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Abstract

Metaphor detection presents a significant challenge in natural language processing (NLP) due to

the intrinsic complexity of metaphors. In this work, we apply a prompting approach to evaluate
GPT-4’s performance on the conventional metaphor identification task. We specifically investigate
the effects of prompt variation, output stability, and the role of n-shot prompting. The results
indicate that GPT-4’s performance on the metaphor identification task is consistently low across
all tested settings, significantly lagging behind the top-performing BERT model. Based on our
findings and error analysis, we propose possible approaches for utilizing LLMs and Al assistants
in metaphor detection and analysis.

1. Introduction

Since the cognitive turn of the 1980s, metaphors are no longer seen as mere decorative devices or
instances of deviant language use. They are recognized as a fundamental cognitive tool in human
understanding and communication. Metaphors allow us to think and talk about abstract, complex
and unfamiliar concepts, such as time or the economy, in terms of more concrete, simple and familiar
ones, such as physical space, movement or living entities. For example, we say that something
happened ‘in’ 2024 or ‘between’ 2020 and 2023, that our holidays ‘flew by so fast’, or that prices are
‘soaring’ while zhe or ‘flourishes’. Lakoff and Johnson’s (1980, 1999) groundbreaking work showed
that such metaphorical uses of words and phrases —e.g. ‘in’ and ‘withers’ — form systematic patterns
in our everyday language use because they are the linguistic realizations of underlying conventional
conceptual metaphors — ‘in 2024’ — TIME IS SPACE and ‘the economy withers’ — THE ECONOMY IS A
PLANT / LIVING ORGANISM. Since most of the metaphors we use are conventional both in language
and thought, we normally use and understand them automatically and effortlessly, without even
realizing that they are metaphors.

Corpus research has since confirmed that linguistic metaphors are indeed ubiquitous in everyday
discourse, occurring on average every seven to eight words (Steen et al. 2010a, Steen et al. 2010b),
although statistically significant differences were observed between the registers included in the VU
Amsterdam Metaphor Corpus (Steen et al. 2010c), with the number of metaphorically used words
ranging from 18.6% in academic discourse and 16.4% in news to 11.9% in fiction and 7.7% in casual
conversation (Dorst 2011, Herrmann 2013, Kaal 2012, Krennmayr 2011). Moreover, a great number
of studies analyzing authentic language use have shown that the linguistic forms and rhetorical
functions of metaphor in discourse vary considerably across domains, genres and communicative
settings, from education (Cameron 2003, Low 2008), politics (Ahrens 2009, Musolff 2004), business
(Koller 2004) and health communication (Semino et al. 2018) to advertising (Forceville 1996), and
many more.
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This combination of conventionality and ubiquity entails that identifying linguistic metaphors in
authentic discourse quickly becomes both a complex and labor-intensive endeavor, especially when
researchers want to employ a reliable and replicable method for metaphor identification such as
MIP (Pragglejaz Group 2007) or MIPVU (Steen et al. 2010b). For projects interested in identifying
all possible metaphorical language in larger datasets, rather than focusing on specific lexical items
or semantic domains, manual identification is often not a viable option, especially for researchers
working individually and on limited research time. And for metaphor scholars working in teams,
consistency and inter-annotator reliability remains an issue and additional coding protocols often
have to be established (Dorst et al. 2013). It is therefore not surprising that metaphor scholars have
been especially interested in hearing whether such identification principles as those formulated by
MIP and MIPVU can be turned into computational rules allowing for automated metaphor detection.
As pointed out by Shutova (2015, p. 580-1), “computational work on metaphor evolved around the
use of hand-coded knowledge and rules to model metaphorical associations, making the systems
hard to scale”, but recently, there has been a “growing interest in statistical modeling of metaphor
[...] with many new techniques opening routes for improving system accuracy and robustness.”

The emergence of large language models (LLMs) creates new possibilities for metaphor detection
and sub-type labelling. Recent research indicates that LLMs demonstrate superior performance in
contextual semantic comprehension compared to previous generations of language models (Zhou et al.
2023). Prompting (or in-context learning) approaches appear useful techniques for the application
of LLMs to NLP tasks (Chung et al. 2022, Ding et al. 2023a). Building on this foundation, the
current paper explores the performance of GPT-4 in detecting conventional linguistic metaphors
in news texts, specifically utilizing the news subcorpus of the VU Amsterdam Metaphor Corpus
(Steen et al. 2010c¢) and applying a prompt-based methodology. Our evaluation of the results of
prompt-based metaphor identification offers new insights into the usefulness of LLM architectures
for this task and reflects on the different types of metaphor that can be detected automatically and
the effect of the formulation of the prompt on the metaphors identified and the readability of the
output.

2. Related Work

2.1 The Evolution of Metaphor Detection Models In Recent Years

The development of metaphor detection has advanced alongside technological progress through sev-
eral phases, including rule-based, statistical, and neural approaches. This progression paves the way
for new exploratory trends:

Deep learning-based approach: Recent approaches of transformers-based architectures par-
ticularly emphasize a fine-tuning approach with pre-trained contextual language models such as Bidi-
rectional Encoder Representations from Transformers (BERT), which, with its bidirectional atten-
tion mechanism, effectively captures context to distinguish between literal and metaphorical mean-
ings (Chen et al. 2020a, Dankers et al. 2020, Liu et al. 2020, Su et al. 2021, Choi et al. 2021, Zhang
and Liu 2022) and its variants, including RoBERTa (Gong et al. 2020, Babieno et al. 2022, Ge
et al. 2022, Li et al. 2023, Elzohbi and Zhao 2023, Uduehi and Bunescu 2023, Wang et al. 2023),
SemBERT, ALBERT (Li et al. 2020), which improve BERT by refining the learning of contextual re-
lationships, incorporating additional semantic information, or enhancing efficiency through methods
like parameter sharing and factorized embeddings, thereby improving performance on various down-
stream tasks, including metaphor detection. In addition, there is also research that uses Generative
Pre-trained Transformer (GPT) (Wachowiak and Gromann 2023) to involve its generative capabili-
ties to identify metaphor mappings, as well as other architectures like XLNet (Liu et al. 2020), which
can capture richer bidirectional context, thus improving the effectiveness in metaphor detection.

LLMs-based approach: Compared with the traditional models above, LLMs demonstrate
notable potential in language understanding, including the ability to incorporate sociocultural con-
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texts and engage with multimodal data, which attracts increasing scholarly interest in exploring
their application for metaphor detection and understanding. Hicke et al. (2024) demonstrate how
LLMs, guided by annotation-based prompts, can effectively identify conceptual metaphors, enabling
large-scale computational investigations. Jia et al. (2024) tackle challenges like data scarcity and
inference costs with Curriculum-style Data Augmentation, achieving notable improvements in open-
source LLM fine-tuning. Furthermore, Tong et al. (2024) introduce the Metaphor Understanding
Challenge Dataset (MUNCH) to evaluate LLMs across diverse metaphorical contexts. Yang et al.
(2024) enhance verb metaphor detection by integrating ChatGPT’s tacit knowledge with entailment
analysis, while Wang et al. (2024) propose a multi-stage prompting framework for analyzing Chinese
metaphors.

2.2 Methodology of Metaphor Detection In Recent Years

Linguistic theory-based approach: Beyond traditional linguistic feature-based approaches, two
main linguistic theories have been incorporated into the theoretical framework design of the models
for improving metaphor detection: the Metaphor Identification Procedure (MIP) (Pragglejaz Group
2007), which compares a word’s basic and contextual meanings to detect metaphors, providing a
reliable and validated guideline with high inter-annotator agreement for identifying metaphorical
expressions, making it widely adopted in the enhancement of metaphor detection (Choi et al. 2021,
Song et al. 2021, Li et al. 2023, Wang et al. 2023); and conceptual mapping (Lakoff and Johnson
1980), which provides a cognitive framework for understanding metaphors as mappings from a
source to a target domain. This theory has informed model designs by incorporating domain-specific
semantic features and aligning embeddings across conceptual domains. For instance, models have
used conceptual mappings to improve metaphor classification by learning transferable representations
between abstract and concrete domains (Wan et al. 2020, Tian et al. 2024).

