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Abstract
Dutch children’s reading skills have been declining consistently for many years. Oral reading
fluency, a combination of decoding skills and word recognition skills, is a fundamental pre-requisite
for one’s reading competence. Children’s oral reading fluency is often tested through oral word
reading tasks, which are time-consuming to carry out as teachers have to administer the tests in
a one-on-one setting, in which they have to indicate the word reading correctness on-the-fly. One
possible way of alleviating this workload is to use automatic speech recognition (ASR) to aid in
the assessment process. A key concern is that many ASR models struggle with children’s speech.

We explored the performance of two pre-trained ASR models: Wav2Vec2.0-CGN and Faster-
Whisper-v2. We had them carry out correctness judgement on an oral word reading task, using
data from the Children’s Oral Reading Corpus (CHOREC). This corpus contains oral reading data
of word lists from native Dutch-speaking primary school children aged 6-12 from Flanders. We
compared the results of the ASR models to those of assessors in CHOREC by using the agreement
metrics specificity, recall, accuracy, F1-score, and MCC as agreement metrics. We then used
two different methods to improve the baseline results, by post-correcting ASR model correctness
judgements using manually defined error categories.

We found that allowing a deviation from the prompt by one error category obtained the best
results for the overall metrics. Faster-Whisper-v2 (accuracy = .89; F1-score = .58; MCC = .54)
outperformed Wav2Vec2.0 (accuracy = .70; F1-score = .39; MCC = .38). The MCC values show
that both ASR models had mild agreement with assessors. We expected the accuracy levels for
both models to be lower than the lowest assessor inter-rater accuracy level (.86), but Faster-
Whisper-v2 performed better than expected (.89). However, one should be careful in interpreting
this result, since the high accuracy scores are partially due to the imbalanced dataset.

We conclude that the performance of standard pre-trained ASR models is promising, but given
the current quality of the procedure caution should be exercised in its use. Future research could
aim to improve the performance of the whole procedure by e.g. using methods like fine-tuning and
validation, and through collaborative research with teachers.
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1. Introduction

In the Netherlands, reading comprehension skills of children have been declining for many years
(OECD 2023). One prerequisite skill for attaining reading comprehension skills is referred to as
decoding skills. Decoding skills have long been noted as important skills to be prolific at for one to
become a competent reader (Kendeou et al. 2009, Perfetti and Hogaboam 1975).

Two of the most known tests that aim to test the decoding skills of children are the Klepel-
R made by Pearson (van den Bosch et al. 2019, Weijnman 2013) and the three-minute-exam (In
Dutch: Drie Minuten Toets, DMT) made by Cito (Cito B.V. 2017). Both of these exams require
children to do oral word reading tasks, through the reading of word lists. The DMT is the most
widely used example of this in the Netherlands. Dutch children aged 6-12 take this test at least
once every academic year. They are assessed using this test until they reach the maximum level or
until they finish primary school. Because of its ubiquity in the Netherlands, we will use the DMT
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to help illustrate what a typical oral word reading task looks like, and what issues are prevalent in
the assessment procedure of it.

Van Til et al. (2018) provide an overview of the administration and assessment process of the
DMT. Children receive different word lists that vary in difficulty. They are asked to read all of the
words out loud as quickly and as correctly as possible. The test is administered and instantaneously
marked by teachers manually using pre-made marking sheets. This is done by hand using pen and
paper. If the word is read correctly, it is not marked. If the word is read incorrectly, the teacher
makes a note of this. If a child skips a word or gets stuck on a word for five seconds, the word is
marked as skipped. In the case of a child getting stuck on a word, the teacher whispers the correct
reading (Cito B.V. 2017). The teacher has to conduct the DMT with every child individually, which
is time-consuming. Moreover, the feedback that the pupils receive does not go deeper than the
overall score, i.e. the number of words the child read correctly in three minutes.

