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Abstract

This paper presents an initial study performed by the MODOMA system. The MODOMA is a
computational multi-agent laboratory environment for unsupervised language acquisition experi-
ments such that acquisition is based on the interaction between two language models, an adult and
a child agent. Although this framework employs statistical as well as rule-based procedures, the
result of language acquisition is a knowledge-based language model, which can be used to generate
and parse new utterances of the target language. This system is fully parametrized and researchers
can control all aspects of the experiments while the results of language acquisition, that is, the
acquired grammatical knowledge, are explicitly represented and can be consulted. Thus, this sys-
tem introduces novel possibilities for conducting computational language acquisition experiments.
The experiments presented by this paper demonstrate that functional and content categories can
be acquired and represented by the daughter agent based on training and test data containing dif-
ferent amounts of exemplars generated by the adult agent. Interestingly, similar patterns, which
are well-established for human-generated data, are also found for these machine-generated data.
As the procedures resulted in the successful acquisition of discrete grammatical categories by the
child agent, these experiments substantiate the validity of the MODOMA approach to modelling
language acquisition.

1. Introduction

This paper presents a study demonstrating the acquisition of grammatical knowledge by the MOD-
OMA. The term MODOMA is an acronym for moeder-dochter-machine (Dutch for ‘mother-daughter-
machine’). This framework is aimed at providing a language acquisition laboratory, that is, a sim-
ulation environment for language acquisition experiments. On the one hand, all aspects of the
system are parametrized so that the settings are user-controlled while on the other hand, all results
and executed language acquisition procedures are logged and can be retrieved. The MODOMA
integrates several characteristics that enable unique possibilities for language acquisition experi-
ments. The MODOMA implements a multi-agent design modelling parent-child interaction such
that both the parent and the child are language models in a single system. Both agents employ
explicit representations of their grammatical knowledge, making the acquired knowledge and lan-
guage processing retrievable. This explicit representation distinguishes the MODOMA system from
other language learning systems, such as large language models (LLMs), which do not rely on such
explicit knowledge structures. This combination of properties provides new opportunities for con-
ducting computational experiments simulating first language acquisition. In a typical MODOMA
experiment the input data to the language acquisition algorithm are interactively generated by the
mother agent while the daughter agent constantly updates grammatical representations and takes

(©2025 David Ph. Shakouri, Crit Cremers, and Niels O. Schiller.



part in the interaction with the mother agent based on the currently acquired grammar. This design
represents a novel approach as most often computational models of language acquisition are based on
inputting corpora to the language acquisition procedures (e.g. Alishahi and Stevenson 2008, Alishahi
and Chrupata 2012, Conner et al. 2009, Matusevych et al. 2013).

In this paper, rather than limiting the term ”language model” to the typical usage in current
NLP, where it usually refers to neural models trained on a next-word prediction objective (e.g.,
transformer-based models like GPT, cf. Brown et al. 2020, Radford et al. 2018, and BERT, cf.
Devlin et al. 2019), we use it in a broader sense, encompassing rule-based approaches, statistical
methods, and artificial neural networks as all of these approaches are employed to address common
tasks in NLP. This distinction is important because the mother agent in our multi-agent system
relies on explicit linguistic rules, while language acquiring agent incorporates statistical methods to
infer a rule-based model for a linguistic phenomenon.

The study presented by this paper investigates whether the MODOMA daughter agent is able to
acquire and represent functional and content categories by integrating an application of the Zipfian
distribution in the MODOMA language acquisition system. Specifically, we examine whether a
multi-agent language acquisition system can derive functional and content categories from machine-
generated utterances and represent them through a rule-based grammar. To address this question,
we assess whether these utterances exhibit statistical patterns similar to those in human language
and determine the amount of input data necessary to detect such patterns. We then explore whether
these statistical tendencies can be converted into grammatical rules. Finally, we validate the results
by assessing the alignment of the inferred categories with the original grammar and evaluating the
system’s reliability in acquiring structured linguistic knowledge in an unsupervised manner.

The discussed language acquisition experiments are aimed at adding explicit grammatical knowl-
edge to a lexicon. Subsequently, the daughter agent can use this acquired knowledge to take part
in the conversation with the mother. To this end, the system employs statistical machine learn-
ing techniques, resulting in an explicitly specified grammatical representation. This contributes
to existing systems based on statistical methods and neural networks by offering a more inter-
pretable, rule-based approach to language modeling. By employing the principle of Zipf’s law
(Mandelbrot 1954, Zipf 1949), this study provides an essential robustness evaluation of the feasibility
of implementing a multi-agent simulation of first language acquisition. Crucially, the purpose of this
study is not to perform a binary classification of function and content words per se, but rather to
employ this classification as a tool for assessing the validity of this novel approach to modelling first
language acquisition. The advantage of using Zipf’s law is that it offers a solid and reliable basis
for evaluating the system’s performance and components. This is a well-established practice. For
example, Chaabouni et al. (2019) and Rita et al. (2020) employ Zipf’s law to develop a multi-agent
framework to model language evolution, see also the recent studies by Debowski (2021), Takahashi
and Tanaka-Ishii (2019), and Takamichi et al. (2024).

Importantly, the experiments in this study validate all components necessary to enable a multi-
agent model of first language acquisition. Specifically, the acquisition of function and content words
employs a hybrid language acquisition strategy, which is based on statistical tendencies that facili-
tate the acquisition of discrete grammatical rules. Therefore, these results support the modeling of
more complex grammatical phenomena and demonstrate the feasibility of the MODOMA research
agenda. A study building on these results is the work by Shakouri et al. (2025), which demonstrates
how grammatical categories such as noun, verb, and preposition can be acquired using unsuper-
vised techniques. In this paper two experiments illustrating this approach are presented: the first
simulation discussed in Sections 6 and 7 has been applied to a training data set generated by the
mother agent. These experiments were used to determine the parameter settings for the acquisition
of this linguistic phenomenon. The second experiment taking a novel test data set generated by the
adult language model as its input was used to validate this configuration, see Section 8. The results
suggest that the MODOMA is able to acquire these grammatical categories and represent them by
the grammar formalism of the daughter agent.
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Figure 1: Example of the representation of the lexical item for de (‘the.MAsSC/FEM’) by Delilah