Multi-task learning-based approach: Multi-task learning optimizes multiple related tasks
simultaneously, enabling shared knowledge to improve overall performance (Caruana 1997). Chen
et al. (2020b) enhance metaphor detection using auxiliary tasks like idiom detection and out-of-
domain metaphor annotation. Xu et al. (2024) develop a multi-modal framework with Chain-of-
Thought reasoning and modality fusion for metaphor detection in memes. Zhang and Liu (2023)
transfer knowledge from basic sense discrimination to address data scarcity in metaphor detection.
Badathala et al. (2023) jointly model hyperbole and metaphor detection, making use of their linguis-
tic similarity. Le et al. (2020) integrate graph convolutional networks and word sense disambiguation
for metaphor detection. Mao and Li (2021) introduce a novel gating mechanism for task-specific
information sharing. Dankers et al. (2019) show mutual benefits between metaphor and emotion
detection through joint learning. Song et al. (2024) use syntax-aware attention and contrastive
learning to enhance metaphor sensitivity, while Lai et al. (2023) unify figurative language detection
across languages and figures of speech with a multilingual framework.

2.3 Advantages and Limitations of Current Metaphor Detection Approaches

Metaphor detection has witnessed significant advancements in recent years. Taking F1 score as
a benchmark, which balances the model’s capability to avoid falsely labeling non-metaphors as
metaphors and capability to capture as many true metaphors as possible, results from the VUA
Metaphor Detection Shared Tasks show that in 2018, the highest F1 score reached 65.1, whereas by
2020, over half of the competing models outperformed this benchmark, with the highest F1 score
rising to 76.9 (Leong et al. 2018, Leong et al. 2020). More recently, this score has been further
pushed to 79.4 (Zhang and Liu 2022).
Despite these achievements, several challenges and research gaps remain:

Lack of Integration of Sociocultural Knowledge: Sociocultural background knowledge is
critical for constructing metaphorical meanings. However, existing models struggle to incorporate
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such knowledge effectively into the training process, leading to an incomplete understanding of
metaphor semantics, particularly in culturally specific contexts.

Dataset Limitations and Generalization Issues: Current metaphor detection models rely
heavily on a limited set of metaphor corpora, restricting their generalization capabilities. The
evaluation of model performance on unseen texts remains a significant challenge, and it is unclear
how effectively these models perform outside of the training datasets.

Limited Focus on Conventional Metaphors: Conventional metaphors account for 99%
of all metaphors, making their automatic detection essential for identifying metaphors in general.
However, research specifically focused on detecting conventional metaphors remains underexplored.
Compared to general metaphor detection, conventional metaphor detection requires an additional
step—determining whether a metaphorical meaning has become conventionalized. This is often
assessed through its frequency, stability, and, in some cases, its inclusion in dictionaries. Despite
the prevalence of conventional metaphors, studies in this area are relatively sparse, with long gaps
between major contributions, indicating a lack of sustained academic attention and integration with
recent advances in computational modeling. Early contributions include Mason’s (2004) CorMet,
a corpus-based system for extracting conventional metaphors, and Wilks’ (2013) algorithm for de-
tecting metaphors embedded in word senses within lexical databases like WordNet. While these
methods expanded metaphor detection to deeper semantic structures, they did not directly address
the challenge of identifying whether a metaphor is conventionalized. Later, Levin et al. (2014)
provided an overview of resources for detecting conventional metaphors across multiple languages,
and Maudslay et al. (2022) introduced the first model for metaphorical polysemy detection (MPD),
which identifies conventionalized metaphorical senses in the English WordNet. Despite these con-
tributions, research in this area has progressed slowly, with significant time gaps between major
developments

Recent Advances in LLMs: Recent work has explored the potential of LLMs in metaphor
detection, achieving promising results through various approaches. For instance: prompting ap-
proaches, curriculum-style data augmentation, creating multimodal metaphor datasets based on
model capabilities, implicit knowledge analysis, etc.. While these studies highlight the potential of
LLMs for metaphor detection, they primarily focus on general metaphor detection tasks. The au-
tomation of conventional metaphor detection, in particular, remains underexplored. Addressing this
gap, along with issues of dataset limitations, sociocultural knowledge integration, and generalization,
represents an important direction for future research.

2.4 LLMs for Metaphor Detection

The emergence of LLMs has revolutionized the field of Natural Language Processing (NLP), with
ongoing research focused on the evaluation of LLMs for diverse NLP tasks.

In the metaphor detection task using LLMs, the variations in prompting settings can be broadly
categorized into two types. The first type is direct detection, which involves using prompts to
instruct LLMs to identify metaphors within a given text. This approach utilizes the models’ ability
to generalize metaphorical patterns from extensive training data, allowing them to detect metaphors
across diverse contexts. In this project, we focus on exploring different linguistic formulations of
prompts as one-time inputs to generate model outputs, rather than incorporating interactive or
iterative dialogue.

The second type is Socratic prompting, which is a reasoning-based approach used to determine
whether LLMs rely on metaphorical interpretation (Qi et al. 2023). One relevant line of research
focuses on evaluating the metaphor understanding abilities of LLMs. For instance, Tong et al. (2024)
proposed an evaluation framework to assess whether models genuinely understand metaphors or
merely rely on superficial lexical similarity. However, research on metaphor detection, such as that
by Bastian et al. (2024), has employed indirect detection methods. These methods do not require
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models to directly identify metaphors; instead, they use guiding questions to observe the models’
reasoning processes, thereby assessing their ability to recognize and understand metaphors.

Given the challenges and limitations of existing metaphor detection models, our research will eval-
uate the performance, robustness, and generalization of GPT-4 in detecting conventional metaphors.
Since traditional metaphor detection tasks and large-scale human-annotated metaphor corpora, such
as VUAMC, adopt a per-token labeling approach, we follow this paradigm to ensure consistency with
prior work and facilitate direct comparison. Our study aims to assess the effectiveness of GPT-4 in
this framework while also exploring appropriate evaluation methods.

In recent years, though research on LLM-based labeling for metaphor detection has been limited,
LLMs have demonstrated strong potential in data annotation tasks and have been successfully
applied to various per-token labeling tasks, such as Named Entity Recognition (NER) and Part-of-
Speech (POS) tagging (Tan et al. 2024). Studies suggest that while causal masking may constrain
the performance of decoder-based models in sequence labeling, optimizing decoding strategies can
enable LLMs to achieve near-state-of-the-art performance in information extraction tasks (Duki¢
and Snajder 2024). Additionally, research on NER has shown that well-designed prompts and post-
processing methods can improve per-token annotation quality, as evidenced by the zero-shot NER
inference method proposed by (Xie et al. 2023) and the lmNER toolkit’s optimizations for token
boundary alignment and error correction (Villena et al. 2024). In POS tagging, LLMs have also
exhibited reliable per-token prediction capabilities, with a multilingual model based on the Universal
Dependency framework achieving up to 90% accuracy (Machado and Ruiz 2024). Furthermore, fine-
tuned LLMs have demonstrated high F1 scores in NER and POS tasks for low-resource languages
(Subedi et al. 2024). While challenges such as token alignment errors remain, existing studies validate
the feasibility of per-token labeling with LLMs. Therefore, we adopt this approach for metaphor
annotation, implementing rigorous quality control measures to enhance reliability.

