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Abstract

The concept of Easy Language (Vandeghinste et al. 2021) involves the use of simple text, avoid-
ing complex grammatical constructions and difficult vocabulary. Recent approaches (Seidl and
Vandeghinste 2024) have shown promising results for text simplification using the pre-trained
encoder-decoder T5 model (Raffel et al. 2020). This paper investigates new control tokens with
a Dutch T5 large language model, and predicts sentence-dependent control token values with
BERTje (de Vries et al. 2019), based on each input instance and the desired output complexity.

Control tokens monitor the splitting and reformulation of the simplified sentence to control
the degree of simplification (Sheang et al. 2022). Instead of fixed values for control tokens, the
characteristics and complexity of the difficult sentences will be taken into account. Agrawal and
Carpuat (2023) show that this approach improves the quality and controllability of the simplified
outputs compared to using standardised control values.

Our dataset consists of selected parallel (complex-simple) sentence pairs of the LEESPLANK
dataset.1 The introduction of new control tokens has not proven to enhance the model’s ability
to simplify sentences. But introducing BERTje to predict the actual control token values given a
complex sentence has resulted in better performances and more accurate sentence simplification.

1. Introduction

Text simplification is an NLP task aimed at making complex text easier to read and understand.
It has evolved from manual methods to automated approaches using deep learning, leading to chal-
lenges like data scarcity. The main target audience includes non-native speakers and individuals
with neurocognitive disorders, such as dyslexia, aphasia, autism, and intellectual disabilities. Text
simplification involves modifications at the word, sentence, and text level, with sentence simpli-
fication specifically focusing on restructuring and reformulating sentences to improve clarity and
comprehension.

Sentence simplification involves two types of simplification: lexical simplification and syntactic
simplification. Lexical simplification is related to simplifying difficult vocabulary. Syntactic simpli-
fication involves changing sentence structure such as cutting long sentences into shorter segments.
Both types have to preserve key ideas and approximate meanings (Saggion 2022).

Control tokens can be used to control how much splitting, rephrasing, and complexity reduction
are aimed for when simplifying the sentences. By adding these tokens to the input during training,
the model learns to associate them with the changes in the output. At inference time, they can be
used to control the output towards the desired simplification.

This paper is a follow-up to Seidl and Vandeghinste (2024), which compared control token values
for Dutch versus English sentences. It concluded that these values are language-dependent. The
current study investigates how and whether the use of control tokens can be further improved for
Dutch.

1. https://huggingface.co/datasets/UWV/Leesplank_NL_wikipedia_simplifications
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While research on sentence simplification is abundant for English, research for Dutch remains
scarce. We aim to address this gap by testing new control tokens for sentence simplification, specif-
ically tailored for Dutch, and by proposing a straightforward method to predict the actual control
token values given a complex sentence.

In particular, the following hypotheses will be examined:

• What is the impact of new control tokens in a supervised sentence simplification approach for
a Dutch parallel dataset?

• How can the effectiveness of the existing control tokens be further optimised?

• Does the new method for predicting control tokens improve sentence simplification on a con-
trollable sentence simplification task compared to the method using standardised values for
control tokens?

The code for this paper is available from Github.2

2. Related Work

2.1 Easy Language for Dutch

While the terms Easy language and Plain language are often used interchangeably, they have different
target audiences and goals (Vandeghinste et al. 2021). Plain language functions as a standard
for communication between government bodies or public institutions and the general public. The
International Plain Language Federation defines plain language as a type of communication that is
clear, concise, and easy to understand. It allows intended readers to understand information easily
and use that information effectively (Vandeghinste et al. 2021). Plain language is aimed at making
information accessible to everyone, regardless of their literacy level or abilities.

Easy language, on the other hand, is specifically targeted at two distinct groups: people with low
literacy and people with impairments. Wablieft,3 a Belgian newspaper written in Easy language,
describes Easy language as using no difficult words, jargon, or figurative speech, using terminology
that everyone can understand (Vandeghinste and Bulté 2019). Easy language is designed to be even
more accessible than plain language, taking into account the needs of individuals who may struggle
with complex language structures or vocabulary.

2.2 Text simplification for Dutch

Research on Dutch text simplification is currently constrained by limited available resources, as
noted by Bulté et al. (2018), Vandeghinste and Bulté (2019), and Seidl and Vandeghinste (2024).
However, there are notable efforts to overcome these challenges and develop effective simplification
techniques.

Bulté et al. (2018) implemented a lexical simplification pipeline by identifying difficult words and
replacing them with simple words, creating a data-driven, automatic lexical simplification tool by
evaluating the complexity of words in a text, considering two factors: the average self-estimated age
of acquisition of base words (Brysbaert et al. 2014) and the word frequency.

Sevens et al. (2018) discussed a rule-based syntactic simplification module for improving text-
to-pictograph translation, particularly for individuals with intellectual disabilities and proposed a
hand-crafted simplification system that utilized syntactic parsing for sentence analysis.

Wubben et al. (2012) used statistical machine translation methods, requiring parallel simplifica-
tion data.

2. https://github.com/florelien/Thesis-2024
3. https://wablieft.be/nl
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Vandeghinste and Pan (2004) described a sentence compression system for automatically pro-
ducing subtitles for television programs based on written transcripts. Syntactic compression rules
are derived from a syntactically annotated parallel corpus of autocues/subtitles.

Martin et al. (2022) implemented a text simplification model that can be trained on unlabeled
data. This involved extracting pairs of sentences that conveyed similar meanings but were phrased
differently. By harnessing paraphrased sentences found on the web, a synthetic corpus was created,
rich in linguistic variations. This did not only address the issue of limited parallel data but also
introduced a method capable of capturing diverse expressions for the same content.

2.3 Dutch Corpora for text simplification

Parallel corpora containing aligned sentences or texts in both the original Dutch text and simplified
versions could be used for training and evaluating text simplification models.