While not all oral word reading tasks use the exact process of the DMT, they do require admin-
istration and marking of read out word lists. Thus, it would be fruitful to look into possible ways to
improve the assessment process of these types of tasks. This could free up much time for teachers
to focus on other aspects of reading, or even for them to look at the results in more detail so that
they can provide more feedback to students beyond the single score.

Automatic speech recognition models (ASR models) are potential tools that teachers could use
to help in the assessment of oral word reading tasks. ASR models have been improving for many
years, but progress for atypical speech has been lacking (Ngueajio and Washington 2022). Children’s
speech is a form of atypical speech, as it differs from regular adult speech in, for example, acoustic
variability (Jain et al. 2023). In recent years, the fact that many ASR models tend to struggle with
children’s speech has been noted clearly (Feng et al. 2024, Jain et al. 2023, Yeung and Alwan 2018).
For children’s oral reading ability specifically, interest in using ASR models as tools for recognition
and assessment of children’s speech for languages other than English has become more prominent
(Harmsen et al. 2023, Klebanov et al. 2020, Loukina et al. 2017, Mich et al. 2020, Molenaar et al.
2023, Piton et al. 2023).

This paper will add to this body of knowledge, by focusing on children’s speech in the context of
oral word reading tasks and the possible use of different pre-trained ASR models in the assessment
process of these types of exams. Furthermore, most studies that use ASR models apply them in
context-heavy scenarios, such as sentences or stories. Our focus will be on word lists, which is a
much more novel and understudied application of ASR models.

Our aim is to examine the feasibility of utilizing commonly used pre-trained ASR models as
tools to support teachers in the assessment of children’s oral word reading performance in exams that
require children to read aloud word lists, akin to the DMT. We use Wav2Vec2.0 (Baevski et al. 2020)
and Whisper (Radford et al. 2023) to automatically assess children’s oral reading performance.
Whisper was chosen because it is considered State-of-the-art (SOTA) at the moment of writing,
Wav2Vec2.0 was chosen because of its common usage, though it was considered to be SOTA when
it was initially released.

The performance of the ASR models will be measured through agreement metrics, using regular
assessor judgements as the ground truth. Additionally, we aim to improve the results by allowing
leniency in the ASR models’ judgements. Our goal is to find out whether it is possible for these
ASR models to automatically assess the oral reading skills of children, so that they can be utilized
by teachers to save time and gather more diagnostic information.
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2. Background

2.1 Decoding Skills in Oral Word Reading Tasks

We briefly introduced decoding skills and its importance as a prerequisite for reading fluency in the
introduction. Nevertheless, it is important to concretely define what decoding skills are to get a
better view of what skills oral word reading tasks measure.

Van Til et al. (2018) define oral word reading skills as one’s ability to recognize written words
quickly and correctly. This is taught to children in roughly two phases. First, the child is taught that
words consist of graphemes and that each of them represents a sound in spoken language. This is
known as the alphabetical principle: the relationships between graphemes and sounds. In addition,
children start to develop their phonemic awareness in this phase. This allows them to read words
orally, because phonemic awareness refers to the understanding that spoken words are constructed
using phonemes. By the end of the first phase, children are able to read simple words that follow
a simple consonant-vowel-consonant structure. In the second phase, children increase the speed at
which they are able to read and the phonemic awareness is extended to more complex words. In this
phase, children start to develop phonemic proficiency on top of phonemic awareness; they learn how
to bend and manipulate the individual sounds to pronounce them more naturally in words. This
is done through, for example, co-articulation (Bell, 2023). As children read more, they generally
develop their reading skills to the point where they understand written language as much as they
do spoken language by the end of primary school (Wentink 1997).

Thus, based on these two phases, there are two essential skills children require to be able to do
well on an oral word reading task: decoding skills and word recognition skills. Decoding skills to
one’s ability to map graphemes (letters) to phonemes (sounds). Word recognition skills refer to the
ability to find the meaning (semantics) of the read word. Of course, children already know many
words from spoken language before they learn how to read, which aids in word recognition (Van Til
et al., 2018). Naturally, a child reads faster the better they are at these processes.