3. Experiment

During the preparation of the experiment, an initial series of Q& A sessions was conducted with GPT-
4, including the definition of conventional metaphors, examples of conventional metaphors and their
interpretation, and metaphor classifications, to examine its understanding of conventional metaphors
in its default setting. The outputs indicate that GPT-4 already possesses a basic understanding of
conventional metaphors. Based on these initial findings, the experiment continued as follows, with
the overall workflow illustrated in Figure 1.

3.1 Data Preparation

Data preparation for model prompting typically involves two key components: a metaphor corpus
with manual annotations, which serves as ground truth for evaluating model performance, and a set
of prompts that function as queries for the model.

Conventional metaphor corpus. For the current study, we used the news subcorpus (44,792
words) of the VU Amsterdam Metaphor Corpus (VUAMC; 186,688 words) (Steen et al. 2010c). As
pointed out by Tong et al. (2021, p. 4676), VUAMC is “the only metaphor corpus used in studies of
automated metaphor identification that is built by cognitive linguists, and the only one that deals
with the metaphoricity of function words.” All news texts (n=46) in VUAMC were sampled from the
BNC-Baby corpus, one of the sub-corpora of the 100-million-word British National Corpus (BNC),
consisting of four sets of samples, each containing one million POS-tagged words. However, the
VUAMC annotations include all linguistic forms of metaphor: both metaphor proper (or ‘indirect
metaphor-related words’) and simile (or ‘direct metaphor-related words), and both non-deliberate
metaphors (i.e. the type of conventional metaphor we all use routinely and automatically) and
deliberate metaphors (i.e. novel, original, creative, extended, signalled, etc.). Since our current
focus is on the detection of pervasive conventional metaphors in discourse, we used the additional
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deliberateness annotations by Reijnierse et al. (2018) to exclude all deliberate metaphors from our
dataset.

Secret held-out data. Given that GPT-4 was trained on datasets from the Internet including
books, articles, websites, and social media (Baktash and Dawodi 2023, Qiu 2023), we cannot rule out
that the news texts included in the VUAMC, which were sampled from BNC-Baby and may have
appeared in online news archives, are part of the training data for GPT-4. To address this issue,
two team members trained and used MIPVU to annotate four news articles, thereby generating a
secret, held-out dataset for performance comparison. It should be noted that these texts may also
be present in the training data for GPT-4, as they are publicly available news texts online; however,
they had not been previously annotated for linguistic metaphor and are not part of any annotated
dataset.

Dataset #sentences #tokens #M %M
Conventional metaphor corpus 2277 44957 6904 15.36%
Secret_held out_data 34 870 125 14.37%

Table 1: Statistics for the annotated datasets: #sentences is the total number of sentences; #tokens is the
total number of tokens; #M is the total number of metaphoric tokens; %M is the percentage of metaphoric
tokens

Prompt set. Previous research has shown that prompt variation can significantly affect the
output of LLMs (Gonen et al. 2022, Gu et al. 2022, Fernando et al. 2023). In particular, tiny
adaptations in the wording of prompts (e.g. different punctuation, or choice of words) have been
found to lead to entirely different results (Mizrahi et al. 2023).

Type #number %percentage
Simple instruction 14 56%
Background information 6 24%
Adaptation of MIP 5 20%

Table 2: Statistics of the prompt set. #number is the number of prompts of a prompt type; %percentage is
the prompt type percentage over the prompt set

We developed a collection of 25 different prompts, which are automatically generated by GPT-4
and optimized under manual review. These prompts are divided into three distinct types:

1) Simple Instruction Prompts, which directly describe the task without any additional informa-
tion or background, aiming to observe the model’s output capabilities under the guidance of
the most basic information.

2) Prompts with Background Information, which introduce definitional information such as tra-
ditional metaphors, to test the impact of extra contextual information on the accuracy and
relevance of the content generated by the model.

3) Prompts adapted from the MIP, investigating whether the model can enhance its performance
by replicating a manual metaphor identification process.

3.2 Experimental Setup

The project integrates the gpt-4-1106-preview model through an API. This model has a context
window of 128k, allowing for the equivalent of over 300 pages of text within a single prompt. Its
train data has been updated up to April 2023 (OpenAlI 2023). Our implementation is available at
https://github.com/Jiahui84/Conv_met_detection, ensuring transparency and reproducibility.
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The default setting of the model is used for the experiment, with the temperature, or random-

ness,

set at 0.7, which balances certainty and randomness, providing moderately diverse outputs.

Additionally, to account for the randomness inherent in the generation results of the model men-
tioned above, the entire experiment process is repeated three times, and the results are averaged to
obtain more reliable and stable results.

The prompting experimental settings include three stages:

1)

Prompt optimization:

The prompts were initially automatically generated by ChatGPT based on predefined criteria,
including types, lengths, and quantities, to ensure diversity. Each prompt underwent prelimi-
nary validation on randomly sampled examples (from the example set) to confirm the output
adhered to the specified labeling schema and formatting by a team member. After initial
testing, further optimization was conducted under the review of the whole team, specifically
examining the impact of keyword selection and labeling schema selection, which are described
below.

Keyword selection. For this stage, we investigate whether keywords used in prompts and
labelling schemas can have impact on the model performance. We tested the same prompts
using different keywords: "conventional metaphor" "lexicalized metaphor" and "metaphor" to
see if the keywords affected model performance. However, after comparing and evaluating the
results (Fl-score, precision, recall), we found that the differences among the three were not
significant. Therefore, "conventional metaphor" is chosen for its more stable and better overall
performance.

Labeling schema selection. To assess the impact of different labeling schemas on model
performance, we experimented with multiple output labeling strategies in the prompts. The
Inside-Beginning-Outside (IBO) schema was used to annotate whether each word in a sentence
was part of a metaphorical expression: B for the beginning of a metaphor, I for inside a
metaphor, and O for outside a metaphor. We also tested a binary labeling schema (1/0), where
a word was annotated as 1 if it was a conventional metaphor and 0 if it was not, as well as
a Yes/No labeling schema. The results showed no significant performance differences between
these latter two approaches, while the IBO schema produced less reliable outputs. Given these
findings, we adopted the 1/0 labeling schema for its convenience in statistical analysis. The
generated outputs were manually reviewed based on the guidelines in Appendix 7.5 to ensure
validity and consistent tokenization. After verification, the outputs were converted into CSV
format and evaluated using Python statistical tools alongside human-labeled data.

Zero-shot prompting:

Inspecting what the model does “out of the box” when applied to the task of conventional
metaphor detection.

N-shot prompting (N>0):

Providing N (1, 5, 10) examples with word-level labels indicating whether a word is a con-
ventional metaphor. Each example consists of one sentence and corresponding word list with
conventional metaphors annotated with 1.

The entire experiment is segmented into two stages: Training and Testing, with the prompting
settings embedded within each stage. Consequently, the corpus data is split into four parts according
to predefined percentage allocations: train set, develop set, test set, and example set, as shown in
Table 3. The example set refers to a subset of sentences used in N-shot prompting, where N groups
of sentences are paired with annotations of words in those sentences. These annotated examples are
presented to the model first to guide its understanding of the task. The remaining sentences are
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then provided for the model to annotate independently. Using F1 score as a benchmark, during the
training phase, outputs from 25 prompts applied to the training dataset were obtained to identify
the prompt with highest F1 score. Subsequently, in the developing phase, this prompt is further
evaluated with different parameter combinations (e.g., temperature) in develop set to find out the
best parameter combination which can achieve the highest F1 scores. These stages of the experiment
are repeated on a secretly held-out dataset to validate the results and ensure the generalizability of
the findings.