2. Description of the MODOMA

The MODOMA consists of two main components: (1) the mother agent and (2) the daughter
agent. Delilah (Cremers and Hijzelendoorn 1995/2024a), the Leiden generator and parser of Dutch,
is employed as the mother. Crucially, Delilah’s grammatical knowledge is not based on a corpus.
The parser as well as the generator of the mother language model execute the same grammar
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consisting of predefined graph structures, which are comprised of attribute-value matrices. These
graphs correspond to words and grammatical constructions and are explicitly specified for many
grammatical properties such as the phonological form, concepts, logical meaning representation
(cf. Cremers and Reckman 2008), grammatical number, grammatical person, and the syntactic
category (e.g. determiner, noun, or verb). An example of a Delilah template is provided in Figure 1
illustrating Delilah’s lexical and grammatical knowledge of the word de (‘the.MASC/FEM’)!. These
graphs have been specified based on linguistic analyses of the Dutch lexicon and grammar, making
Delilah’s grammar closely tied to linguistic insights into Dutch. Thus, the linguistic knowledge and
processing can be consulted. In this respect Delilah offers a complementary perspective, particularly
when contrasted with the data-driven approach of large language models.

While Delilah’s lexicon contains a large but finite list of words and constructions, these templates
can be combined to form more complex utterances such as noun phrases and sentences. For exam-
ple, the template for the article de (‘the.MASC/FEM”) can be used by Delilah to form noun phrases
(e.g., de vrouw, ‘the woman’). These templates are combined through the process of unification.
This is a mathematical procedure, which verifies whether the templates contain conflicting features.
If no conflicting values are found, it creates a template specified for all information contained in
the original templates, see Schieber (2003) for a more detailed account of unification applied to
grammatical representations. As shown in Figure 1, the complement position associated with the
article de (‘the.MASC/FEM’) is constrained to only contain noun phrases, as indicated by the spec-
ification ARG|SYNSEM|CAT:n. Given the highly detailed nature of Delilah’s representations, it
lies beyond the scope of this paper to provide a full account of all features involved. However,
Cremers et al. (2014, 259-265) provide an elaborate account of unification in the context of Delilah.
In the application of unification to graph structures to produce and parse utterances, Delilah resem-
bles head-driven phrase structure grammar (HPSG, Pollard and Sag 1986, 1994). Here the terms
‘grammar’ and ‘lexicon’ are used synonymously as there is no principled formal distinction between
more concrete words and more abstract grammatical rules. Crucially, this language model executes
a combinatory list grammar, which is related to combinatory categorial grammar (CCG, Cremers
2002, pp. 378-386, Cremers et al. 2014, pp. 115-137, cf. Baldridge and Kruijff 2003, Moortgat 1997,
Steedman 1996). The characteristics of this language model are extensively discussed by Cremers
et al. (2014) and Reckman (2009, pp. 25-75).2 For the purposes of the MODOMA, Delilah, the
mother agent, has been taken as is.

Conversely, the daughter language model has been constructed specifically as part of the MOD-
OMA. Similar to Delilah, the daughter agent is a parser and generator but unlike the adult language
model the grammatical representations are underspecified and become more specific as a result of
the language acquisition procedures. A non-trivial resemblance between the adult and child systems
is that both employ graph structures for representing grammatical knowledge and their parsers and
generators execute their respective grammars by unifying lexical structures to output well-formed
utterances and provide grammaticality judgements and parses with respect to input utterances based
on the currently specified grammar. A crucial characteristic of the parser and generator of the child
agent is that they can execute an incomplete grammar containing underspecified structures as sim-
ilar to humans acquiring their first languages the daughter language model is required to take part
in the conversation with the mother before acquisition has completed.

The daughter agent comprises three modules: (1) a parser and generator, the automaton, which
execute (2) a grammar, which is specified as a result of acquisition by (3) a language acquisition
device (cf. Shakouri et al. 2018). Crucially, the parser and generator are not modified by the
language acquisition procedures. The result of language acquisition is explicit grammatical knowl-
edge represented by newly acquired lexical entries and/or grammatical properties of lexical entries
limiting their combinatory properties. A minimal example of a lexical entry is given by Figure 2.

1. Appendix A provides a glossary of grammatical abbreviations.
2. A demo version can be consulted at https://delilah.universiteitleiden.nl/indexen.html (Cremers and
Hijzelendoorn 2024b), last accessed Oct. 1, 2024.
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[memory stack position: 6878 ]
lexical entry number: 6879
session ID: 1731286472057
confidence lexical entry: 60
head directionality: null
confidence head directionality: 0
terminal: T
phonform: auto
semform: EKC
semform index: null
property type: A
GRAMMATICAL PROPERTIES: property value: b
confidence property: 60
HEAD: AUTO.6879]
| ARGUMENT: null] |

Figure 2: Example of the representation of an acquired lexical item for auto (‘car’) by the daughter
agent

These data structures provide comprehensive representations of words and constructions. They have
been specified for several grammatical properties, for example the phonological form (phonform), a
representation of semantic content (semform), and an expandable list of other acquired grammat-
ical properties. Grammatical properties are formalized by feature-value pairs such as [CONTENT
OR FUNCTION WORD: content word] and [CONTENT OR FUNCTION WORD: function word] the ac-
quisition of which is the aim of the study presented by this paper. As the learning procedures
are unsupervised, the daughter language model has no information on the labels employed by the
mother language model or grammar descriptions. Therefore, the acquired grammatical properties
and the semform are indicated by unique alpha-numeric labels such as the property type ‘A’ and
property value ‘b’ in Figure 2, see also Figure 3. These representations encode other grammatical
properties not investigated by this paper as well. For example, the terminal feature differentiates
between terminal words and more abstract constructions while the semform index enables represent-
ing anaphora such as reflexives. In addition, technical features are included such as the session id
and the lexical entry number, which uniquely identify each rule. As a result of simulating language
acquisition, the grammar can consist of increasingly complex structures as the HEAD and ARGUMENT
can contain data structures identical to lexical items.