Numerous theoretical models of reading exist that try to represent the role of oral word reading
skills, but there is no consensus on the individual importance of either decoding or word recognition
skills. Van Til et al. (2018) points out that there is not a single perfect theoretical model, as
human behavior is always different from a model representation. They mention that the focus
should be on what theoretical models have in common. Three such theoretical models of reading
are the Dual-Route Cascaded model (DRC; Coltheart et al., 2001), the triangle model (Harm and
Seidenberg 2004), and the Connectionist Dual Process model of reading aloud (CDP++; Perry et al.
(2013)). All three theoretical models are mentioned in Van Til et al. (2018) and they are cited as
the main computational models for reading (Castles et al. 2018). We will introduce these models
very briefly. We will focus on their commonalities to help us define oral reading fluency, to clarify
the construct that we try to measure using the ASR models.

The DRC-model states that the process of reading a word happens through one of two routes:
phonological or lexical. The mental lexicon plays a big role in this model as well. The lexicon
is an internal system where important information about words is stored; including orthographic,
phonological, and semantic information. When you read using the phonological route, you first
decode each letter of the word that you read. Then, using the phonological and semantic information
in the lexicon, the word and its meaning are recognized. When you read using the lexical route,
the orthographic information in the lexicon activates all information at once without the need for
decoding (Coltheart et al. 2001).

The triangle model uses processing layers that can become active when a word is read. Each
of these layers has an in- and output layer. In this model, hidden units are represented by smaller
layers. These facilitate more complex connections between the larger layers (semantics, phonology,
and orthography). According to this model, part of learning how to read a certain word is to know
how much each processing layer should weigh in for specific situations (Chang et al. 2020, Harm and
Seidenberg 2004).
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The CDP++ model describes a division of labor between lexical and non-lexical processes within
a neural network. The model works by using two different routes: a direct route and a route using
a hidden layer (Perry et al. 2013).

It is impossible to argue for the support of one of these theoretical models over the other, as
numerous studies have shown advantages and disadvantages for each (Perry et al. 2013, Rapcsak
et al. 2007, Seidenberg 2005, Woollams et al. 2007). However, there are commonalities which can
help us identify the process of oral reading as well as what makes someone successful at oral reading.

Following this, we can define oral reading skills using the same important processes that we men-
tioned before: decoding skills and word recognition skills An important note is that word recognition
is only possible if the word is stored in the mental lexicon (Castles et al. 2018). All three described
theoretical models predict that oral reading goes faster and more correctly the more familiar some-
one is with the letters, clusters of letters, or full words. In the models, this is exemplified through
the strength of the representations and connections of its parts (Van Til et al. 2018).

Put together, successfully performing an oral word reading task requires a combination of decod-
ing skills and word recognition skills. A child will do well if they are prolific at mapping graphemes
to phonemes successfully in combination with having strong mental representations of the words
they are required to read. The more familiar the child is with a certain word or part thereof, the
stronger it is established in the lexicon, the more rapid and correctly it can be obtained. A com-
bination of these skills will show in a child’s ability to recognise and read aloud words quickly and
correctly. We will use the term oral reading fluency to refer to a combination of decoding skills and
word recognition skills from this point onward.

2.2 The Current Study

The main research question for the current study is as follows:

To what extent can commonly used pre-trained ASR models be incorporated to assess
oral reading tests made by children automatically?

The relevancy of this question is embedded in the trends of Dutch children’s reading skills
and ASR models described above. ASR models have been improving for many years, and despite
issues with correctly identifying children’s speech, their potential as tools for educators cannot be
understated (Cleuren et al. 2008, Klebanov et al. 2020). We explore the possibilities of applying
commonly used pre-trained ASR models as tools in oral word reading tasks. We develop and utilize
a pipeline that generates and uses these ASR models’ transcriptions to judge whether children have
read words correctly or not (correctness judgements). In doing so, we can assess the validity of these
judgements by making a comparison between ASR models’ correctness judgements and those of
human assessors. Note that we do not intend to test whether ASR models could replace the teacher.
We do not advocate for the replacement of teachers and assessors by ASR models in the correctness
judgements of oral word reading tasks, but for their use as tools. If the ASR models perform well,
the program can be improved upon iteratively so that teachers can use these models to aid them in
the assessment process.