Dataset #sentences F#tokens #M %Corpus
Conventional _train 199 4075 682 9.09%
Conventional train _example 16 293 48 0.65%
Conventional develop 213 4005 561 8.94%
Conventional develop example 16 250 34 0.56%
Conventional _test 1821 35836 5453 79.95%
Conventional test example 16 363 60 0.81%
Secret _test 34 870 125 100%

Table 3: Data split. #sentences is the number of sentences; #tokens is the total number of tokens; #M is
the total number of metaphors; %Corpus is the percentage of the total tokens of the total corpus

In the testing phase, the best-performing combination of prompt and parameter, identified using
9.09% of the data (training set), is applied to the remaining 79.95% (testing set) to validate its effec-
tiveness. This step ensures that the selected prompt and parameter combination achieves consistent
performance across the entire corpus.

3.3 Evaluation

In the evaluation phase, the results of three repeated experiments across 0-N shot prompting have
been analyzed in terms of F1l-score, precision, and recall. This analysis aims to determine the best
performance that GPT-4 can achieve in the conventional metaphor detection task.

Given that the output contains a large number of non-conventional metaphor labels, which are not
the focus of this project, we report performance separately for metaphors (positive labels) and non-
conventional metaphors (negative labels). The evaluation focuses on assessing GPT-4’s performance
in detecting conventional metaphors, specifically measuring Fl-score, precision, and recall across
0-N shot prompting. This approach allows for a more targeted evaluation of the model’s capabilities
in the conventional metaphor detection task.

Additionally, an error analysis was conducted to examine the true positive (TP), false positive
(FP), and false negative (FN) rates for different word categories across various shots. This analysis
helps identify any patterns, such as whether GPT-4 performs better at detecting metaphors in certain
word categories or shows significant improvement with N-shot prompting. And the McNemar test is
used to compare the classification results of two versions of output on the same dataset, determining
if there is a statistically significant difference. In our case, the McNemar test will focus on two
comparisons: first, the classification results of the same prompt at different shots prompting; second,
the classification results of different prompts at the same shot prompting.

4. Results

The results of our metaphor detection study are presented in three sections: 0-shot prompting, N
(1, 5, 10)-shot prompting and secret held-out data as comparison. The performance report includes
an evaluation of the models in terms of precision, recall, and F1l-score. The scores with the best
performances across all models are indicated in bold.
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4.1 Zero-shot Prompting

As shown in Table 12, the overall performance of the prompts for 0-shot prompting varied con-
siderably, with substantial differences in F1 score, recall, and precision, showing ranges of 15.42%,
23.02%, and 32.36% respectively. This highlights that the choice of prompt had a substantial impact
on performance during this phase. Using the F1 score as the benchmark, which balances the pro-
portion of correctly detected conventional metaphors by the model (precision) and the proportion of
annotated conventional metaphors in the corpus that were detected (recall), the best performance
was observed with prompt 22 adapted from MIP, achieving an F1 score of 22.92%. Conversely, the
worst-performing prompt was prompt 13, which featured a simple instruction, with an F1 score of
7.53%.

Analyzing the performance by prompt type, simple instruction prompts showed higher precision
but performed poorly in F1 score and recall. This indicates that while these prompts accurately
identified some conventional metaphors, they missed many others. Prompts with background infor-
mation demonstrated balanced performance across all metrics, achieving higher overall effectiveness.
Prompts adapted from MIP had relatively better F1 scores and recall, but their precision fluctuated
considerably, suggesting a strong capability in identifying conventional metaphors but with a higher
likelihood of recognizing additional, potentially irrelevant instances.

4.2 N (1, 5, 10)-shot Prompting

Figure 2 presents the distribution of F1 scores across different shot settings (0, 1, 5, and 10 shots).
The boxplot reveals clear variations in performance, showing that while 1-shot prompting generally
improves over (-shot, further increasing the number of shots does not lead to consistent improve-
ments.

In the 0-shot setup, the median F1 score is 0.161, with an interquartile range (IQR) spanning
from 0.1215 to 0.1999. The scores exhibit notable dispersion, with a minimum value of 0.0567 and
a maximum of 0.2574, indicating variability among different prompts. After introducing a single
example in 1-shot prompting, the median increases to 0.2381, and the IQR shifts upward (0.2091
to 0.273). The maximum F1 score also reaches 0.324, exceeding that of the 0-shot setting. These
results suggest that providing just one example can improve the model’s performance in metaphor
detection. The most pronounced improvements are observed in prompt 13 (4+20.2%), prompt 18
(+18%), prompt 5 (+17%), and prompt 4 (+16.1%), while some prompts, such as prompt 7 and
prompt 10, show only marginal gains. Adapted-from-MIP prompts, which performed well in the
0-shot setting, exhibit comparatively smaller improvements.

However, the trend does not continue when increasing the number of shots. In the 5-shot setting,
the median F1 score decreases to 0.1964, with an IQR of 0.1766 to 0.2267. The 10-shot setting shows
a similar trend, with a median of 0.2042 and an IQR of 0.1825 to 0.2315. The overall score range
remains relatively stable, but the maximum F1 scores in these settings (0.2792 for 5-shot and 0.2883
for 10-shot) do not surpass those observed in 1-shot prompting. Additionally, both 5-shot and
10-shot prompting exhibit lower minimum scores (0.1099 and 0.109, respectively), suggesting that
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Prompt #F1 #Recall #Precision #Feature

1 0.0999 0.0544 0.6264 simple instruction

2 0.1209 0.0671 0.6159 simple instruction

3 0.1719 0.1143 0.4593 simple instruction

4 0.1426 0.0815 0.5699 simple instruction

) 0.0750 0.0399 0.6208 simple instruction

6 0.1063 0.0593 0.5119 simple instruction

7 0.2125 0.1353 0.4987 simple instruction

8 0.1588 0.0937 0.5227 background information
9 0.1344 0.0776 0.5036 simple instruction
10 0.1759 0.1037 0.5793 simple instruction

11 0.1290 0.0727 0.5752 simple instruction

12 0.1365 0.0782 0.5363 simple instruction

13 0.0753 0.0405 0.5426 simple instruction
14 0.1729 0.1054 0.4873 simple instruction

15 0.1727 0.1059 0.4672 simple instruction

16 0.1352 0.0771 0.5502 background information
17 0.1915 0.1165 0.5386 background information
18 0.1105 0.0616 0.5467 background information
19 0.2012 0.1259 0.5001 background information
20 0.1941 0.1226 0.5121 background information
21 0.2111 0.1320 0.5299 adapted from MIP
22 0.1700 0.1176 0.4301 adapted from MIP
23 0.2292 0.1525 0.4690 adapted from MIP
24 0.1887 0.1181 0.4857 adapted from MIP
25 0.2234 0.1492 0.4446 adapted from MIP

Table 4: Performance Metrics by Prompt Type in 0-Shot Prompting

adding more examples does not necessarily improve performance and may, in some cases, introduce
inconsistencies.

These results indicate that while 1-shot prompting provides a moderate improvement over 0-shot,
additional examples beyond this do not consistently enhance performance. The plateau observed in
5-shot and 10-shot prompting suggests that the effectiveness of in-context learning may depend more
on prompt structure and content than on the number of examples alone. This finding aligns with
previous observations that adapted-from-MIP prompts, which initially performed well in the 0-shot
setting, do not show substantial improvements in few-shot scenarios. Simple instruction prompts
exhibit greater variation in performance, with some benefiting from 1-shot prompting, while others
show little change.

Overall, these findings highlight the role of prompt design in metaphor detection. While a
small number of examples can be beneficial, increasing the number does not necessarily lead to
further improvements and may introduce inconsistencies. This suggests that the impact of in-
context learning in metaphor identification depends on factors beyond just the number of examples
provided.