Since all linguistic knowledge is explicitly represented and can be consulted by researchers with
respect to both agents, this type of approach provides an insightful addition to systems that learn
language but do not employ explicit representations such as large language models. The MODOMA
implements unsupervised learning as the input data to the language acquisition device are unanno-
tated and this module has no access to the mother agent’s internal processing and parses. Moreover,
previously acquired grammatical knowledge by the daughter agent can be employed as input to the
language acquisition procedures. This additional acquisition technique, which was introduced for the
purposes of the MODOMA, has been named internal annotation. This is a form of self-supervised
learning (cf. Balestriero et al. 2023, Brown et al. 2020, Devlin et al. 2019, Gui et al. 2024, Lan
et al. 2020, Orhan et al. 2020, Yarowsky 1995).
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3. Related work

As far as we know, the combination of characteristics and research possibilities entailed by the multi-
agent MODOMA framework is a novel design. In particular, the resulting system can be used to
cast language acquisition experiments based on natural language involving an adult language model
and an acquiring language model. These agents take part in interactions, such that all aspects of
the system, for example the parameter settings, input, executed language acquisition procedures,
interaction, generated utterances, and acquired grammar, are user-controlled, reproducible, mea-
surable, and verifiable. Ter Hoeve et al. (2022) present a road map of a teacher-student-loop to
model language acquisition and implement two experiments corresponding to the first steps. The
first experiment is aimed at modelling separate domains by ‘two strictly separated vocabularies’
of an artificial language while the second experiment addresses distinctive structures modeled by
repetitions of tokens. As part of these experiments, the teacher selects a fixed number of training
data from a set of pre-constructed sentences to provide them to multiple students, which consist of
language models. After training, the student language models are examined with respect to a test
set consisting of different sentences of the artificial language. In addition, a teacher language model
is trained on another subset of sentences and subsequently assessed. The current implementation of
this framework differs from the MODOMA most notably with respect to the training and test data:
In the case of the work by ter Hoeve et al. (2022) the input contains pre-constructed utterances of
an artificial language while for the MODOMA the data are representative of a natural language and
produced online by Delilah as part of the interaction based on an explicitly defined grammar model
of Dutch.

From an evolutionary perspective, research has been conducted on emergent communication
utilizing multi-agent systems. An important example is the Talking heads framework. This project
has been developed by Steels (2000, 2015) and provides a model of language evolution based on
interactions including references to non-linguistic contexts between agents. These agents develop
an artificial language as a result of language games (Steels 2001) such as the naming game aimed
at defining names for objects in the surroundings (cf. Steels and Kaplan 2001 for studies on word
naming, Steels and Loetzch 2012). Currently, their work also addresses the emergence and acquisition
of syntactic phenomena (cf. Steels and Beuls 2017, Steels et al. 2018, van Trijp 2016). Relevant
differences with the MODOMA project are that both agents engage in developing and learning
language. Moreover, while the MODOMA daughter addresses the acquisition of (a fragment of a)
natural language, the talking heads acquire an artificial language.

Chaabouni et al. (2020) study the emergence and beneficial properties of compositionality and
generalization by two deep neural agents: A Receiver agent constructs a message m based on a
received input ¢ while a Sender agent is inputted with m and returns an output . Then, the game
is successful if the input matches the output, that is, ¢ = & Chaabouni et al. (2022) provide an
architecture involving a Speaker, which receives an image and outputs a message, and a Listener,
which aims at selecting the same image from a set of images based on the message, to study the effects
of scaling up the ‘data set, task complexity, and population size’. Although these studies involve
two agents, unlike the MODOMA the language employed by these agents involves ‘emergent codes’
rather than (a fragment of) a natural language. Interestingly, Chaabouni et al. (2019) investigate
whether two communicating agents can create an artificial language following Zipf’s law, namely
that more frequent words are likely to be shorter. To the contrary, they demonstrate that an anti-
efficient code arises such that the most frequent words are correlated with the longest messages.
Conversely, Rita et al. (2020) indicate an artificial language congruent with Zipf’s law is learned
for a Lazlmpa system involving a ‘Lazy Speaker’ and an ‘Impatient Listener’. Griffith and Kalish
(2007) model language evolution by (a population of) Bayesian agents executing iterative learning
with respect to languages consisting of combinations of representations of meanings and utterances.

Alishahi carried out research simulating the acquisition of language by applying algorithms to
corpora that have been human or artificially generated, see Alishahi and Chrupata (2009, 2012)
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and Alishahi and Stevenson (2008) for studies modelling the acquisition of lexical categories, word
meaning, and early argument structure. Matusevych et al. (2013) enhance artificially generated
input corresponding to child-adult interactions to use them similarly to data such as the CHILDES
database (MacWhinney 2014) but differently from the MODOMA framework as the algorithm that
executes language acquisition, does not take part in the conversation. Beekhuizen et al. (2014)
provide a different perspective by modelling the acquisition of grammatical constructions employing
a single agent taking as its input generated representations of utterances and meanings. Furthermore,
Conner et al. (2008, 2009)’s Baby SRL project models the acquisition of semantic role labelling by
inputting annotated data from the CHILDES corpus or constructed sentences into their algorithm.

4. Modelling the acquisition of functional and content categories

The experiments presented in this paper assess whether a computational laboratory simulation of
language learning could acquire function and content categories in an unsupervised fashion as a
result of an interaction with Delilah, the language model providing samples of the adult language.
Subsequently, the daughter language model can employ this newly acquired grammatical knowledge
to take part in an interaction with the mother. On the one hand, the daughter agent can use the
acquired grammar specified for these classifications to generate new sentences. These sentences can
be presented to the mother as part of the conversation and the mother agent can return feedback (if
requested by the parameter settings of the MODOMA) so that the daughter can assess the quality
of the classifications. On the other hand, during the interaction the daughter uses this grammatical
knowledge to parse novel utterances produced by the mother, for instance by classifying words
presented by the mother with respect to this distinction.