2.2.1 ASR Model Selection

Previous studies have described that children’s speech is problematic for many ASR models to
process correctly, because children’s speech is considered atypical when compared to the native
adult speech. Children’s speech is typically more varied than adult speech and most ASR models
are trained on little to no children’s speech at all since this data is scarce (Cleuren et al. 2008, Jain
et al. 2023). This brings limitations to the possibility of using ASR models to judge children’s oral
reading ability.

While it is true that ASR models tend to struggle with judging correctness of oral word reading
tasks performed by children, it does not insinuate that different assessors are always in agreement
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about judgements. In their publication on the Children’s Oral Reading Corpus (CHOREC), Cleuren
et al. (2008) investigated how consistently the assessors agreed on judgements and found that across
all participating schools the inter-rater agreement varied between 86.4% and 99.6%. Harmsen et al.
(2023) also looked at inter-rater agreement of teachers assessing native Dutch children’s oral readings
of word lists. These word lists were taken from the Dutch automatic reading tutor (DART) corpus
and were developed to be like those in the DMT. Assessors were instructed to assess children using
DMT guidelines. They found moderate agreement between teachers, stating that “for around 40%
of the words, less than 80% of the teachers agreed” (Harmsen et al. 2023). A main advantage of
using ASR models for judgements is that it will make the same judgements consistently. For this to
be successful however, the ASR model must be making these judgements correctly, or it is invalid.

As mentioned previously, ASR models struggle with transcribing children’s speech correctly,
causing difficulties in using them for correctness judgements. Despite this, there are many studies
that show hopeful results for its capabilities; both for pre-trained and fine-tuned models. In their
paper, Piton et al. (2023) explore the possibilities of commercially developed pre-trained ASR models
(IBM Watson) to generate transcriptions for analysis of French and Italian children’s speech. While
they conclude that these ASR models themselves do not provide fine-grained analysis of children’s
speech themselves, they also speak positively of the possibilities for using the transcripts to classify
children’s speech as correct or incorrect.

If we turn to fine-tuned ASR models’ performances, the results are much more optimistic. First,
the previous findings for languages other than Dutch. Klebanov et al. (2020) created an app for
children to use for oral reading using ASR. They state that the ASR transcriptions proved to be
very useful when they scored the recordings of children, not needing orthographic transcriptions
after validation the ASR model on external corpora only. Bernstein et al. (2017) developed an app
using a hybrid-based ASR model for children. The purpose of this app was to explore the possibility
of self-administered oral reading tests. They showed that children were able to self-administer the
oral reading test quite well: the words correct per minute (WCPM) scores from automatic (ASR)
assessments correlated highly with those of teachers. Mich et al. (2020) developed a web application
for assessment of reading skills of Italian Children. They used a fine-tuned Kaldi model based on
words that they knew the children were going to be assessed on. They conclude that teachers can use
their system for assessment of children’s oral reading skills. Finally, Jain et al. (2023) illustrates how
the fine-tuning of models for children’s speech specifically can improve an ASR models performance
on recognizing children’s speech. They showed that the performance of a Whisper-based ASR
model’s performance, which consisted of adult speech, would improve significantly when fine-tuning
the model using children’s speech data. They take special note of the improvements that were made
when they included linguistically diverse correct and erroneous readings such as accented speech.