4.3 Comparison with Majority-class Baselines

Given that conventional metaphors constitute a significant proportion of metaphor stimuli datasets
(Steen et al. 2010c), we compared the results from our experiment across all prompting stages from 0-
shot to n-shot. We selected the highest F1 score, which appeared in the 1-shot prompting stage under
Prompt 4. Therefore, we chose this score to compare with the majority-class baseline to evaluate our
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Figure 2: Comparison of F1 Score Progression from 0-shot to N (1, 5,10)-shot prompting in corpus data

experimental performance and to benchmark against state-of-the-art metaphor detection models, as
shown in Table 5. All scores presented below are based on the VUA News dataset. Since all
the compared models were trained and tested on the VUAMC dataset, they all perform token-level
metaphor detection, which increases the comparability of the results.

#Model #Precision #Recall #F1
RoBERTa_SEQ 82.2 74.1 77.9
MSW _BASE 82.2 76.1 79.0
MisNet 82.6 77.0 79.7
GPT-4 55.2 21.1 30.4

Table 5: Performance of different models on the VUA News dataset for metaphor detection

It is important to note that this study focuses on conventional metaphor detection, whereas
the baseline models in the table are all general metaphor detection models. Although conventional
metaphors account for a substantial proportion of metaphor data, direct comparisons may have cer-
tain limitations. Additionally, while the baseline models used the entire news corpus for training and
testing data splits, our scores were derived from a randomly sampled 10% subset of the VUA News
dataset. As a result, there is a proportional difference, meaning that although all scores originate
from the same corpus, the dataset content is not entirely identical.

Finally, due to the imbalance between metaphor and non-metaphor labels, our scoring method
calculates the scores separately for correct labels and negative labels. However, the F1 scores pre-
sented in the table are based solely on the metaphor labels. In contrast, the baseline models did not
make this distinction and calculated scores based on all labels.

Taking the above differences into account, the table shows that RoOBERTa SEQ, MSW_BASE
(Babieno et al. 2022), and MisNet (Zhang and Liu 2022) all perform well, with F1 scores ranging
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Figure 3: Comparison of F1 Score Progression from 0-shot to N (1, 5,10)-shot prompting in secret held-out
data

from 77.9 to 79.7. Among them, MisNet achieves the highest F1 score of 79.7, indicating its strong
generalization ability in metaphor detection tasks. In contrast, GPT-4 performs significantly worse
in this experiment, with an F1 score of only 30.4, far below the other models.

5. Evaluation
5.1 Secret Held-out Data as Comparison

To assess whether GPT-4’s performance on unseen data aligns with the trends observed in the main
corpus, we conducted experiments on the secret held-out dataset. The results, visualized in Figure
3, show that 0-shot prompting yields the lowest F1 scores, while N-shot prompting generally leads
to improved performance. However, the differences between 1-shot, 5-shot, and 10-shot prompting
remain relatively small.

In the 0-shot setting, the median F1 score is 0.2983, with an interquartile range (IQR) spanning
from 0.2524 to 0.3283. While this still represents the lowest performance among the four settings,
it is notably higher than the 0-shot results from the main corpus. The score distribution also shows
reduced variability, with a minimum of 0.0593 and a maximum of 0.4091.

The 1-shot setup exhibits an increase in median F1 score to 0.383, with an IQR from 0.365 to
0.4103. The minimum and maximum values (0.303 and 0.4577, respectively) indicate a narrower
score range than in the 0-shot setting, suggesting that introducing a single example helps stabi-
lize performance. Compared to the main corpus, the improvements in 1-shot prompting are more
pronounced, with higher overall F1 scores.

For 5-shot prompting, the median F1 score is 0.3616, with an IQR. from 0.3405 to 0.3889. While
this represents a slight decrease compared to 1-shot, the overall range remains compact (0.2975 to
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0.4545). Similarly, in the 10-shot setting, the median F1 score is 0.3687, with an IQR of 0.3456 to
0.4162. The maximum score reaches 0.5149, the highest across all settings, yet the minimum score
(0.2485) is lower than in the 1-shot and 5-shot cases. This suggests that while 10-shot prompting can
occasionally yield the best individual results, it does not consistently outperform 1-shot prompting
across all prompts.

Overall, GPT-4’s performance on the secret held-out data surpasses that on the main corpus
across all shot settings, with median F1 scores generally higher by 10% to 15%. Several factors may
contribute to this discrepancy.

First, the secret held-out data includes articles from news agencies beyond the corpus data
sources, which may have different language styles and structures, potentially enhancing model per-
formance on this dataset. News articles typically have a more structured and information-dense
composition, which could facilitate more accurate metaphor recognition by the model.

Second, we analyzed the sentence lengths in both datasets. The average sentence length in the
secret held-out data is 25.59, while in the corpus data, it is 20.67. Longer sentences might provide
more contextual information, enabling the model to utilize a richer context for metaphor recognition,
thereby improving F1 scores.

These findings suggest that dataset characteristics, such as source diversity and sentence length,
influence GPT-4’s ability to detect metaphors. While few-shot prompting improves performance
compared to 0-shot, the relatively small differences among 1-shot, 5-shot, and 10-shot settings indi-
cate that factors beyond shot number—such as prompt design and dataset structure—may have a
greater impact on performance.

5.2 Error Analysis Per Word Category

We additionally performed a detailed error analysis of different word categories, highlighting the cat-
egories where models showed significant improvements, particularly within the prompting approach.
Before presenting the results, the composition of the word categories of conventional metaphors
in the corpus data is first examined. As shown in Figure 4, prepositions and verbs are the most
frequently occurring categories, with counts of 193 and 183, respectively. Nouns follow with 125
occurrences, while ordinals and conjunctions are the least represented.

By examining the true positive (TP), false positive (FP), and false negative (FN) rates for
different word categories across various shots, we observed several trends. Most word categories did
not show significant differences in performance, nor did they benefit from an increase in provided
examples. Additionally, the range of word categories labeled as metaphors by the model became
more diverse. Notably, only the "Preposition" category exhibited improved performance with an
increase in shots, as illustrated in Figure 5. Prepositional metaphors are often challenging to detect.
For example, consider the phrases "under strain for a popular star" and "in a democratic outrage".
In the 0 to 5-shot scenarios, the identification of prepositional conventional metaphors remained
limited, with many prompts failing to recognize any instances. The results indicate that in the
0O-shot setting, metaphor detection was minimal, with an interquartile range (IQR) of 0 to 1 and
a maximum of 5 occurrences. A slight improvement was observed in the 1-shot setting, where the
IQR ranged from 1 to 2, suggesting some potential gains in detection capacity. Similarly, the 5-
shot setting exhibited a modest increase, with an IQR extending from 1 to 3 and a maximum of
17, indicating a possible trend toward improved metaphor identification. At the 10-shot level, the
median number of identified metaphors increased to 8, accompanied by a wider IQR, (5 to 17.5) and
a maximum of 57. This suggests a potential improvement in detection performance with higher-shot
prompting.

Additionally, we used the McNemar test to assess output stability across different shot condi-
tions and to evaluate the statistical significance of variations among different prompt designs (see
Appendix .2.11. The results indicate that in the same-shot prompting condition, most prompts did
not exhibit significant differences. Furthermore, in the same-prompt N-shot prompting stage (n =
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1, 5, 10), the instability of model outputs was notably reduced, with only a few prompts showing
statistically significant differences across different runs.

6. Conclusions

In this work, we employed a prompting approach to evaluate the performance of GPT-4 in the
conventional metaphor identification task. The experimental results show that the model’s best
F1 performance occurred in the 1-shot scenario, reaching 30.42%. Furthermore, N-shot prompting
models generally outperformed 0-shot prompting, suggesting that providing examples helps enhance
model performance. However, after the 1-shot scenario, increasing the number of examples did not
lead to significant improvements in performance, which contrasts with the initial hypothesis that
more examples would continue to improve the accuracy of the model.

To explain this phenomenon, several possible reasons are explored:

Quality and consistency of data annotation. It is noticed that while the same experiments
were conducted on both corpus data and secret held-out data, the latter performed notably better.
This disparity might suggest potential differences between datasets or indicate that the model is
more sensitive to certain types of data.

