactic relation whatsoever, and dummy: is the label for pairs that do have a syntactic relation,
but no semantic relation. We hypothesize that the disjoint Cdep semantic dependency classifier will
tend to overpredict these classes more often, while underpredicting and thus yielding a lower recall
for the other classes. The reason why the disjoint semantic dependency classifier would overpredict
them is that without the syntactic dependencies, the remaining semantic dependency subgraphs are
sparser. In other words, there are relatively more pairwise examples of words that have no relation in
the disjoint Cdep semantic dependency classifier than in the case of the same joint classifier, where
many pairs will have at least a syntactic dependency. In the disjoint case, this means that the
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majority class representing no relation will be more dominant, causing the classifier to defer to the
majority more often.

This intuition is confirmed by the results. The test set of the Cdep disjoint classifier contains
40,847 instances with class dummy: , 1,395,547 with class NONE, and 11,163 instances with a
semantic role. This means that in the Cdep joint classifier these instances have a combined label
where the left part is a syntactic dependency relation. Semantic roles in the disjoint system are
often accidentally misclassified for dummy: , causing their recall to be lower.

For example, for the sentence presented in Figure 1 the instance that represents the relation
between Els and treballadors has class spec: in the joint setting, and class dummy: in the disjoint
setting; the instance that represents the relation between vaga and dels will have class NONE both
in the joint and disjoint setting.

Table 12 shows the numbers of true positives, false positives and false negatives for the dummy:
and NONE classes produced by the Cdep classifier of the joint and disjoint systems. The joint
classifier produces a higher number of true positives and a lower number of false positives and false
negatives, confirming the hypothesis that the scores of these two classes determine the higher recall
of the joint system.

Relation TP J TP D FP J FP D FN J FN D
dummy: 39128 38833 1719 2014 44333 63730
NONE 1338477 1318000 57070 77547 1880 2346

Table 12: True positives (TP), false positives (FP), and false negatives (FN) of the dummy: and
NONE classes for the joint (J) and disjoint (D) Cdep classifier.

Overall, our analysis suggests that on semantic roles the recall of the joint system is higher due
to the distributions of the dummy: and NONE classes in the instances of the Cdep classifier.

7. Conclusions

In this case study with two languages, Catalan and Spanish, and two complex natural language
processing tasks, syntactic dependency parsing and semantic role labeling, we have shown that
the joint learning of these two tasks as one single task can yield systems that are competitive in
generalization performance, compared to their counterpart systems in which the tasks are learned
and performed separately (all else being equal). We observe two opposed differences: joint learning
performs slightly worse than disjoint learning in dependency parsing (about a half percentage point
in terms of labeled attachment), while at the same time joint learning performs slightly better than
disjoint learning on semantic role labeling (again, about a half percentage point in terms of labeled
F-score).

We relate the disadvantage of the joint system on dependency parsing to the relatively high class
fragmentation that joint learning causes. This effect is absent in the semantic role labeling task;
here, the joint system attains a higher overall performance mostly because of a higher recall. The
disjoint semantic role labeler, which does not jointly predict syntactic dependencies, is hurt slightly
by the fact that the majority class, representing the absence of a relation, is more frequent and
overbearing, rendering the disjoint semantic role labeler too conservative.

We venture to conclude that this case study is yet another illustration that complex natural
language processing tasks that have an identical or overlapping input feature space as well as an
overlapping output space, such as dependency graphs and semantic role labeling graphs, can be
formulated as single tasks, to be learned by machine learning algorithms. It remains an empirical
question whether this combination performs on par with the disjoint systems, as we explored here
in the context of dependency parsing and semantic role labeling. The outcomes of our study add
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to the growing number of observations that have shown relatively stable, or occasionally better
performances by joint learning (Sejnowski and Rosenberg 1987, Van den Bosch 1997, Buchholz
2002, Wang et al. 2008, Finkel and Manning 2009, Kate and Mooney 2010, Li et al. 2010). Whether
the joint learning approach is a match for pipeline systems, cascaded systems, or iterative versions
of these systems where the output of modules is piped into the input of other modules, remains an
empirical question as well as a departure point for future research, where we suggest that experiments
are set up in which the experimental circumstances are kept as constant as possible, as illustrated
in this study.

Linguistically speaking, our results support the Linking Theory according to which regular map-
pings can be established from the semantic to the syntactic level. The syntactic-semantic correspon-
dence is reflected in the fact that both tasks can be learned jointly. Syntactic dependency analyses
and semantic role analyses are but different sides of the same coin. They draw on the same linguistic
elements, and largely overlap and correlate on important parts of their analyses. We express the
hope that studies both in dependency parsing and semantic role labeling build forth on this insight,
and henceforth treat both tasks as one. Learnability and generalization performance is only partly
and mildly hampered by the merge, and when combined, the two sources of information can be
available at no extra cost.

The experiments that we describe are based on corpora annotated with projective dependencies.
As further research, we plan to adapt our framework to process non-projective dependencies as well,
in order to account for relations in which syntactic dependencies and semantic roles do not have a
direct correspondence.
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