Interestingly, it is a well-known finding in corpus linguistics that words corresponding to func-
tional categories tend to occur with a high frequency whereas content words tend to have a low
frequency of occurrence: many content words are used as hapax legomena, that is, only once, or a
few times in a text, see Powers (1998) for an analysis of closed and open class words. This finding
is congruent with Zipf’s law, that is, the observation that the ranking of a word in a list of mostly
used words is (approximately) proportional to the frequency of use for each word with respect to
a particular factor (cf. Mandelbrot 1954, Zipf 1949). Moreover, a correlation between a distribu-
tion observed in languages and grammatical categories distinguished by linguists is suggested for
language produced by humans. This paper assesses whether a similar correlation can be found for
language produced by a machine.

An initial experiment implemented in the MODOMA laboratory simulation environment has
been based on this correlation. This experiment provides a method to evaluate the MODOMA
approach to language acquisition experiments employing the well-established principle of Zipf’s law.
Thus, this study contributes to a research development such that the MODOMA is gradually evolved
by implementing increasingly complex experiments. As a result, experience with the MODOMA as a
laboratory model for language acquisition experiments can be increased and the system can be tested
and improved before implementing additional language acquisition techniques. Although Chaabouni
et al. (2019) and Rita et al. (2020) focus on language emergence, there are some similarities with
respect to the application of Zipf’s law to increase understanding of language models in comparison
with human-generated languages. Crucially, this procedure involves most of the components and
procedures required by more intricate acquisition experiments. Accordingly, the component parts
of the MODOMA system and their interaction, can be validated and improved to enable the imple-
mentation of further computational language acquisition experiments. If the acquisition succeeds,
a distinction between functional and content categories is learned by the daughter agent based on
samples of the target language presented by the mother agent during an interaction with the daugh-
ter. In this respect, it is significant that as soon as the daughter agent has acquired this grammatical
distinction, the new grammatical knowledge is immediately used to update the daughter grammar
and subsequently employed to generate novel utterances during the conversations with the mother
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agent and parse novel mother sentences. Consequently, this study provides an important indication
of whether the MODOMA laboratory approach to language acquisition can result in the acquisition
of non-trivial grammatical knowledge that can be used productively during parsing and generation.

5. Methodology

Parameter Description

Acquisition of functional cate- determines whether the system attempts to execute the acquisition
gories of functional and content categories.

type of phrase generated by specifies whether Delilah should generate noun phrases (NPs) or
the mother agent full sentences when requested to produce utterances.

Minimum amount of data pro- defines the minimum amount of data the system should process
cessed by the daughter agent  before starting the acquisition of functional and content categories.

Threshold for functional cate- defines the threshold based on the type/token ratio to differentiate
gory acquisition between functional and content categories in the utterances gener-
ated by the mother agent.

Table 1: Parameters for the functional and content category acquisition experiments

As the MODOMA implements a laboratory environment for language acquisition experiments,
it is a fully parametrized system. This means that users can control the properties of each exper-
iment by specifying predefined settings. Crucially, all aspects of language acquisition, that is, the
adult, the daughter and the executed language procedures, are included in the system. Accordingly,
the parameters can pertain to all these components. Table 1 provides an overview of the relevant
parameters for the current experiments. The MODOMA is designed to execute several acquisition
procedures (see also Shakouri et al. 2025, for an example of another acquisition procedure imple-
mented using the MODOMA). The first parameter in Table 1, Acquisition of functional categories,
specifies whether the acquisition of functional categories is enabled. In all experiments discussed in
this paper, this is the case.

The remaining parameters define key experimental properties. The type of phrase generated
by the mother agent parameter controls the structure of Delilah’s utterances, determining whether
sentences or noun phrases are generated. The training and test experiments presented in this paper
systematically vary this parameter. Similarly, the minimum amount of data processed by the daughter
agent before acquiring functional and content categories is varied across all experiments. These two
parameters define the experimental setup. Specifically, in the training experiments, acquisition of
functional and content categories is triggered after processing 1,000 noun phrases (NPs) and 1,000
sentences, followed by 10,000 noun phrases (NPs) and 10,000 sentences, respectively. This allows
us to assess how many input exemplars generated by Delilah are required to detect this statistical
tendency. Additionally, the threshold for functional category acquisition parameter specifies the
type-token ratio used to convert distributional differences between function and content words into
discrete linguistic knowledge. The training sessions discussed in this paper are used to determine
appropriate values for these parameters, while the test experiments verify the selected settings using
new datasets generated by Delilah.

Accordingly, Delilah was requested to generate eight sets of respectively 1,000 and 10,000 NPs and
sentences. For each experiment, two of these sets were used to configure the acquisition procedures
while two other data sets were employed to assess whether based on the same parameter settings
similar results could be obtained. Initially, an experiment has been executed using the training
sets of 1,000 NPs and sentences to determine whether diverging distributions between function and
content words as established by the literature for human-generated corpora (cf. Powers 1998) could
be obtained for utterances machine-generated by Delilah and whether this distinction is sufficiently
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[A: al [CONTENT OR FUNCTION WORD: function word]
[A: b [CONTENT OR FUNCTION WORD: content word]

(a) Categories in the daughter grammar (b) Categories in conventional grammar

Figure 3: Representation of categories in the MODOMA versus conventional grammatical terminol-
ogy

attested for the purposes of acquiring grammatical features. Subsequently, a follow-up experiment
was performed with respect to the training and test data sets containing 10,000 NP and sentence
exemplars produced by Delilah. If this distinction is detected by the language acquisition procedures
in such a way that words can be reliably classified, the results are represented using graphs consisting
of feature-value pairs specified by alpha-numeric labels, which should correspond to terminology
more conventionally employed by linguists, compare Figure 3a with example labels applied by the
MODOMA daughter agent and Figure 3b indicating more conventional labels.