Linguistic features of the prompt data. The style and complexity of the prompts may also
have impacted the model’s ability to identify metaphors consistently. Variations in these features
could lead to fluctuations in performance across different prompting strategies.

Representativeness of examples. Considering the wide range of sentence lengths in the
corpus data with the shortest sentence being just one word, the randomly assigned example set also
contains a few short sentences. This may lack typicality and consequently affect the understanding
and identification of metaphors.

Model limit. Determining the exact limits of GPT-4 for conventional metaphor detection is
challenging. While GPT-4 is a general-purpose language model, it is not specifically fine-tuned for
metaphor detection, which is inherently more complex due to the need to identify conventionalized
metaphorical meanings. Therefore, the observed performance may reflect the model’s current limi-
tations for this particular task. However, given the vast number of possible prompt configurations
and model parameters, it is reasonable to assume that more effective approaches may exist but were
not explored in this study.

In conclusion, the results suggest that the limitations observed may be attributed more to the
current method and prompt design rather than to the inherent abilities of GPT-4. Further explo-
ration of optimized prompts and more targeted fine-tuning may lead to improved performance in
conventional metaphor detection tasks.

7. Future Directions

The performance of GPT-4 in this project was suboptimal, and the model itself faces challenges such
as lower transparency and parameter tuning limitations. We propose below a number of possible
directions for utilizing LLMs and AT assistants for metaphor analysis.

7.1 Communicative Aspects

While the current project focuses on direct metaphor detection through one-time input and out-
put without iterative conversational interaction, the communicative potential of LLMs presents a
promising direction for future exploration. Dialogue-based prompting, as demonstrated in dialogue
modeling approaches, involves iterative exchanges with the model and offers unique advantages.
Compared to traditional metaphor detection methods, this technique may enhance metaphor de-
tection by refining outputs through conversational feedback, generating analogies, and providing
nuanced explanations.
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7.2 Exploring Prompt Variation

As is mentioned above, tiny differences in prompts may result in different outputs, which can influ-
ence model performance, and the linguistic formula of prompts is unlimited, so there is still much to
explore in terms of prompt variation. This includes experimenting with linguistic variations such as
style and complexity, as well as different task organizations like narrative versus imperative formats.
By tailoring prompts to align more closely with the intricacies of metaphorical language, the de-
tection capabilities of the model can be potentially enhanced. Additionally, using existing training
data to optimize prompt design through techniques like AutoPrompt (Levi et al. 2024) may provide
new possibilities. This approach involves identifying effective manual seed prompts that have been
successful and allowing the LLM to iteratively improve upon them, thereby refining its own perfor-
mance. Finally, deploying Socratic prompting techniques for triggering self-reflection in LLMs is an
avenue worthy of further investigation.

7.3 Exploring Output Format Variation

Since the manually annotated metaphor corpus used in this study adopts a token-level labeling
scheme, we experimented with three token-level output formats: 1/0, Yes/No and IBO schema.
However, alternative output formats may also influence the performance of the model. For instance,
the model might perform better at the phrase level or sentence level. Additionally, the performance
improvement observed after 1-shot prompting could be attributed to the model’s increased familiarity
with the output format. These hypotheses require further validation.

7.4 Finetuning and Retrieval-Augmented Generation (RAG)

Beyond prompt-based approaches to metaphor detection, fine-tuning and Retrieval-Augmented Gen-
eration (RAG) offer potential avenues for improving metaphor detection with LLMs. Fine-tuning
open-source models such as Llama 3 enables the adaptation of LLMs to specific tasks like conven-
tional metaphor detection by training them on targeted datasets. Retrieval-Augmented Generation
approaches to metaphor detection, on the other hand, offer a potential benefit of integrating retrieval
mechanisms that provide relevant context and examples from large corpora. Such retrieval-based
approaches allow language models to access a broader range of metaphorical expressions and con-
textual information, and may improve its ability to detect and understand conventional metaphors
accurately.

7.5 Logits-based Approach

While the current study relies on the model’s final predictions for token-level labeling, a more direct
use of logits—the raw, pre-softmax scores—may offer an alternative means of improving metaphor
detection. Unlike tasks such as Named Entity Recognition (NER) or Part-of-Speech (POS) tagging,
where token boundaries are typically well-defined, metaphorical expressions often exhibit fluid and
ambiguous boundaries. Accessing logits may help capture the model’s internal confidence and better
handle such ambiguities. This approach may reduce reliance on repeated prompting or temperature
tuning to control model behavior. Since OpenAl API models (including GPT-4) support direct access
to logits, this method offers a practical and potentially more stable alternative to sampling-based
strategies. While temperature tuning (e.g., lowering to 0 for deterministic outputs or increasing for
diversity) can still be informative, its role becomes secondary when logits are used directly. Although
this project does not implement a logits-based method, future work could explore its potential to
refine token-level predictions, particularly for cases where model confidence is unevenly distributed
across a metaphorical expression.
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A Appendix: guideline for model output sorting

The sorting of outputs is divided into two main parts: The first part involves organizing the results
of the model output, which are in txt format, containing word list with conventional metaphors
labelled with 1, and the second part involves generating a csv file from the organized results of the
first part, using the words and labels of model outputs to compare with ground truth labels from
corpus for score calculation.

The objective here is to ensure the text is in the correct format (list words and labels) for csv
file generation. The encountered issues and their solutions include:

.1 Sorting of Raw Text Outputs
The objective here is to ensure the text is in the correct format (list words and labels) for csv file
generation. The encountered issues and their solutions include:

.1.1 WORD FORMATTING ISSUES

e Problem: Words are not on separate lines but are placed on the same line, separated by spaces
or commas.

e Solution: Format them into one word per line.

.1.2 SELF-CREATED WORD GROUPS AND LABELS
e Problem: The model creates its own word groups and assigns labels to the entire group. For

example,

Standard: Letter
Policy
Output: Letter Policy

e Solution: Require the model to output again.

.1.3 MARKS BEFORE WORDS

e Problem: There are marks (e.g. ”’) before words.

e Solution: Remove the marks.

.1.4 RETAINING ORIGINAL SENTENCES AND WORD LISTS

e Problem: Both the original sentences and word lists are retained. For example,

Standard: Time
flies:1

Output: Time flies
Time
flies:1

e Solution: Delete the original sentences.
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.1.5 SEPARATE WORD LISTS AND LABELS

e Problem: Word lists and labels are separate. For example,

Output: Time
flies

Here are the conventional metaphorical words:
flies:1

e Solution: Merge the labels with the word lists.

.1.6 INCLUDING ADDITIONAL CONTENT

e Problem: Includes explanations of words, opening or closing sentences, or symbols.
e Solution: Delete non-list content, retaining only the word list.

.1.7 PARTIAL WORD LISTS
e Problem: Only a part of the word list is enumerated.

e Solution: Require the model to output the complete list.

.1.8 ALL WORDS MARKED AS 1

e Problem: Every word in a sentence is marked as 1.

e Solution: Retain this judgment as the model’s output may vary.

.1.9 WORDS AND LABELS ARE NOT ON THE SAME ROW

e Problem: Words and labels are on different rows.

e Solution: Put the labels back to the same rows with the words.

.2 Sorting of Raw CSV (Raw csv) Outputs

After sorting the word lists in the txt files to right format (word:label, one word per row), the sorted
outputs are then transformed into two columns in a csv file. These are compared with the manual
word and label columns. The process involves handling misalignments between the machine output
word list and the manual word list, mainly in two categories:

.2.1 MiISMATCH IN WORD TOKENIZATION

e Problem: Words with different tokenization from the manual version.