For Dutch, the results are similar. Molenaar et al. (2023) made use of four Kaldi-based models and
twoWhisper-based models to assess Dutch children’s oral reading accuracy. They found that the best
performing model was a Kaldi-based one that had a language model that contained both prompts
and orthographic transcriptions. This would imply that here, the orthographic transcriptions are
crucial. For DMT-like tasks specifically, Harmsen et al. (2023) evaluated the performance of three
ASR models (one based on Kaldi and two based on Whisper) on child speech data from the DART
corpus. They found that the ASR model based on Whisper performed best, meaning that it was
the best at predicting a teacher majority vote; it performed the most similar to teachers. This
best-performing model had two important characteristics. First, it was able to produce pseudo- and
non-words. Second, the model was provided with the prompts for the correct word readings. These
studies show the potential usefulness of ASR transcriptions for assessment of children’s oral reading
skills.
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3. Method

3.1 CHOREC (Children’s Oral Reading Corpus)

The data used for this paper came from the CHOREC corpus (Cleuren et al. 2008). We developed
two pipelines for this paper in Python 3.11 (Foundation 2022). We included two pipelines, as they
differ slightly based on which ASR model is used. Pre-processing, obtaining the baseline results, and
doing both experiments can be replicated using these scripts. (Groenhof 2024a, Groenhof 2024b).

In total, the CHOREC corpus contains oral speech recordings of 400 Flemish children who speak
Dutch as their native language. At the time of recording, the children were elementary school
students attending either regular elementary schools (N = 274) or elementary schools for children
with specific learning disabilities (N = 126). All children were between 6 and 12 years old.

All children in the CHOREC corpus performed oral word reading tasks, making it suitable for
our research purposes. However, not all the participant data is relevant for our research. As we
discussed in the background section, we define oral reading fluency as a combination of decoding
skills and word recognition skills. CHOREC contains data from two types of oral word reading tasks:
real word reading tasks (RWRT) and pseudoword reading tasks (PWRT). If we were to include the
PWRT, the data from this task is only relevant for decoding skills, but not word recognition skills.
Pseudowords do not actually exist, and are not represented in the lexicon as a result (Chuang
et al. 2021). Therefore, only the data in CHOREC for which children performed the real RWRT is
relevant.

Oral word reading tasks are often assessed by assessors who make correctness judgements for
each word a child reads; a word is either read correctly or incorrectly. This holds true for the DMT
as well (Cito B.V. 2017). This means that the task for the ASR models is binary classification:
either a word was read correctly (0) or it was read incorrectly (1). CHOREC does not contain
orthographic transcriptions. However, there is a reading error layer. If the teacher judged the word
as read correctly, they did not annotate anything. If they judged the word as read incorrectly, they
used codes representing reading errors provided in the annotation protocol (Cleuren et al. 2008).
According to the teachers, the word was read correctly when no annotation was made (0) and read
incorrectly when one or more error codes were made (1). All annotations were made manually by
the teachers. Not all files were annotated with a reading error layer. For this reason, the audio
recordings of 15 children had to be excluded from our research.

CHOREC contains three types of word lists, 1LG, 2LG, and 3+4LG, consisting of 40 words each.
The 1LG, 2LG, and 3+4LG lists each contained only 1-syllable, 2-syllable, and 3- or 4-syllable words
respectively (Cleuren et al. 2008). Not all children read all word lists, 1LG (N = 377) was read most,
followed by 2LG (N = 359), and 3+4LG (N = 320). Each word list is more difficult than the other,
which explains why the fewest number of children read the 3+4LG list. This means that the words
in the easier words are overrepresented.

3.2 Defining Validation and Test Datasets

We assessed the quality of all recordings by calculating the signal-to-noise ratio (SNR) of all record-
ings using a Python script with Librosa (McFee et al. 2015). We did this to ensure that no poor-
quality audio recordings would be present in the dataset. While there is no consensus on what is
considered to be a high value for SNR, 20dB is often used as a reference for high SNR values (Hu
et al. 2020, Sadeghi et al. 2024). We used this as an initial threshold. Audio files that had an SNR
below 20dB were listened to manually to check if there was a lot of background noise. If this was
the case, the recording was excluded from the research. If there was not a lot of noise, the recording
remained as part of the data.