6. Results

Table 2 presents lexical statistics of the training data containing 1,000 generated noun phrases and
sentences by Delilah, including the total number of unique word types, the total number of word
tokens, the number of hapax legomena (words that occur only once), and the number of word types
that appear exactly twice. As an intermediate step during the acquisition procedures, for each
experiment the word types have been sorted by frequency, see Table 3 and Table 4.3 Interestingly,
although this sample of 1,000 Delilah sentences contains more words than the collection of 1,000
NPs, the first unequivocal content word occurs at a higher rank in the list for 1,000 sentences, that
is, vergeten (‘forgotten’) at rank 9. In accordance with the research hypothesis, the initial sets of
1,000 exemplars indicate a distinction between functional and content categories considering the
most frequent words most often correspond to functional categories. However, this distinction is not
clear enough for a system designed to acquire grammatical categories. Therefore, it is concluded that
although data sets containing 1,000 exemplars generated by Delilah exhibit a distinction between
function and content words similar to the one found for human language output, this difference is
not substantiated sufficiently to enable the acquisition of grammatical features.

Accordingly, the follow-up experiment employed the larger data sets containing 10,000 NPs and
sentences generated by Delilah. Table 5 summarizes the lexical statistics for these data sets. Similarly
as for the previous experiment, the 35 most frequent words in both data sets are ranked in Table 6
and Table 7 respectively: As shown, these 35 highest-ranked word types are generally function words.

3. In these tables, f stands for frequency, that is, the number of tokens detected by the language acquisition
procedures in the input data generated by the adult agent.

NP Sentence
training experiment training experiment
Number of word types 1,319 1,728
Number of word tokens 3,027 5,874
Number of hapax legomena 776 859
Number of word types used twice 309 366

Table 2: Lexical statistics of the 1,000 generated NP and sentences training data
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#  Word type f #  Word type f
1. te (‘at’, ‘to’, cOomP) 92 1. dat (‘that’) 197
2. dat (‘that’) 62 2. te (‘at’, ‘to’, COMP) 193
3. niet (‘not’) 60 3. er (‘there’) 119
4. om (‘t0’) 49 4. niet (‘not’) 91
5. geen (‘no’) 33 5. ik (‘T) 75
6.  er (‘there’) 32 6.  hebben (‘have’) 60
7.  de (‘the’, MASC/FEM/PL) 25 7. zign (‘are’, ‘be’; ‘his’) 50
8.  elke (‘every’, MASC/FEM) 25 8.  om (‘t0) 48
9. een (‘a’, ‘one’) 24 9.  wergeten (‘forgotten’) 41
10.  het (‘the’, NEUT:SG) 24 10.  alle (‘all’) 38
11. op (‘on’) 23 11.  deze (‘this’, MASC/FEM) 38
12.  deder (‘every’, NEUT) 21 12.  elk (‘every’, NEUT) 38
13. ik (‘T) 21 13.  blijkt (‘turns out’) 37
14.  die (‘that’, MASC/FEM) 20 14.  geen (‘no’) 35
15.  elk (‘every’, NEUT) 20 15.  je (‘you’, INFORM) 35
16.  idedere (‘every’, MASC/FEM) 20 16.  de (‘the’, MASC/FEM/PL) 32
17.  wveel (‘a lot of”) 20 17. wan (‘of’) 32
18. alle (‘all’) 19 18.  worden (‘become’) 32
19.  daar (‘there’) 18 19.  door (‘by’) 31
20. deze (‘this’, MASC/FEM) 17 20. u (‘you’, FORM) 31
21.  hier (‘here’) 17 21.  jij (‘you’, INFORM) 29
22.  of (‘or’, ‘whether’) 17 22.  wordt (‘becomes’) 29
23.  woor (‘for’) 17 23.  hoe (‘how’) 28
24.  aan (‘to’, PREP) 16 24.  elke (‘every’, MASC/FEM) 27
25.  massa’s (‘masses’) 15 25.  massa’s (‘masses’) 27
26.  wan (‘of’) 14 26.  weel (‘alot of”) 27
27.  wvier (‘four’) 14 27.  werkt (‘works’) 27
28.  weinig (‘a few’) 14 28.  hier (‘here’) 26
29. dit (‘this’, NEUT) 12 29.  waarom (‘why’) 25
30. menig (‘many’, SG) 12 30. deder (‘every’, NEUT) 24
31. negenennegentig (‘ninetynine’) 12 31.  weinig (‘a few’) 23
32.  bligkt (‘turns out’) 11 32. aan (‘to’, PREP) 22
33. naar (‘to’, PREP, ‘unpleasant’) 11 33. iedere (‘every’, MASC/FEM) 21
34.  twaalf (‘twelve’) 11 34.  woor (‘for’) 21
35.  wigf (‘five’) 11 35.  waar (‘where’) 21
Table 3: 35 most frequent words for Table 4: 35 most frequent words for
1,000 generated NPs 1,000 generated sentences

In the sample of 10,000 NPs, the first unequivocal content word, vergeten (‘forgotten’), appears at
rank 54/55 sharing its position with the function word bij (‘at’, ‘near’). After rank 55, the amount
of content words increases. Similarly, in the experiment with 10,000 sentence training exemplars
generated by Delilah, the most frequent content words are vergeten (‘forgotten’) at rank 11, werkt
(‘works’) at position 27, and morgens (part of the archaic idiom ’s morgens ‘in the morning’) at rank
66. After rank 66, the number of content words increases. Notably, Delilah uses the word massa’s
(‘masses’) as a numeral, which is accurately detected by these acquisition procedures.
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training experiment

Sentence
training experiment

Number of word types

Number of word tokens

Number of hapax legomena
Number of word types used twice

3,455
57,732
418
355

Table 5: Lexical statistics of the generated 10,000 NP and sentences training data