— Words are split differently than expected. For example,

Manual: Runnert+beans
Output: Runner
Beans:1

— Words are combined differently than expected. For example,
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Manual: Letter:1
Policy
Output: Letter Policy:1

— Words are partially split differently than expected. For example,

Manual: set+up:1
Output: up:1

e Solution: Since there is no clear pattern for when and how the word tokenization problems
occur, manually check and adjust are used in this step:

— For problem one and three, if a part of the word pair is labelled as 1, then the whole word
pair will be labelled as 1.

— For problem two, if the word pair is labelled as 1, then every separate words will be
labelled as 1.
.2.2 INCOMPLETE WORD:LABEL LISTS

e Problem: The output word list is incomplete.

e Solution: Align using Python, with missing labels defaulted to 0.

.2.3 WORD FORMATTING ISSUES

e Problem: Words are not on separate lines but are placed on the same line, separated by spaces
or commas.

e Solution: Format them into one word per line.

.2.4 SELF-CREATED WORD GROUPS AND LABELS
e Problem: The model creates its own word groups and assigns labels to the entire group. For

example,

Standard: We
must
kill:1
the
program
Output: We must kill the program:1

e Solution: Require the model to output again.

.2.5 MARKS BEFORE WORDS

e Problem: There are marks (e.g. ”’) before words.

e Solution: Remove the marks.
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.2.6 RETAINING ORIGINAL SENTENCES AND WORD LISTS

e Problem: Both the original sentences and word lists are retained. For example,

Standard: Time
flies:1

Output: Time flies
Time
flies:1

e Solution: Delete the original sentences.

.2.7 SEPARATE WORD LISTS AND LABELS

e Problem: Word lists and labels are separate. For example,
Standard: Time
flies:1
Output: Time
flies

Here are the conventional metaphorical words:
flies:1

e Solution: Merge the labels with the word lists.

.2.8 INCLUDING ADDITIONAL CONTENT

e Problem: Includes explanations of words, opening or closing sentences, or symbols. For exam-
ple,

Output:

Step 1: Analyze every word in each given sentence to identify
conventional metaphors. Conventional metaphors identified in the
sentences:

1. (No conventional metaphor identified)}
2. "set+up" (could be interpreted as a metaphor for establishing),
"ended" (metaphor for cessation),

"futile" (metaphor for lack of success),
"infighting" (metaphor for conflict)}

Step 2: List every word in the given sentence sequentially

e Solution: Delete non-list content, retaining only the word list.

.2.9 PARTIAL WORD LISTS

e Problem: Only a part of the word list is enumerated. For example,
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Standard: word list 1
word list 2
word list 10
Output: Since there are 21 sentences and the task is quite lengthy,
I will demonstrate the process using the first three sentences:
word list 1

e Solution: Require the model to output the complete list.

.2.10 ALL WORDS MARKED AS 1

e Problem: Every word in a sentence is marked as 1. For example,

Standard: We
must
kill:1
the
program

Output: We:1
must:1
kill:1
the:1
program:1

e Solution: Require the model to output again

.2.11 WORDS AND LABELS ARE NOT ON THE SAME ROW

e Problem: Words and labels are on different rows. For example,

Standard: Time
flies:1

Output: Time
flies
01

e Solution: Put the labels back to the same rows with the words.
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B Appendix: performance report of one-shot prompting of corpus data

Prompt #F1 #Recall #Precision #Feature

1 0.1987 0.1242 0.4976 simple instruction

2 0.2071 0.1248 0.6090 simple instruction

3 0.2228 0.1409 0.5331 simple instruction

4 0.3042  0.2108 0.5522 simple instruction

) 0.2446 0.1553 0.5762 simple instruction

6 0.1971 0.1192 0.5673 simple instruction

7 0.2189 0.1647 0.4046 simple instruction

8 0.2709 0.1803 0.5453 background information
9 0.1990 0.1198 0.5929 simple instruction
10 0.1794 0.1043 0.6421 simple instruction

11 0.2385 0.1509 0.5703 simple instruction

12 0.2161 0.1364 0.5211 simple instruction

13 0.2774 0.1886 0.5251 simple instruction
14 0.2241 0.1425 0.5267 simple instruction

15 0.2160 0.1359 0.5271 simple instruction

16 0.2029 0.1242 0.5564 background information
17 0.2832 0.1930 0.5318 background information
18 0.2896 0.2019 0.5131 background information
19 0.2627 0.1797 0.4880 background information
20 0.2857 0.1925 0.5554 background information
21 0.2977 0.2063 0.5359 adapted from MIP
22 0.2045 0.1281 0.5116 adapted from MIP
23 0.2672 0.1808 0.5133 adapted from MIP
24 0.2468 0.1642 0.5011 adapted from MIP
25 0.2785 0.1886 0.5342 adapted from MIP

Table 6: Performance Metrics by Prompt Type in One-Shot Prompting
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C Appendix: performance report of five-shot prompting of corpus data

Prompt #F1 #Recall #Precision #Feature

1 0.1871 0.1159 0.4852 simple instruction

2 0.1865 0.1159 0.4803 simple instruction

3 0.1840 0.1159 0.4617 simple instruction

4 0.2120 0.1375 0.4729 simple instruction

) 0.1592 0.0998 0.4458 simple instruction

6 0.1808 0.1137 0.4556 simple instruction

7 0.1987 0.1498 0.3510 simple instruction

8 0.2177 0.1431 0.4707 background information
9 0.1649 0.1004 0.4708 simple instruction
10 0.1807 0.1104 0.4991 simple instruction

11 0.1854 0.1170 0.4519 simple instruction

12 0.1661 0.1015 0.4574 simple instruction

13 0.1735 0.1137 0.4342 simple instruction
14 0.1971 0.1242 0.4771 simple instruction

15 0.1963 0.1253 0.4590 simple instruction

16 0.1814 0.1120 0.4776 background information
17 0.2151 0.1387 0.4945 background information
18 0.2092 0.1359 0.4621 background information
19 0.2362 0.1803 0.4142 background information
20 0.2375 0.1575 0.4877 background information
21 0.2635 0.1830 0.4760 adapted from MIP
22 0.1626 0.1004 0.4289 adapted from MIP
23 0.2427 0.1658 0.4604 adapted from MIP
24 0.2273 0.1503 0.4664 adapted from MIP
25 0.2439 0.1675 0.4548 adapted from MIP

Table 7: Performance Metrics by Prompt Type in 5-Shot Prompting
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D Appendix: performance report of ten-shot prompting of corpus data

Prompt #F1 #Recall #Precision #Feature

1 0.1720 0.1048 0.4844 simple instruction

2 0.1980 0.1209 0.5513 simple instruction

3 0.2398 0.1536 0.5466 simple instruction

4 0.2196 0.1420 0.4877 simple instruction

) 0.1721 0.1026 0.5348 simple instruction

6 0.1488 0.0876 0.4935 simple instruction

7 0.1876 0.1181 0.4569 simple instruction

8 0.2336 0.1492 0.5405 background information
9 0.1988 0.1237 0.5090 simple instruction
10 0.2643 0.1708 0.5841 simple instruction

11 0.1939 0.1204 0.5017 simple instruction

12 0.1759 0.1076 0.4815 simple instruction

13 0.2225 0.1370 0.5990 simple instruction
14 0.2038 0.1276 0.5076 simple instruction

15 0.1700 0.1043 0.4615 simple instruction

16 0.1920 0.1204 0.4757 background information
17 0.2198 0.1359 0.5749 background information
18 0.1895 0.1187 0.4703 background information
19 0.2368 0.1553 0.4989 background information
20 0.2380 0.1553 0.5100 background information
21 0.2558 0.1681 0.5353 adapted from MIP
22 0.1160 0.0666 0.4540 adapted from MIP
23 0.2137 0.1392 0.4598 adapted from MIP
24 0.2224 0.1436 0.4933 adapted from MIP
25 0.2191 0.1420 0.4825 adapted from MIP