Vlantis et al. (2024) created a dataset4 of 1311 parallel sentence pairs with simplifications, au-
tomatically sentence-aligned from texts that were manually simplified for simplification evaluation.
The approximately 50 documents from the Communications Department of the City of Amsterdam
comprise various types such as reports, citizen letters, and newsletters and cover a diverse range
of topics. Vanackere and Vandeghinste (2022)5 created a comparable corpus of articles from the
regular newspaper De Standaard and the easy-to-read newspaper Wablieft. It consists of 12,687
Wablieft articles from 2012-2017 (see Vandeghinste et al. (2019)) and compared them with 206,466
De Standaard articles from 2013-2017. The most comparable articles have been retrieved and a
comparability score is provided. This dataset does not contain sentence alignment.

The fully synthetic Chatgpt-Dutch-simplification parallel dataset (Van de Velde et al. 2023)6 was
made for sentence simplification using text-to-text transfer transformers. It consists of Dutch source
sentences along with their corresponding simplified sentences. Both source and target have been
generated with ChatGPT. The dataset consists of 1013 training sentences, 126 validation sentences,
and 128 test sentences. The Leesplank NL dataset7 consists of 2.87 million paragraphs from Dutch
Wikipedia and their corresponding synthetic simplifications, generated by GPT-4 (OpenAI 2023).
This naturally leads to the question: ’Why is a new model required if GPT-4 can already simplify
text?’. While GPT-4 can do this task, its simplifications are not sufficiently controllable.

There are also a number of datasets based on automatic translation of English simplification
datasets.

The Dutch SimpleWiki dataset8 consists of 167,000 aligned sentence pairs and is an automatic
translation of the SimpleWiki dataset.9 The SimpleWiki dataset is derived from aligning sentences
between Simple English Wikipedia and English Wikipedia (Coster and Kauchak 2011). The Dutch
WikiLarge dataset (Seidl and Vandeghinste 2024)10 contains the first 10,000 rows of the WikiLarge
dataset. 11 WikiLarge is a large-scale parallel dataset, consisting of complex-simple sentence pairs
extracted from English Wikipedia and Simple English Wikipedia (Zhang and Lapata 2017). The
Dutch ASSET dataset (Seidl and Vandeghinste 2024)12 is a machine translation of the English
ASSET dataset (Alva-Manchego et al. 2020).13 This dataset provides a comprehensive benchmark
for evaluating sentence simplification models by capturing the varied range of text alterations human
editors perform. However, whether the translated version retains the same level of richness in text

4. https://github.com/Amsterdam-AI-Team/dutch-municipal-text-simplification/tree/master/
complex-simple-sentences

5. https://github.com/nivack/comparable_corpus_Wablieft_deStandaard
6. https://huggingface.co/datasets/BramVanroy/chatgpt-dutch-simplification
7. https://huggingface.co/datasets/UWV/Leesplank_NL_wikipedia_simplifications
8. https://huggingface.co/datasets/NetherlandsForensicInstitute/simplewiki-translated-nl
9. https://cs.pomona.edu/~dkauchak/simplification/

10. https://github.com/tsei902/simplify_dutch/tree/main/resources/datasets
11. https://github.com/XingxingZhang/dress
12. idem
13. https://github.com/facebookresearch
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alterations depends on the quality of the machine translation process. (Seidl and Vandeghinste 2024)
have a section on quality testing, which assumes that machine translations of Easy are also Easy.
For a selection of sentences, human translations were made, and the MT output was compared with
these references, which resulted in a BLEU score of 77. (Seidl and Vandeghinste 2024) concluded
that the machine-translated corpora are similar to their human reference translation, and thus this
corpora can be used for fine-tuning a language model.

Note that we keep an updated list of sentence simplification datasets at K-Dutch, the CLARIN
Knowledge Centre for Dutch.14

2.4 Controllable Text Simplification

While text simplification is typically seen as rewriting complex text in simpler language, practi-
cal applications require adjusting the simplicity level for specific types of readers. In controllable
text simplification, a model rewrites text according to specified attributes, tailoring the output to
the intended audience. Techniques for controlling these attributes during generation can include
adjustments to the training process or applying constraints during inference.

One method involves inserting special tokens at the start of the input sequence to represent the
desired attributes, which guides the generation of the output text. This approach has been used to
control aspects like pronoun forms, formality, and style in various language tasks.

Recently, this has been applied to control the amount and type of simplification. Scarton and
Specia (2018) trains a sequence-to-sequence model to generate text suitable for specific age or edu-
cational levels by adding annotations to the source sentences.

Scarton and Specia (2018) and Kew and Ebling (2022) have control tokens that use the grade
level as a proxy for preferred level of reading difficulty. More closely to the actual text, it is possible
to manage how complicated the content is by inserting control tokens at the start of the sentence
(Martin et al. 2020). These tokens represent different types of simplification actions and help adjust
how much the sentence is compressed or rephrased.

Control tokens also determine the complexity of vocabulary and sentence structure. Their use
during the training process guide the model to produce outputs tailored to specific requirements.
These tokens guide the generation of outputs at inference, ensuring the desired level of compression,
paraphrasing, and complexity.

Martin et al. (2020) described several control tokens, each fulfilling a unique role in the simplifi-
cation process. These tokens regulate the degree of sentence compression, the similarity between the
original and simplified sentences, the complexity of the words, and the complexity of the syntactic
structure. Sheang et al. (2022) introduced a control token that indicates the difference in number of
words between the original and its simplified sentence as a percentage. Agrawal and Carpuat (2023)
added a control token that focuses on the character-level Levenshtein similarity, specifically account-
ing for replace operations between the original and target sentences, and a token that measures the
proportion of direct copying from the original to the target sentence.

Seidl and Vandeghinste (2024) investigated the five control tokens of Martin et al. (2020) and
Sheang et al. (2022) using a Dutch T5 LLM. These control tokens have proven to enhance the ability
to simplify sentences.
One big limitation of most of these methods is that they use fixed control token values for any
sentence. However, complex sentences need to be simplified more, while simple sentences do not
need to change a lot. A solution to this problem is presented next, where the control token values
are predicted based on the sentence’s complexity.

14. https://kdutch.ivdnt.org/wiki/Simplification_Data
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3. Method

We explore new control tokens and their effects. Following Seidl and Vandeghinste (2024), we use a
Dutch T5 language model, which we fine-tune on simplified sentences. Where Seidl and Vandeghinste
(2024) used fixed values for control tokens without considering the complexity of individual source
sentences, we take complexity of source sentences into account to generate appropriate control
tokens.(Agrawal and Carpuat 2023).