The justification for the manual check is that the creators of CHOREC mention that all of their
data was recorded in a controlled environment with good equipment (Cleuren et al. 2008), which
should prevent any recordings from being of poor quality.
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Once the data had been gathered, we separated the full dataset into a validation and test set.
This is a well-known practice within machine learning. Usually, a model is trained and/or fine-tuned
using a training set. The training set is used to explore how modifications to the model affect the
results. No modifications to the model are allowed to be made once it is applied to the test set
(Galarnyk 2022). While we did not train or fine-tune the ASR models, we did intend to improve
upon the ASR models’ baseline results. For this reason, we defined a validation set instead of a
training set. This allowed us to do error analysis on part of the data, while still leaving data to
generate final results on.

Table 1 shows an overview of speaker characteristics in the validation and test sets. For some
speakers, the school year annotations were missing. For our research, this is not problematic because
we did not intend to look at the results split by school year. We ensured that the validation set was
balanced, hence the students for whom the school year annotations were missing were all part of the
test set. There was an exact even split of gender for each school year. The years 2, 3, and 4 account
for most data in CHOREC, which is why more participants from these years were selected. Overall,
the validation set contained 27.18% of all relevant data in CHOREC, leaving 82.82% for the test
set. While it is uncommon to have this large of a validation set, we chose to do this because we
did manual error analysis instead of machine learning. We justified this choice in two ways. First,
manual error analysis is time-consuming. Had we defined a larger validation set, we would have had
to spend far more time on this process for diminishing returns. Second, a larger test set allowed us
to draw conclusions from the results that were more generalizable than a smaller test set would be.

Table 1: Description of participants in validation and test sets

School year Gender
Number of participants
in validation set (N)

Number of participants
in test set (N)

1 Female 2 1
1 Male 2 1
2 Female 15 19
2 Male 15 27
3 Female 15 18
3 Male 15 21
4 Female 15 19
4 Male 15 23
5/6 Female 1 2
5/6 Male 1 3
Unknown Female 0 23
Unknown Male 0 67
Total 96 224

3.3 Wav2Vec2.0-CGN and Faster-Whisper-v2

For our research, two pre-trained ASR models will be used. The first model will be referred to
as Wav2Vec2.0-CGN (GroNLP 2023). This is a pre-trained on the Spoken Dutch Corpus (Corpus
Gesproken Nederlands, CGN) (Taalunie 2014). The second model we will use will be referred to as
Faster-Whisper-v2. This is a modified version of Whisper (Klein 2023, Radford et al. 2023).

We mentioned earlier that the performance of end-to-end models are generally better than hybrid
models (Parikh et al. 2023, Shraddha et al. 2022). Thus, it is no surprise that many papers of
recent years have been using either Wav2Vec2.0, (Ahn et al. 2024, Baevski et al. 2020), Whisper
(Jain et al. 2024, Van der Klis et al. 2023), or both (Fan et al. 2024) as representatives of current
SOTA ASR models. However, we will only consider Whisper a SOTA ASR model for this paper,
referring to Wav2Vec2.0 as commonly used. Its more recent release and better performance on
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ASR tasks relating to children’s speech compared to Wav2Vec2.0 justifies this distinction (Fan
et al. 2024, Van Gompel 2023).

For Wav2Vec2.0, we opted to use the model pre-trained on CGN (GroNLP 2023). This choice
was made because, to our knowledge, it is the largest Wav2Vec2.0 model pre-trained on Dutch
speech. CGN has seen widespread use when dealing with Dutch speech for ASR purposes (Dyck
et al. 2021, Poncelet and Van Hamme 2023).