#  Word type f
1. te (‘at’, ‘to’, COMP) 1018
2. dat (‘that’) 658
3. niet (‘not’) 650
4. om (‘t0’) 446
5. de (‘the’, MASC/FEM/PL) 291
6. er (‘there’) 271
7. geen (‘no’) 270
8.  elk (‘every’, NEUT) 251
9.  iedere (‘every’, MASC/FEM) 247
10.  of (‘or’, ‘whether’) 244
11.  elke (‘every’, MASC/FEM) 229
12.  ieder (‘every’, NEUT) 223
13.  alle (‘all’) 215
14.  een (‘a’, ‘one’) 212
15. ik (T) 194
16. massa’s (‘masses’) 186
17.  het (‘the’, NEUT:SQ) 180
18.  op (‘on’) 178
19.  deze (‘this’, MASC/FEM) 172
20.  weinig (‘a few’) 171
21.  daar (‘there’) 163
22.  aan (‘to’, PREP) 161
23.  weel (‘alot of”) 155
24.  hier (‘here’) 146
25.  woor (‘for’) 144
26. dit (‘this’, NEUT) 140
27.  zign (‘are’, ‘be’; ‘his’) 130
28.  door (‘by’) 122
29. in (‘in’) 120
30. menig (‘many’, SG) 118
31. menige (‘many’, PL) 111
32.  je (‘you’, INFORM) 110
33. die (‘that’, MASC/FEM) 103
34.  waar (‘where’) 97
35. sommige (‘some’, PL) 90

Table 6: 35 most frequent words for the
10,000 generated NPs training data
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#  Word type f
1. dat (‘that’) 1999
2. te (‘at’, ‘to’, COMP) 1779
3. er (‘there’) 1370
4. niet (‘not’) 969
5. ik (T) 729
6.  hebben (‘have’) 599
7. bligkt (‘turns out’) 460
8.  om (‘t0’) 434
9. alle (‘all) 409
10.  zgn (‘are’, ‘be’, ‘his’) 386
11.  wvergeten (‘forgotten’) 385
12.  elk (‘every’, NEUT) 330
13.  de (‘the’, MASC/FEM/PL) 324
14.  deder (‘every’, NEUT) 317
15.  dedere (‘every’, MASC/FEM) 317
16.  door (‘by’) 315
17.  geen (‘no’) 294
18. aan (‘to’, PREP) 287
19.  wveel (‘alot of”) 281
20. elke (‘every’, MASC/FEM) 280
21.  hier (‘here’) 280
22.  wu (‘you’, FORM) 272
23.  daar (‘there’) 269
24.  op (‘on’) 268
25.  weinig (‘a few’) 268
26. massa’s (‘masses’) 262
27.  werkt (‘works’) 255
28. deze (‘this’, MASC/FEM) 253
29.  worden (‘become’) 240
30. jij (‘you’, INFORM) 238
31. je (‘you’, INFORM) 226
32.  wordt (‘becomes’) 224
33.  waar (‘where’) 216
34. een (‘a’, ‘one’) 213
35. s () 210

Table 7: 35 most frequent words for the
10,000 generated sentences training data
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Figure 4: Boxplots depicting function and content words for the 10,000 NPs training data

7. Analyses

For data sets of 10,000 exemplars, a more straightforward difference between function and content
categories can be manually detected such that words with a frequency of more than 100 tokens tend
to be function words, that is, more than 100/57,732 or 1.7 per mil for the sample of Delilah sentences.
Therefore, based on these experimentations the MODOMA parameters determining the acquisition
of functional and content categories are set in order that word types that have a frequency of more
than 2 per mil, are specified as functional categories while all other word types are considered content
words. In addition, this acquisition procedure is executed only once after inputting at least 10,000
exemplars. These parameters are set conservatively, that is, in such a way that the chances of
falsely classifying a word as functional category are smaller than assigning a specification as content
word: As content word is the default category, each word should be considered a content word
unless there is strong evidence for the opposite conclusion. The parameter values resulting from
this initial experiment have been configured as the default settings for the MODOMA. However,
these parameters can be adjusted depending on the experiment and taking into account previous
experiments and linguistic theories.

Using the results of acquisition based on these settings, the boxplots in Figure 4 and Figure 5
have been made taking into account the frequency of both word types and these groupings suggest
that for the NP as well as the sentence experiment the function words are distributed around other
central values than the content words.* This provides further support for the research hypothesis and

4. The boxplots for the function words displayed outliers attested with a very higher frequency. Although these
further confirm the patterns found that function words correspond to high rankings, these extreme values have
been omitted as they would render the figures unreadable.
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Figure 5: Boxplots depicting function and content words for the 10,000 sentences training data

the selected default parameter settings. Crucially, although the data are continuous, the acquired
linguistic knowledge is discrete, that is, a word is either classified as a content or a functional category.
These abstract categories explicitly specify the corresponding lexical items using a binary rule-based
grammar formalism. This allows the daughter agent to apply the acquired feature-value pairs to
generate and parse utterances based on unification during the conversation with the mother agent
(cf. Pollard and Sag 1986, Pollard and Sag 1994 as well as Delilah for examples of unification-based
language models, which do not implement language acquisition).

To quantitatively assess whether the acquired knowledge of the daughter agent matches the
grammatical knowledge of the mother agent, a comparison has been made between the explicit
grammatical specifications of both language models. Delilah does not directly specify for func-
tional and content categories. Nonetheless, the mother language model employs categories such as
transitive verb, count noun, or coordinating conjunction to process language, which correspond to
function and content words. Therefore, the classifications in the grammar of the daughter resulting
from the language acquisition simulations can be compared to the specifications in Delilah’s core
lexicon. This database contains the basic grammatical knowledge employed by the mother agent to
generate the input exemplars to the language acquisition procedures. Fisher’s exact tests have been
executed to examine the relationship between a classification as function and content category by the
mother and daughter language models. For all training experiments the results indicated there was
a significant association between these variables, p < 0.001 (two-tailed). Further analyses revealed
that in addition to matching classifications of both language models the mismatching classifications
were predominantly function words according to the mother language model classified as content
categories by the daughter agent.
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Figure 6: Boxplots depicting function and content words for the 10,000 NPs test data

8. Testing the suggested default settings using other data sets

To validate the parameter settings determined during the training sessions, the MODOMA has
been requested to acquire function and content categories based on data sets not used to configure
the parameter settings. To this end, two new data sets with respectively 10,000 NPs and sentences
generated by Delilah have been created. Similarly as with respect to the training sets, the acquisition
procedures for the test sets resulted in lists containing all word types in the data sets ranked in the
order of the most frequent to the least frequent words as intermediate analyses. In accordance with
the results of experimentation on the training data, the most frequent words correspond mostly to
function words while the remainder of the words tend to be representative of content categories
(according to more conventional grammar models). The 35 most frequent types occurring in these
new data sets have been listed in Table 8 for the 10,000 NP sample and Table 9 for the exemplars
representing 10,000 sentences.