3.1 Data

We create the LeesplankSS dataset, which consists of sentence pairs selected from the LEESPLANK
dataset. Sentences from a complex paragraph were aligned with sentences from a simple paragraph
using the all-MiniLM-L6-v2 15 sentence transformer (Reimers and Gurevych 2019) by computing the
cosine similarity of the embeddings generated by the sentence transformer. Sentence pairs where
cosine similarity > 0.8 were selected. For each sentence, only the highest match was selected. The
dataset consists of roughly 1 million unique sentence pairs, and was randomly split into 80% for
training, 10% for validation and 10% for testing.

Train dataset Validation dataset Test dataset

Complex Simple Complex Simple Complex Simple

Rows 847,625 847,625 105,953 105,953 105,954 105,954
Words 13,146,230 11,834,560 1,642,853 1,481,354 1,644,951 1,479,748
Avg. Word Count 15.51 13.96 15.51 13.98 15.53 13.97
Characters (+ spaces) 82,908,326 70,281,815 10,356,023 8,796,525 10,363,504 8,785,257
Avg. Character Count 97.81 82.92 97.74 83.02 97.81 82.92

Table 1: Detailed overview of the statistics of the train dataset, validation dataset, and
LEESPLANKSS test dataset. (Avg. = Average)

Table 1 presents statistics about the dataset. On average, complex sentences have a higher
average word count compared to their simple counterparts, indicating that complex sentences are
generally longer which is in line with (Bulté et al. 2018). The averages of character count further
demonstrate that complex sentences also have more characters per sentence compared to simpler
ones.

We use the Dutch ASSET dataset (Seidl and Vandeghinste 2024) to compare results of the model
across test sets originating from different datasets. Table 2 shows the statistics of this dataset.

Train dataset Validation dataset ASSET Testset

Complex Simple Complex Simple Complex Simple

Rows 10,000 10,000 992 992 359 359
Sentences 10,875 10,210 1061 1008 385 463.4
Words 220,806 161,018 22,196 16,305 7,292 6,116
Characters (+ spaces) 1,412,360 1,008,125 141,954 102,041 46,872 38,119
Avg. sent. length 20.30 15.77 20.92 16.17 18.94 13.20

Table 2: Detailed overview of the statistics of the LEESPLANKSS train dataset, LEESPLANKSS
validation dataset, and ASSET test dataset.

15. https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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3.2 Control Tokens

Ten control tokens (five from literature and five new) are calculated and prepended to all source
sentences before training takes place. Table 3 shows an example from the training set of ten control
tokens and their respective complex and simple sentences. The first two rows (control tokens and
original sentence) of this table are concatenated and passed to the T5 model, which is fine-tuned to
generate the last row. Control token values are rounded to the nearest 0.05. This binning approach
helps the model to learn the effect of each control token (Li et al. 2022). During validation, a
hyperparameter search is used to find the best combination of control token values for the validation
set as a whole. Subsequently, these fixed values are prepended to each source sentence in the test
set. As stated at the end of section 2, using fixed values from the hyperparameter search is not ideal.
This will be addressed later on.

Control
Token
values

WLR 0.7 CLR 0.7 LR 0.55 WRR 1.1 DTDR 0.75 CCR 0.6
DTRLR 0.75 NSR 1.7 PR 0.3 PPR 1.55

Original De Schoterlandseweg is een lange weg van minstens 20 kilometer, die
van Heerenveen via Mildam - Nieuwehorne - Oudehorne - Jubbega -
Hoornsterszwaag tot aan Donkerbroek doorloopt.

Simple De Schoterlandseweg is een lange weg die van de stad Heerenveen naar
het plaatsje Donkerbroek loopt.

Table 3: Training set example of control tokens and their respective complex and simple sentences

We first present the control tokens that were also used by Seidl and Vandeghinste (2024). Word
Length Ratio (WLR) is the ratio of the number of words in the target sentence to the number
of words in the source sentence. Character Length Ratio (CLR) is the ratio of the number
of characters in the target sentence to the number of characters in the source sentence. Seidl and
Vandeghinste (2024) implemented the adapted version of Sheang et al. (2022), which successfully
substitutes long words with shorter alternatives or rephrases the text. Word Rank Ratio (WRR)
represents the ratio between the logarithms of the word ranks in the target and source sentences.
A rank is equivalent to the frequency of a word in the language. It gives an indication of how the
complexity of the words in the source and target sentences compare. (Seidl and Vandeghinste 2024)
implemented the version of (Sheang et al. 2022). Ranks are based on Dutch Common Crawl data.16

Levenshtein Similarity Ratio (LR) measures how similar the source and target sentences are
at the character level using the Levenshtein (Levenshtein 1965) similarity metric. It calculates the
minimum number of single-character edits (insertions, deletions, or substitutions) needed to change
one string into the other. Like Seidl and Vandeghinste (2024), we use the normalised LevenshteinRa-
tio (Martin et al. 2020), (Menta and Garćıa-Serrano 2022) and (Sheang et al. 2022). Dependency
Tree Depth Ratio (DTDR) is the ratio of the maximum depth of the dependency tree of the
target sentence to the maximum depth of the dependency tree of the source sentence. It indicates
how complex the syntactic structure is in the source compared to the target. Seidl and Vandeghinste
(2024) implemented the Dutch model pipeline ‘nl core news sm’ from Spacy17.

Besides the control tokens from literature, we experimented with five new control tokens.Nouns
play a crucial role in forming simple sentences as they help identify people, places, things, or ideas.
Singular nouns, such as child, specifically refer to one entity, ensuring clarity and precision in com-
munication. Noun Singular Ratio (NSR) measures the ratio of the number of singular nouns
in a simple sentence to the number of singular nouns in a complex sentence. By controlling for
NSR, we hope to better understand how the presence of singular nouns influences the overall com-
plexity of sentences. Prepositions are used to express relationships between nouns/pronouns and

16. https://www.commoncrawl.org/
17. https://spacy.io/models/nl
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Figure 1: Examples of sentence with dependency tree relation lengths

other elements in a sentence. In the language development of individuals learning a new language,
prepositions tend to emerge later (Barak et al. 2020). In simple sentences, sentence length is shorter
and prepositions are often omitted.(Barak et al. 2020). Preposition Ratio (PR) measures the
ratio of the number of prepositions in a simple sentence to the number of prepositions in a complex
sentence. By measuring and controlling for PR, we hope to better understand how the presence of
prepositions influences the overall complexity of sentences.