Table 8: Performance Metrics by Prompt Type in 10-Shot Prompting
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E Appendix: performance report of zero-shot prompting of secret
held-out data

Prompt #F1 #Recall #Precision #Feature

1 0.1022 0.0560 0.5839 simple instruction

2 0.3033 0.1973 0.6623 simple instruction

3 0.3034 0.2320 0.4391 simple instruction

4 0.3014 0.1893 0.7387 simple instruction

5 0.0642 0.0347 0.4330 simple instruction

6 0.2364 0.1467 0.6117 simple instruction

7 0.3023 0.1920 0.7229 simple instruction

8 0.3483 0.2373 0.6552 background information
9 0.2883 0.2027 0.5010 simple instruction

10 0.2914 0.1813 0.7554 simple instruction

11 0.1926 0.1120 0.7228 simple instruction

12 0.2780 0.1760 0.6633 simple instruction

13 0.1873 0.1093 0.6639 simple instruction
14 0.3099 0.2000 0.6919 simple instruction

15 0.3444 0.2453 0.5794 simple instruction

16 0.2822 0.1813 0.6375 background information
17 0.3648 0.2720 0.5565 background information
18 0.2572 0.1573 0.7136 background information
19 0.3916  0.2747 0.6820 background information
20 0.3261 0.2160 0.6659 background information
21 0.2843 0.1733 0.8247 adapted from MIP
22 0.2812 0.1813 0.6757 adapted from MIP
23 0.2588 0.1653 0.5980 adapted from MIP
24 0.3170 0.2080 0.6688 adapted from MIP
25 0.3546 0.2667 0.5317 adapted from MIP

Table 9: Performance Metrics by Prompt Type in One-Shot Prompting
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F Appendix: performance report of one-shot prompting of secret
held-out data

Prompt #F1 #Recall #Precision #Feature

1 0.3365 0.2560 0.4944 simple instruction

2 0.3895 0.2773 0.6540 simple instruction

3 0.3859 0.3013 0.5366 simple instruction

4 0.3998 0.3200 0.5330 simple instruction

5 0.3717 0.2800 0.5535 simple instruction

6 0.3766 0.2640 0.6580 simple instruction

7 0.3664 0.2747 0.5508 simple instruction

8 0.4114 0.3307 0.5488 background information
9 0.3907 0.2880 0.6077 simple instruction

10 0.3385 0.2293 0.6517 simple instruction

11 0.4309 0.3333 0.6104 simple instruction

12 0.3358 0.2373 0.5741 simple instruction

13 0.3788 0.3120 0.4848 simple instruction
14 0.3763 0.2693 0.6251 simple instruction

15 0.3902 0.2907 0.5980 simple instruction

16 0.3771 0.2693 0.6332 background information
17 0.3768 0.2960 0.5187 background information
18 0.3892 0.3200 0.4973 background information
19 0.4176 0.3173 0.6176 background information
20 0.3647 0.2747 0.5428 background information
21 0.3620 0.2853 0.4956 adapted from MIP
22 0.3772 0.2960 0.5204 adapted from MIP
23 0.4252 0.3413 0.5638 adapted from MIP
24 0.4159 0.3120 0.6265 adapted from MIP
25 0.4514 0.3653 0.5908 adapted from MIP

Table 10: Performance Metrics by Prompt Type in 1-Shot Prompting

338



G Appendix: performance report of five-shot prompting of secret
held-out data

Prompt #F1 #Recall #Precision #Feature

1 0.3135 0.2187 0.5541 simple instruction

2 0.3675 0.2613 0.6199 simple instruction

3 0.3508 0.2507 0.5854 simple instruction

4 0.3754 0.2693 0.6248 simple instruction

5 0.3785 0.2907 0.5426 simple instruction

6 0.3349 0.2507 0.5049 simple instruction

7 0.3528 0.2507 0.5967 simple instruction

8 0.3404 0.2720 0.4550 background information
9 0.3478 0.2507 0.5687 simple instruction

10 0.3704 0.2907 0.5114 simple instruction

11 0.4123 0.3013 0.6529 simple instruction

12 0.3380 0.2400 0.5729 simple instruction

13 0.3962 0.3440 0.4683 simple instruction
14 0.3475 0.2427 0.6215 simple instruction

15 0.3546 0.2693 0.5202 simple instruction

16 0.3591 0.2587 0.5884 background information
17 0.3761 0.2853 0.5516 background information
18 0.3796 0.3093 0.4913 background information
19 0.3615 0.2587 0.6033 background information
20 0.3874 0.2987 0.5521 background information
21 0.3287 0.3413 0.3400 adapted from MIP
22 0.3482 0.2480 0.5851 adapted from MIP
23 0.4155 0.3440 0.5251 adapted from MIP
24 0.3698 0.2773 0.5554 adapted from MIP
25 0.4373 0.3440 0.6006 adapted from MIP

Table 11: Performance Metrics by Prompt Type in 5-Shot Prompting

339



H Appendix: performance report of ten-shot prompting of secret
held-out data

Prompt #F1 #Recall #Precision #Feature

1 0.2661 0.1813 0.5000 simple instruction

2 0.3355 0.2347 0.5902 simple instruction

3 0.3319 0.2267 0.6206 simple instruction

4 0.3859 0.2827 0.6141 simple instruction

) 0.3914 0.2960 0.5780 simple instruction

6 0.3574 0.2533 0.6122 simple instruction

7 0.3628 0.2480 0.6783 simple instruction

8 0.4351 0.3493 0.5776 background information
9 0.3081 0.2080 0.6039 simple instruction
10 0.3256 0.2213 0.6263 simple instruction

11 0.4442 0.3280 0.6897 simple instruction

12 0.3778 0.2880 0.5572 simple instruction

13 0.4085 0.3307 0.5366 simple instruction
14 0.3373 0.2560 0.4981 simple instruction

15 0.4211 0.3147 0.6424 simple instruction

16 0.3361 0.2320 0.6246 background information
17 0.3903 0.2800 0.6442 background information
18 0.3836 0.2960 0.5524 background information
19 0.3509 0.2560 0.5604 background information
20 0.4105 0.3120 0.6000 background information
21 0.3777 0.2853 0.5598 adapted from MIP
22 0.3838 0.2827 0.5988 adapted from MIP
23 0.4454 0.3680 0.5722 adapted from MIP
24 0.3814 0.2853 0.5778 adapted from MIP
25 0.4652 0.3600 0.6608 adapted from MIP

Table 12: Performance Metrics by Prompt Type in 10-Shot Prompting

I Appendix: McNemar test for prompt instability

The McNemar test is a statistical test used to determine if there are significant differences for a
dichotomous dependent variable between two related groups. In this project,

We use the McNemar test to determine whether the differences between the various 0-shot and
N-shot results, as well as the different prompt designs, are statistically significant.

For the former, the comparisons were made among all possible pairs between 1 to 10 shot within
three runs of experiments. This was done to account for the model’s output instability, as the
same input prompts could yield different outputs across runs. By repeating each experiment three
times and averaging the results, the scores became more reliable and reflective of the model’s overall
performance.

The results indicated that most prompts did not show significant differences in performance across
these shot conditions. However, when examining prompts that did exhibit significant differences,
instability is observed. Specifically, prompts with significant differences in the same comparison
varied across the three experimental iterations. For example, in the comparison between 0-shot and
1-shot, prompts 4, 14, 22, and 25 showed significant differences in the first experiment, whereas in
the second experiment, the prompts with significant differences were prompts 7, 15, and 24.
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For the latter, results show that in 0-shot prompting phase, the frequency of statistically sig-
nificant differences among different types of prompts is relatively high. However, this phenomenon
weakens in N-shot prompting phase.
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