Table 10 summarizes the distribution of word types, word tokens, and hapax legomena for the
test sets containing 10,000 NPs and sentences. For the test set containing 10,000 NPs, the first
content word in the corresponding list is vragen (‘questions’; N, ‘question’, V) at rank 56, which is
attested with a frequency of 56. Therefore, the suggested default setting determined based on the
experimentations with the training data, which predicts items occurring with a frequency greater
than approximately 60 to be function words, is confirmed by the experiment assessing the NP test
set. Similarly, with respect to the list constructed based on the 10,000 sentences test set, the first
unequivocal content word is weer (‘again’, ‘weather’) at rank 50 with a frequency of 130 while the
parameter settings configured by the training experiment predict the threshold to be at a frequency
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#  Word type f
1. te (‘at’, ‘to’, COMP) 1025
2. niet (‘not’) 633
3. dat (‘that’) 631
4. om (‘t0’) 451
5. geen (‘no’) 304
6.  de (‘the’, MASC/FEM/PL) 292
7. er (‘there’) 261
8.  ieder (‘every’, NEUT) 253
9.  elk (‘every’, NEUT) 237
10.  dedere (‘every’, MASC/FEM) 231
11.  elke (‘every’, MASC/FEM) 224
12, of (‘or’, ‘whether’) 215
13.  een (‘a’, ‘one’) 203
14.  alle (‘all’) 200
15.  massa’s (‘masses’) 194
16. ik (‘) 193
17. op (‘on’) 178
18.  aan (‘to’, PREP) 173
19. deze (‘this’, MASC/FEM) 172
20. het (‘the’, NEUT:SG) 167
21.  weel (‘alot of’) 162
22.  weinig (‘a few’) 160
23.  woor (‘for’) 145
24.  hier (‘here’) 143
25.  die (‘that’, MASC/FEM) 135
26. menige (‘many’, PL) 131
27.  door (‘by’) 130
28.  zign (‘are’, ‘be’, ‘his’) 130
29. dit (‘this’, NEUT) 121
30. in (‘in’) 120
31. daar (‘there’) 114
32.  menig (‘many’, SG) 114
33. je (‘you’, INFORM) 109
34. drie (‘three’) 102
35.  twee (‘two’) 89

Table 8: 35 most frequent words for the
10,000 generated NPs test data

#  Word type f
1. dat (‘that) 1937
2. te (‘at’, ‘to’, cOMP) 1829
3. er (‘there’) 1353
4. niet (‘not’) 929
5. ik (T) 714
6.  hebben (‘have’) 570
7. om (‘t0") 448
8. bligkt (‘turns out’) 422
9.  zijn (‘are’, ‘be’; ‘his’) 396
10.  wvergeten (‘forgotten’) 389
11.  alle (‘all’) 354
12.  de (‘the’;, MASC/FEM/PL) 330
13.  geen (‘no’) 330
14.  deder (‘every’, NEUT) 315
15.  door (‘by’) 304
16. elke (‘every’, MASC/FEM) 301
17w (‘you’, FORM) 294
18. elk (‘every’, NEUT) 293
19. aan (‘to’, PREP) 278
20.  hier (‘here’) 276
21.  jij (‘you’, INFORM) 272
22.  iedere (‘every’, MASC/FEM) 268
23.  daar (‘there’) 267
24.  op (‘on’) 259
25.  weel (‘alot of”) 258
26.  weinig (‘a few’) 250
27.  je (‘you’, INFORM) 249
28.  massa’s (‘masses’) 249
29. deze (‘this’, MASC/FEM) 238
30. een (‘a’, ‘one’) 236
31.  worden (‘become’) 233
32.  werkt (‘works’) 221
33.  wordt (‘becomes’) 209
34.  waar (‘where’) 207
35. s (") 206

Table 9: 35 most frequent words for the
10,000 generated sentences test data

NP test experiment

Sentence test experiment

Number of word types

Number of word tokens

Number of hapax legomena
Number of word types used twice

3,006
30,129
379
380

3,442
57,118
411
372

Table 10: Lexical statistics of the generated 10,000 NP and sentences test data
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Figure 7: Boxplots depicting function and content words for the 10,000 sentences test data

of 114 tokens. Thus, both test sets provide further support for the suggested parameter settings
resulting from the previous experimentations.

Concomitantly, the boxplots corresponding to these data sets visualize the categories resulting
from these parameter settings in respectively Figure 6 and Figure 7. Similarly to the results of the
training data, it can be observed that for each experiment the groups of function words and content
words cluster around different central values. Taking into account these classifications of words,
the corresponding lexical entries in the MODOMA daughter grammar are subcategorized as either
functional or content categories. Moreover, for the results of the test sets the classifications acquired
by the daughter agent have been compared to the grammatical categories employed by the mother
language model and Fisher’s exact tests have been executed to assess this relationship. Similar to
the training experiments, a significant association was found between the categories employed by the
mother agent and the categories acquired by the daughter agent, p < 0.001 (two-tailed). Thus, the
MODOMA daughter agent has learned non-trivial grammatical classifications represented by the
currently acquired language model, which it can employ productively to generate novel utterances
and analyze data generated by the mother agent.