For the next control feature, we make a distinction between three degrees of complexity/difficulty
in part-of-speech (POS) tags, each provided with a certain amount of penalty points. The POS
Penality Ratio (PPR)measures the ratio of the number of penalty points of all POS tags occurring
in a simple sentence to the number of penalty points in a complex sentence. Words with certain POS
tags are considered difficult, which we aim to avoid in the output. Examples of difficult verb POS
tags are the past participle, the past singular and plural, and the present plural. Another POS tag
that indicates a difficulty is the subordinating conjunction. We give these a Penalty = 3. As easy
POS tags we consider common nouns and personal pronouns, and prepositions are already controlled.
Therefore, these get a Penalty = 1. The remaining POS tags are considered of intermediate difficulty
and get a Penalty = 2.

Average dependency tree relation length is a measure of the average linear distance between two
linguistic units that have a syntactic relationship within a sentence (Jiang and Liu 2015) and is
related to the syntactic complexity of a sentence. Simplified sentences should have a lower average
dependency tree relation length. The interrelations among dependency tree widths, heights, and
sentence lengths are explored in detail by Zhang and Liu (2018) who analysed the relation between
dependency tree relation length and text complexity. Dependency Tree Relation Length Ratio
(DTRLR) measures the complexity of sentence structures by comparing the average distances of
relationships (dependencies) in a simple sentence to those in a complex sentence.

An example is shown in Figure 1. The length of a dependency tree relation, represented by the
number, refers to the distance between two related words in a sentence. The distance is dependent on
the exact structural representation. Copy Control Ratio (CCR) quantifies the degree to which
a sentence is simplified through the direct replication of tokens from the original text, similar to
Maddela et al. (2021). To quantify the degree of token alteration between a source sentence and its
simplified counterpart, we examine how many tokens in the source sentence appear in the simplified
sentence and divide by the total number of tokens in the complex sentence. In this calculation, we
count all tokens, not just the unique tokens.

3.3 Fine-tuning the T5 model

HuggingFace offers a wide selection of pre-trained large language models. Among these, one notable
example is the T5 model, short for Text-to-Text Transfer Transformer, developed by Google (Raffel
et al. 2020). This approach involves feeding the model text as input and training it to generate some
target text, which allows for the use of the same model, loss function, and hyperparameters across
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diverse tasks (Raffel et al. 2020). According to Seidl and Vandeghinste (2024), the Dutch variant of
the T5 model18 is the best model for Dutch text simplification.

We utilized the beam search algorithm with specific parameters shown in Table 4 to optimize
text generation quality.19 20

Parameter Value
Maximum number of new tokens 64
Minimum number of new tokens 3
do sample False
Number of beams 5
Number of beam groups 5
Temperature 0
Repetition penalty 1.5
Diversity penalty 0.1
Fine-tuning model T5
Maximum input tokens 512
Maximum generated tokens 128

Table 4: Beam search parameters

The pre-trained Dutch T5 model was fine-tuned on our dataset. The preparation for fine-tuning
includes calculating the control token values to get the sentence dependent values for each sentence
pair in the training set. The model with 10 control tokens was trained and validated using cross-
entropy loss as the evaluation metric. Training and validation losses were tracked to monitor the
performance and generalisation of the model. After 2 epochs, the training loss and the validation
loss flattened. Finetuning parameters are presented in Table 5.

Parameter Value
Batch Size 16
Number of Epochs 2
Learning Rate 1× 10−4

Gradient Accumulation Steps 1
Weight Decay 0.01
Optimizer Adafactor
Warmup Steps 25
Dataset size 800,000

Table 5: Training Parameters

3.4 Hyperparameter search

The hyperparameter search not only involves optimizing the hyperparameters’ values but also se-
lecting an effective subset of control tokens. For example, given 10 control tokens, we can evaluate
the performance with random values for those 10 control tokens to find the best values. However, we
can also take a random subset of 1-9 control tokens and assign random values to those. By exploring
hundreds of subsets and their randomly assigned values, we can identify both the optimal hyperpa-
rameter values and the most effective subset of control tokens, ensuring that the model achieves the
best possible performance. Hyperparameter searches are done with and without selecting subsets

18. https://huggingface.co/yhavinga/t5-base-dutch
19. Repetition penalty refers to repetition within the output.
20. The maximum input tokens is too high, but it does no harm (except in terms of memory usage).
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to compare the results. The best model that takes subsets into account will be referred to as the
”trained model with the 4 best control tokens” in the results section, as a configuration with 4 con-
trol tokens performed the best. 3 hyperparameter searches were conducted. In the first one, subset
selection was enabled. In the last 2, subset selection was disabled. The first two experiments started
with 10 control tokens, while the last experiment started with only 7. The reason for choosing 7
control tokens is that the other 3 turned out not to be useful in their current implementation. The
results of each hyperparameter search are explained in section 4. The control token values of the 3
hyperparameter searches are shown in Table 6.

Condition WLR CLR LR WRR DTDR CCR DTRLR NSR PR PPR
4 control tokens - 0.35 0.45 1.15 - 0.45 - - - -
10 control tokens 0.3 0.35 0.45 1.05 0.4 0.3 0.85 1.75 0.85 0.95
7 control tokens 1.0 0.75 0.4 0.35 0.75 0.1 0.85 - - -

Table 6: The best control token values during the hyperparameter search with 10 and 7 control
tokens

In Table 14 in the appendix, example sentences are shown in the following order: complex,
reference, output of no control token model and the control token model with the best and two
alternative control token combinations. The different hyperparameter search combinations have
different simplification results. For example, the complex sentence ”De spin leeft op de bodem en
maakt geen web.” [E: The spider lives on the soil and makes no web.] , simplified by the model
with the first combination of 7 control tokens results in ”Deze spin maakt geen web.” [E: This spider
makes no web.] compared to the second combination of 7 control tokens ”Deze spin maakt geen
web, maar een web.” [E: This spider makes no web, but a web.], and the third combination ”De spin
maakt geen web op de grond.” [E: The spider makes no web on the ground.]. Some sentences contain
the essence only, while others contain additional (sometimes wrong) information. To compare the
different control token values, evaluation metrics will be discussed in Section 4.

3.5 Sentence dependent control token prediction with BERTje

Previous methods used fixed values for control tokens (by means of hyperparameter search) for all
sentences at test time, without considering the complexity of individual source sentences. Instead
of fixed values, we take into account the characteristics and complexity of the difficult sentences
by using a transformer architecture. Agrawal and Carpuat (2023) show that this improves the
quality and controllability of the simplified outputs compared to using standardised control values.
However, the potential of transformers to predict these values remains untested. We investigate how
adjusting control values at the sentence level with BERTje, based on each input instance and the
desired output complexity, affects the simplification.

We employ BERTje (de Vries et al. 2019) for a regression task in this setup. Initially, the BERT
tokenizer and model are loaded, and a regression head is defined to extend the BERT model’s
capability to predict continuous values. This head consists of a linear layer that takes the [CLS]
token’s hidden state as input. The model is trained to predict the actual control token values given
a complex sentence. The ground truth labels can easily be calculated given the complex sentence
and its simple counterpart.

For fine-tuning, the model is trained over 2 epochs with a learning rate of 1e-5. The training
process utilizes a batch size of 16 and the AdamW optimizer, with a linear learning rate scheduler
applied to manage learning rate adjustments over the training steps. The loss function used for
regression is Mean Squared Error (MSELoss).

Hyperparameter tuning was carried out using Weights & Biases,21 a platform for tracking eval-
uation results and model weights, offering visualisation options and hyperparameter sweeps to train

21. https://wandb.ai/site/
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models with different hyperparameter values for analysis.The model is configured with the settings
illustrated in Table 7.

Parameter Value
Decoding Beam search
Do Sampling False
Temperature 0
Repetition penalty 1.5
Maximum new tokens 64
Minimum new tokens 3

Table 7: Parameters for hyperparameter search

3.6 Automatic Evaluation

The performance of the fine-tuned simplification model was quantitatively evaluated using several
automatic evaluation metrics: SARI, BLEURT, BERTScore, ChrF, FKGL and a single metric that
combines all of the above.

To compare with prior studies, we use SARI, a simplification-specific metric, considering the
original input along with reference simplifications (Xu et al. 2016). Despite the fact that SARI
has a weak correlation with human judgement, other research recommends the use of this metric
to compare with prior studies, in this case to compare with the results of Seidl and Vandeghinste
(2024).

BLEURT (Sellam et al. 2020) was used instead of Bilingual Evaluation Understudy (BLEU)
(Papineni et al. 2001) due to its combination of BLEU and BERTScore (Zhang et al. 2020) features.
BLEURT compares the generated text to the reference text using a combination of pre-trained
language models and synthetic data.

In addition to BLEURT, we calculated the BERTScore (Zhang et al. 2020) to further evaluate
the outputs, as it focuses specifically on measuring the semantic similarity between the generated
and reference texts.

In comparison to BLUE, the translation outputs of ChrF (CHaRacter-level F-score) have higher
performance (Popović 2015). ChrF is a machine translation evaluation metric that assesses the
similarity between a machine translation output and a reference translation by comparing character
n-grams rather than word n-grams.

FKGL is used to grade the complexity of the sentence, Flesch-Kincaid Grade Level (FKGL)
measurements were applied. FKGL computes the complexity level of a standalone piece of text
or sentence, by taking into account the number of vowel-sound units in a word and the sentence
length (Ondov et al. 2022, Kincaid et al. 1975). While higher values indicate better translations for
the previously mentioned metrics, lower values of FKGL indicate simpler translations while higher
values indicate more difficult-to-read translations.

Finally, a metric that combines all of the above is used to get an overall score of the simplification.
It combines all of the above, with equal weights per metric, into a single value from 0 to 1. For this
metric, higher scores indicate better overall simplifications.

4. Results

4.1 Experiments

Experiment 1 evaluates the results of the simplification process using 10 control tokens on the
LEESPLANKSS test dataset. The control token values of the Trained with BERT model are pre-
dicted as described in Section 3.5, while the fixed control token values of the other models are results
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from multiple hyperparameter searches, as described in Section 3.4. At last, the control tokens with
their values of the different models are illustrated in Table 8.

Models and values WLR CLR LR WRR DTDR CCR DTRLR NSR PR PRR

Trained with 10 CT 0.3 0.35 0.45 1.05 0.4 0.3 0.85 1.75 0.85 0.95
Trained with 5 old CT 0.3 0.35 0.45 1.05 0.4 - - - - -
Trained with 5 new CT - - - - - 0.3 0.85 1.75 0.85 0.95

Table 8: The different models with control tokens and their values

The results shown in Table 9 indicate a large difference in performance between the untrained and
trained models. The untrained model has the lowest scores across all evaluation metrics. FKGL was
not measured for this model, because the output sentences were mostly unfinished, badly structured
sentences. This reduces the relevance of the FKGL metric. The trained model without control
tokens achieved the best scores across 3 of the 5 metrics; although, using the BERT model with 10
control tokens demonstrates similar performance, closely matching with the best results. Compared
to the trained model with 10 control tokens (values in Table 6), the BERT model with 10 control
tokens achieves better scores across all evaluation metrics.

Using only the 5 old control tokens (WLR, CLR, LR, WRR, DTDR) showed slightly higher
performance compared to using 10 control tokens. Among all the trained models, our trained model
with only the 5 new control tokens performs the worst.