9. Conclusions and suggestions for future research

This paper discussed how functional and content categories can be acquired by a computational
multi-agent language acquisition laboratory involving an adult language model, Delilah, and a daugh-
ter agent. The daughter language model has been constructed for the purpose of the MODOMA
and employs explicit graph representations of the acquired grammatical knowledge to generate and

182



parse utterances, which become more specific as a result of language acquisition. Conversely, Delilah
consists of a parser and generator that have been independently developed by Cremers and Hijze-
lendoorn (1995/2024a) to implement a grammar model of Dutch, and employs this model to output
and parse utterances (cf. Cremers et al. 2014, for an elaborate discussion of the attributes underlying
this language model). Thus, the MODOMA framework requires taking a new approach to research
with respect to Delilah: in addition to constructing and improving Delilah to produce utterances
and provide parses, the properties of the output of Delilah should be studied as well to enable the
daughter to detect the patterns needed for acquisition. To this end, analyses and techniques from
for instance the fields of linguistics, psycholinguistics, and corpus linguistics could be applied to gain
further insights in the machine-generated output of this language model similarly to how they have
been applied to human-generated language data. Taking into account the current rise of applications
of large language models, evaluating whether machine-generated language exhibits similar patterns
to language produced by humans has become increasingly relevant. This paper provides the results
of experiments exploring this approach.

Interestingly, the collection of Delilah utterances generated during the conversation with the
daughter agent contains independent exemplars while corpora typically form a cohesive collection
of subsequent sentences. Nonetheless, similar patterns corresponding to grammatical phenomena
can be detected with respect to both types of linguistic data. This might indicate that these
patterns are rather a characteristic of the individual utterances contained in these collections than
of the corpora. Crucially, the study presented by this paper reveals that the patterns regarding the
divergent frequency distributions of content and functional categories, which are well-established for
human language data in the corpus linguistics literature (cf. Powers 1998) are also found in Delilah’s
output. As Delilah is not configured to reproduce these statistical patterns in its output utterances,
the found distribution is a consequence of the specified grammar model.

The initial experiments have been used to set the parameters of the MODOMA acquisition
system related to the acquisition of function and content categories, that is, (1) the amount of input
data that is required before executing the functional and content categories acquisition procedures,
and (2) the threshold for determining whether a word should be classified as either a functional
or content category. It was assessed how many input exemplars need to be processed to detect
this statistical tendency by conducting experiments on 1,000 and 10,000 NP and sentence training
sets. This study revealed that only in data sets containing 10,000 exemplars generated by Delilah
a frequency distribution differentiating function and content words can be sufficiently detected. In
addition, the threshold value was set to 2 per mil to convert the differences between the distributions
of function and content words to discrete linguistic knowledge.

Moreover, these parameter settings have been applied to two test sets containing respectively
10,000 NPs and 10,000 sentences generated by Delilah as well. These experiments confirmed the
parameter settings whose values were determined based on the training sets, by similarly allowing
for the acquisition of content and functional categories. Figure 6 and Figure 7 visualize the clusters
resulting from the acquisition procedures performed on these test sets. Although the input data
are noisy and form a continuous distribution, compare Figure 4 and Figure 5, the unsupervised
acquisition procedures result in a discrete knowledge-based grammar: each lexical item is classified
as either a functional or content category and these properties are specified by feature-value pairs
subcategorizing the corresponding lexical graphs in the grammar. Thus, these newly acquired gram-
matical categories can be used productively to generate and parse utterances by the daughter agent
as they specify the combinatorial properties of lexical items during unification.

The combination of properties of the MODOMA system contributes to the field by providing a
laboratory approach to modeling language acquisition. Both the adult and child agents interact as
integral components of the system. Moreover, the system is fully parameterized, and the acquired
grammatical knowledge is explicitly represented and can be consulted. Crucially, as this grammatical
knowledge is explicitly represented by the grammar model, the linguistic knowledge and processing
of the language model can be straightforwardly consulted by researchers. This design expands the
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possibilities for simulating language acquisition as many language models that implement language
learning, do not employ explicit knowledge representations. Accordingly, these representations were
used to assess whether the grammatical categories employed by the mother language model to
generate the input to language acquisition are associated with those acquired by the daughter agent,
which is significant for the results of all training and test experiments (p < 0.001). This study
carried out using the MODOMA supports the research hypothesis that taking into account the
differences between humans and artificial intelligence systems the MODOMA framework enables
the unsupervised acquisition of discrete grammatical categories such as function and content words
by employing statistical techniques. Thus, this result substantiates that a MODOMA can provide a
computational laboratory model for simulating language acquisition experiments to study linguistic
phenomena.

An important contribution of the study presented in this paper is the validation of the feasibility
of a multi-agent computational laboratory for first language acquisition. The application of the
principle of Zipf’s law thus serves as an essential tool for evaluating the MODOMA approach to
modeling language acquisition. Crucially, the experiments designed to acquire function and content
categories, using a hybrid approach involving statistical analyses that result in discrete categories,
incorporate all the elements found in more complex experiments. As a result, the findings of this
study lay a solid foundation for future investigations. For instance, this research paves the way for
further studies that can expand and refine the current experiments: future research extending the
function and content word experiments could explore the effects of new parameters on the grammar
acquired by the daughter agent, the utterances produced by the daughter agent, and the interaction
with the mother agent. Examples of such parameters include the number of times the functional and
content category acquisition process is executed as well as whether previously acquired categories
should be changed when additional data is processed. Another relevant avenue for further study is
to investigate the impact of feedback from the mother agent to the daughter agent and its effect on
language acquisition, the generated utterances and the interaction between the adult and child agent.
Furthermore, the success of the current experiments provides the opportunity to test more complex
acquisition procedures. Extending this framework, the acquisition of additional and more intricate
grammatical phenomena should be modeled using the MODOMA approach. For example, Shakouri
et al. (2025) demonstrate that grammatical categories such as nouns, verbs, and prepositions can
be acquired under similar experimental conditions as the function and content words experiment.
Building on the results of this study, Shakouri et al. (2025) employ more advanced statistical
methods, such as hierarchical agglomerative clustering, to acquire discrete grammatical categories
in an unsupervised manner. Thus, the results of this study provide a foundational contribution for
the continued exploration and development of this line of research.
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Appendix A. Glossary of abbreviations

Abbreviation Description

COMP complementizer
FEM feminine
FORM formal
INFORM informal
MASC masculine
N noun

NEUT neuter

PL plural
PREP preposition
SG singular

A% verb

Table A.1: Glossary of abbreviations for grammatical terminology
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