Models BLEURT ChrF BERTScore SARI FKGL Combined22

Untrained 0.27 22.71 0.62 36.80 - 0.50
Trained without CT 0.76 59.58 0.89 61.63 5.12 0.72

Trained with 10 CT 0.72 58.76 0.86 56.74 6.68 0.67
Trained with BERT (10 CT) 0.75 60.03 0.88 62.21 5.62 0.71

Trained with 5 old CT 0.74 59.04 0.87 57.76 5.92 0.69
Trained with 5 new CT 0.69 58.41 0.85 50.04 7.94 0.64

Table 9: Results of Experiment 1 with 10 CT on LEESPLANKSS dataset. (CT = Control Tokens)

Experiment 2 uses only 7 control tokens (5 existing and 2 new), with the Dependency Tree
Relation Length Ratio (DTRLR) and Copy Control Ratio (CCR) introduced as new control tokens.
The Noun Singular Ratio (NSR), the Preposition Ratio (PR), and the POS Penalty Ratio (PPR)
were removed. The control tokens with their values of the different models are illustrated in Table
10.

Models and values WLR CLR LR WRR DTDR CCR DTRLR NSR PR PRR

Trained with 7 CT 1.0 0.75 0.4 0.35 0.75 0.1 0.85 - - -
Trained with 2 new CT - - - - - 0.1 0.85 - - -
Trained with 5 old CT 0.3 0.35 0.45 1.05 0.4 - - - - -
Trained with 4 best CT - 0.35 0.45 1.15 - 0.45 - - - -

Table 10: The different models with control tokens and their values

In Experiment 2, as in Experiment 1, a difference in performance is observed between the un-
trained and trained models. The untrained model has the lowest scores across all evaluation metrics
(Table 11). Again, the trained model without control tokens achieves the highest scores across
almost all metrics, demonstrating a similar performance to the BERT model with 7 control tokens.

As shown in Table 11, the BERT model with 7 control tokens outperforms the trained model
with fixed control token values (cf. Table 6). Remarkably, this BERT model with 7 control tokens

22. The combined score is the average of the normalized and rescaled scores of the 5 metrics.
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similarly resulted in almost exactly the same results as the BERT model with 10 control tokens in
Table 9. Among all the trained models, our trained model with the 7 control tokens performs the
worst on all metrics but SARI.

In comparison to the trained model using 7 control token values, the trained model using only 2
new control tokens showed strong performance in all metrics but SARI, where the score dropped to
49.62, and the combined metric (0.66).

To compare only the most important models, only the best result from each hyperparameter
search is shown in Table 11. This is the best result from a hyperparameter search with all 7 control
tokens, the 5 old control tokens, the 2 new control tokens and all 7 control tokens with subset
selection. These 4 control tokens, resulting from the hyperparameter search with subset selection,
achieved higher scores for BLEURT, ChrF, and SARI compared to the trained model with 5 old
control tokens.

Models BLEURT ChrF BERTScore SARI FKGL Combined

Untrained 0.27 22.71 0.62 36.80 0.0 0.50
Trained without CT 0.76 59.58 0.89 61.63 5.12 0.72

Trained with 7 CT 0.67 45.16 0.84 53.35 4.05 0.66
Trained with BERT (7CT) 0.75 60.77 0.88 62.34 5.61 0.71

Trained with 2 new CT 0.74 58.94 0.86 49.62 6.72 0.66
Trained with 5 old CT 0.72 54.92 0.87 56.82 4.92 0.69
Trained with 4 best CT 0.73 57.42 0.87 58.48 5.76 0.69

Table 11: Results of Experiment 2 with 7 CT on LEESPLANKSS dataset.

Experiment 3 presented in Table 13 highlights the performance of different models evaluated on
the ASSET test dataset23 of Seidl and Vandeghinste (2024). In this experiment, BLEURT and the
combined metric were omitted due to out of memory issues. The control tokens with their values of
the different models are illustrated in Table 12.

Models and values WLR CLR LR WRR DTDR CCR DTRLR NSR PR PRR

Trained with 10 CT 0.3 0.35 0.45 1.05 0.4 0.3 0.85 1.75 0.85 0.95
Trained with 7 CT 0.35 1.95 0.7 0.45 0.65 0.4 1.4 - - -
Trained with 2 new CT - - - - - 0.4 1.4 - - -
Trained with 5 old CT 0.6 0.7 0.6 0.55 0.75 - - - - -
Trained with 4 best CT 1.5 1.05 - - 1.2 - 0.5 - - -

Table 12: The different models with control tokens and their values

The untrained model achieves the lowest scores across all metrics. Again, the trained models
have higher results compared to the untrained model across all metrics. There is no clear winner
in this experiment, as multiple models demonstrate similar performance. Models with higher ChrF
scores have worse FKGL scores and vice versa. The best scores of the evaluation metrics were all
achieved by a different model. Depending on which metric is deemed to be more important, one
might have a preference for one specific model. The model trained with 4 best CT has a slight
edge over the other models. However, the model with 7 CT, as well as the model with 2 new CT,
demonstrates similar performance. The model with 10 CT demonstrates the worst performance
among all the models, followed shortly by the model without CT and the BERT model.

Comparing the second experiment (Table 11) with the last experiment (Table 13), the models
evaluated on the LEESPLANKSS test dataset generally have better scores than those models eval-
uated on the ASSET test dataset across multiple metrics. For instance, the trained model with 7
control tokens on LEESPLANKSS highest ChrF score in the second experiment (60.77) is achieved

23. https://github.com/tsei902/simplify\_dutch/tree/main/resources/datasets/asset
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by the trained model with BERT model (7 CT), whereas in the last experiment, a ChrF score of
59.49 is achieved in the same model. This comes as no surprise, given the increased complexity of
sentences in the ASSET dataset.

Models ChrF BERTScore SARI FKGL

Untrained 46.77 0.65 36.28 -
Trained without CT 58.79 0.89 42.80 6.28

Trained with 10 CT 58.31 0.87 42.54 7.21
Trained with 7 CT 66.30 0.90 43.79 8.14
Trained with BERT model (7 CT) 59.49 0.88 43.11 6.92

Trained with 2 new CT 72.00 0.90 42.73 9.58
Trained with 5 old CT 69.07 0.90 42.73 9.58
Trained with 4 best CT 70.97 0.92 43.52 8.25

Table 13: Results with translated ASSET testset created by Seidl and Vandeghinste (2024)

To determine the impact of increasing the amount of training sentence pairs on the model perfor-
mance, a T5 model with the 4 best CT was trained multiple times on a subset of the LEESPLANKSS
until no further improvements on a fixed LEESPLANKSS validation set and evaluated on ASSET.
By starting with a very low number of training samples and gradually adding more samples, a thresh-
old can be identified at which additional data no longer greatly improves performance. ASSET was
selected as a test set because these results indicate at which threshold the model no longer generalizes
to unseen data of higher complexity of at least one different source. Figures 2 to 5 demonstrates that
increasing the LEESPLANKSS training dataset size beyond 400 does not result in improvements
for most evaluation metrics. An exception is observed with the SARI metric (Figure 2), where the
data indicates that the threshold for optimal performance is 100,000.

Figure 2: SARI scores Figure 3: Chrf scores

Figure 4: Bert scores Figure 5: Custom metric
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5. Discussion

This study compares the performance of models trained with different configurations of control
tokens. The results of experiment 1 indicate that control tokens generally do not improve the
simplifications on the LEESPLANKSS dataset, unless they have sentence dependent values. The
model trained without control tokens performed exceptionally well but incorporating the BERT
method to predict the 10 control tokens values yielded the best SARI and ChrF scores, highlighting
the effectiveness of sentence-dependent control token values in language simplification tasks. Overall,
the choice of training method and control tokens plays a crucial role in the performance of the models
on the LEESPLANKSS dataset.

Experiment 2 with 7 control tokens instead of 10 indicates similar results, where the model
without CT and the BERT model demonstrate the highest performances. Going from 10 to 7
control tokens, the predictions of the fixed control token model have lower quality according to all
metrics except FKGL, indicating that it is making much simpler sentences than before. Interestingly,
both BERT models (7 versus 10 control tokens) have similar results, suggesting that the three new
tokens (PPR, NSR, and PR) do not improve the results. However, another reason for this lack
of improvement could be that these three control token values are more difficult to predict by the
BERT model.

Overall, the results demonstrate that training with different configurations of control tokens can
influence model performance. The models trained with BERT generally outperformed those models
with fixed CT values, indicating the importance of leveraging both pre-trained models and control
tokens for improving text generation quality.

Remarkably, trained models without control tokens consistently achieved high scores across most
metrics in both experiments on LEESPLANKSS dataset, suggesting that the dataset’s inherent fea-
tures are well-captured without additional token control. This is different from the results obtained
by using ASSET as the test set, where using CT generally has a positive impact on the evaluation
metrics (Table 13).

First, overall the SARI scores are lower and the FKGL scores are higher. The fine-tuned models
are not capable of generalizing well enough to overcome this difference in sentence difficulty. However,
compared to previous research (Seidl and Vandeghinste 2024), the SARI scores are generally higher
across all fine-tuned models, indicating that the LEESPLANKSS training dataset is of better quality
than the dataset that was used in their research. There is a significant difference in most evaluation
metrics between the 2 test sets. A probable reason for this is the difference in distribution of control
token values. While CLR values of the ASSET test set are mostly below 1, CLR values of the
LEESPLANKSS test set show a normal distribution centered around 1. This difference causes the
use of static control tokens while evaluating on ASSET to be less problematic for some models. This
could also be the reason why the BERT model does not improve performance in this experiment, as
static control token values perform better for this dataset.

The findings from this study underscore several critical insights into the effectiveness of using
(new) control tokens for Dutch sentence simplification using the T5 large language model. Since
simplified sentences can sometimes be longer or shorter than the original sentences, it is impractical
to use fixed values for control tokens. For example, if CLR has a fixed value of 0.35, the model is
inclined to produce simple sentences that have a length of only 30% of the complex sentences. As
the CLR distribution of our dataset resembles a normal distribution centred around 1, this will not
result in correct simplifications most of the time . This reinforces the necessity for a more dynamic
approach that adapts to the characteristics of individual sentences, which our novel method aims to
address.

Furthermore, we observed that using 800,000 sentence pairs of training data compared to 400
shows only a minor difference. This finding aligns with previous research indicating that neural
networks can learn effectively from relatively small datasets and generalize to new examples given
sufficient tuning (Zhang et al. 2018). This implies that for tasks like sentence simplification, which
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involve transforming complex sentences into simpler ones while retaining essential meaning, the
marginal gains from large datasets are limited.

Limitations

A limitation of the study is the reliance on automatic evaluation metrics. Although these metrics,
such as BLEURT and SARI, provide valuable quantitative insights, they may not fully capture
the qualitative aspects of text simplification (Xu et al. 2016). Human evaluation remains the gold
standard for assessing text simplification quality, as it can capture subtle nuances that automated
metrics might miss. Nonetheless, the combination of automatic evaluation metrics offers a useful
and reproducible tool to assess and compare models during development.

Secondly, our synthetic LEESPLANKSS dataset consists of selected parallel sentence pairs of the
LEESPLANK dataset via sentence transformers. This method sometimes resulted in poor quality
sentence pairs. The original dataset is on paragraph-level, while our dataset is on sentence-level.
For instance:

• The complex sentence ”Het vliegtuigbedrijf Fokker is naar hem genoemd.” is simplified to ”Hij
was zo goed in het bouwen van vliegtuigen dat er zelfs een bedrijf naar hem is vernoemd, het
Fokker vliegtuigbedrijf.

• The complex sentence ”Er zijn veel wandel- en fietspaden in dit gebied.” is simplified to ”Daar
kun je lekker wandelen of fietsen, want er zijn veel paden.”.

The simplification of these sentences, originating from more complex paragraphs, results in a different
interpretation. This approach is inadequate as it introduces a subjective interpretation to what
should remain an objective observation.

Future work

This study opens opportunities for future research. One area of exploration could be the integration
of human evaluations alongside automatic metrics to capture qualitative aspects of text simplification
more effectively.

Another aspect to discuss and to investigate is experimental deletion of the Noun Singular Ratio
(NSR), the Preposition Ratio (PR), and the POS Penalty Ratio (PPR). The NSR and PR are
deleted in the second experiment, because complex sentences inherently contain more nouns and
prepositions due to their length, making the effect of these tokens similar with the Word Length
Ratio (WLR) token. To counter this, sentence length should be taken into account. Additionally,
the POS Penalty Ratio (PPR) was excluded because it did not produce the hoped result and needs
too much added experimentation and tuning to keep it in the set of control tokens.

Moreover, the BERT model used in this research is scalable and can be adapted to other lan-
guages and contexts. Furthermore, this method can be improved by modifying the training process.
Currently during training, the parameters of the BERT model are updated based on the Mean
Square Error loss applied to the difference between the predicted and reference control tokens. How-
ever, the ground truth control token values do not necessarily produce the best results, because
the BERT and T5 models are trained separately. The following training technique has potential to
improve these control token value predictions:

1. Predict control tokens for a complex sentence using BERT

2. Provide the predicted values with the complex sentence as input to the T5 model

3. Compare the predicted simple sentence to the reference and calculate cross-entropy loss

4. Use this loss to update the weights of the BERT model

By training in this way, the BERT model will predict control token values that actually lead to good
simplifications because the predictions are based on the reference simple sentence.
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6. Conclusion

Automated text simplification provides easier text to language learners, non-native speakers, indi-
viduals with neurocognitive disorders, and people with intellectual disabilities. This paper examined
5 new control tokens with a Dutch T5 large language model, and predicts sentence-dependent control
token values with a Dutch BERT model.

Previous methods used fixed values for control tokens without considering the complexity of
individual difficult source sentences. Instead of fixed values, the characteristics and complexity
of the difficult sentences were taken into account. The introduction of the 5 new control tokens
has not proven to enhance the model’s ability to simplify sentences. The results of the models
evaluated on the ASSET test dataset differ from the evaluation scores obtained by evaluating on the
LEESPLANKSS test set. Both datasets have a different distribution of control token values. While
CLR values of the ASSET test set are mostly below 1, CLR values of the LEESPLANKSS test
set show a normal distribution centered slightly below 1 (meaning that the average simple sentence
contains roughly the same words than its complex counterpart).

This study opens avenues for future research. One area of exploration could be the integration of
human evaluations alongside automatic metrics to capture qualitative aspects of text simplification
more effectively. Another area could be optimizing the BERT model. The current BERT approach
is scalable and can be adapted to other languages and contexts. In addition, this method can be
improved by modifying the training process.

Appendix A. Example Simplifications
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Model Sentence
Complex Dutch: De spin leeft op de bodem en maakt geen web.

English: The spider lives on the soil and makes no web.
Reference Dutch: Deze spin maakt geen web en leeft op de grond.

English: This spider makes no web and lives on the ground.
NO CT Dutch: Deze spin maakt geen web maar leeft op de grond.

English: This spider makes no web but lives on the ground.
7 CTs (1) Dutch: Deze spin maakt geen web.

English: This spider makes no web.
7 CTs (2) Dutch: Deze spin maakt geen web, maar een web.

English: This spider makes no web, but a web.
7 CTs (3) Dutch: Deze spin maakt geen web op de grond.

English: The spider makes no web on the ground.
Complex Dutch: In 1960 leidde hij de campagne die Johnson de Democratische nominatie voor het

presidentschap zou moeten opleveren.
English: In 1960, he led the campaign that was to give Johnson the Democratic nomination
for president.

Reference Dutch: In 1960 hielp hij met een campagne om Johnson de belangrijkste kandidaat van de
Democratische partij voor het presidentschap te maken.
English: In 1960, he helped lead a campaign to make Johnson the Democratic party’s
leading candidate for the presidency.

NO CT Dutch: In 1960 was hij de leider van een campagne om Johnson te selecteren voor de
Democratische partij.
English: In 1960 he was the leader of a campaign to select Johnson for the Democratic
party.

7 CTs (1) Dutch: In 1960 was hij de leider van een campagne om Johnson te vertegenwoordigen.
English: In 1960, he was the leader of a campaign to represent Johnson.

7 CTs (2) Dutch: In 1960 leidde hij een campagne om Johnson te selecteren voor de Democratische
partij.
English: In 1960, he led a campaign to select Johnson for the Democratic party.

7 CTs (3) Dutch: In 1960 leidde hij een campagne voor Johnson.
English: In 1960, he led a campaign to represent Johnson.

Complex Dutch: Aan het einde van de 19e eeuw werden er in en rond Noordwolde zo’n 200,000
stoelen per jaar gemaakt, welke voor het grootste gedeelte per trein werden geëxporteerd
via voormalig station Peperga.
English: At the end of the 19th century some 200,000 chairs a year were made in and
around Noordwolde, most of them being exported by train via the former Peperga station.

Reference Dutch: Aan het eind van de 19e eeuw maakte Noordwolde wel 200,000 stoelen per jaar.
English: By the end of the 19th century, Noordwolde was making as many as 200,000 chairs
a year.

NO CT Dutch: Aan het eind van de 19e eeuw maakten ze wel 200,000 stoelen per jaar in
Noordwolde en omgeving.
English: By the end of the 19th century, they were making as many as 200,000 chairs a
year in Noordwolde and surrounding areas.

7 CTs (1) Dutch: Aan het eind van de 1800s maakten ze ongeveer 200.000 stoelen per jaar, vooral in
Noordwolde.
English: By the late 1800s they were making about 200,000 chairs a year, mostly in
Noordwolde.

7 CTs (2) Dutch: Aan het eind van de 1800s maakten ze in Noordwolde ongeveer 200,000 stoelen per
jaar, en de meeste werden per trein naar een ander station gebracht.
English: By the end of the 1800s they were making about 200,000 chairs a year in
Noordwolde, and most of them were taken by train to another station.

7 CTs (3) Dutch: In de 19e eeuw maakten ze ongeveer 200,000 stoelen per jaar in Noordwolde en de
omgeving.
English: In the 19th century, they made about 200,000 chairs a year in Noordwolde and the
surrounding area.

(1) WLR 1.0, CLR 0.75, LR 0.4, WRR 0.35, DTDR 0.75, CCR 0.1, DTRL 0.85
(2) WLR 1.6, CLR 0.3, LR 0.55, WRR 1.15, DTDR 0.45, CCR 0.4, DTRL 1.95
(3) WLR 0.45, CLR 0.35, LR 0.25, WRR 1.2, DTDR 0.45, CCR 0.85, DTRL 0.3

Table 14: Examples of output sentences with 7 control token values
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