For Whisper, we opted for a modified version called Faster-Whisper-v2 (Klein 2023). Earlier
research, which compared the word error rate (WER) of different ASR models on Dutch children’s
read speech from the JASMIN corpus (Taalunie 2008), showed that the best performing models
were as follows: Faster-Whisper v2 w/VAD, Whisper v2 w/VAD, and Faster-Whisper-v2. Their
respective WER values were: 19.1%, 20.1%, and 20.3% (Van Gompel 2023). VAD stands for voice
activity detector and it is used to filter out parts of audio files with no speech. However, when
we tried to use Faster-Whisper v2 w/VAD and Whisper v2 w/VAD, the transcriptions were often
incomplete. This was too problematic to use, because up to half of the recording could be missing.
For this reason, we opted for Faster-Whisper-v2.

3.4 Alignment

ASR models generate a transcription of what is said from an audio file. For our purposes, the ASR
transcriptions must be compared to the prompt. Based on this comparison, we can use the ASR
transcription to judge if each word was read correctly or not. For this to be possible, the ASR
transcription and the prompts must be aligned. A child’s attempt at reading a word can only be
judged if the correct part of the ASR transcription is looked at for the corresponding prompt. A
common way of doing this is through the use of forced aligners such as SCLITE or ADAGT (Harmsen
et al. 2024, National Institute of Standards and Technology 2021). In this research, we use ADAGT
for alignment, since it provides two-way alignment: forwards and backwards. Children often stutter
and restart words. The backwards alignment that ADAGT offers aligns the final reading attempt
more consistently with the prompt than regular forwards alignment alone.

3.5 Measurements for the Performance of ASR models

In order to assess the performance of ASR models, we needed to select metrics to represent their
performance. We considered the assessors in CHOREC to be the ground truth in this paper, because
assessors are often used in real life for oral word reading tasks including the DMT (Cito B.V. 2017).
The less the correctness judgements based on the ASR model’s transcription deviated from the
assessors in CHOREC, the better we considered their performance. However, previous work that
did not use WCPM (Cleuren et al. 2008, Harmsen et al. 2023). Since we intended to compare our
results directly to previous work, we opted for measures based on a confusion matrix instead.

A confusion matrix can be defined as a contingency table which summarizes the performance of
a binary classifier. It does this by comparing the predictive labels, the ASR model’s judgements,
to the actual labels of the data, the assessors’ judgements. In doing so, the data is categorized into
four key metrics based on whether the predictive and actual labels align (Stehman 1997). Table
2 explains the meaning of these four metrics applied to the data of this paper. A ‘negative’ (0)
corresponds to a word that was read correctly and a ‘positive’ (1) corresponds to a word that was
read incorrectly.
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Table 2: Overview of possible outcomes in a confusion matrix
Outcome Assessors judged word as ASR model judged word as
True negative (TN) Correctly read Correctly read
True positive (TP) Incorrectly read Incorrectly read
False negative (FN) Incorrectly read Correctly read
False positive (FP) Correctly read Incorrectly read

Table 3 shows how we obtained the judgements from assessors in CHOREC and the ASR models.
For the assessors, a word was judged as correctly read (marked as a “0”) when the reading error
layer in the annotations was empty (i.e., there was no error). All remaining words were marked as
an incorrectly read word (marked as a “1”), as any note in the reading error layer indicates a reading
error according to the assessors. For the ASR model, the transcription was aligned to the prompt
using ADAGT first (Harmsen et al. 2024). Once the transcription was aligned, every transcribed
word was compared to its prompt. If they were identical, it was marked as a correctly read word
(marked as a “0”). In all other cases it was marked as an incorrectly read word (marked as a “1”).
Following this, we compared the correctness judgements of the assessors and ASR model gives us
one of the four possible outcomes described in Table 3.

Table 3: Examples of outcomes based on assessor correctness judgements
Prompt Reading Assessor ASR model ASR model Outcome

error judgement transcription judgement
groen 0 groen 0 TN
groen 13 1 groo 1 TP
groen 0 krom 1 FP
groen 13 1 groen 0 FN

After we obtained the outcome of all read words, we calculated the most relevant agreement
metrics from (Chicco and Jurman 2023). An overview of these metrics, how they are calculated, and
an explanation of what they represent is provided in Table 4 . All of these metrics were important for
our research, as they enable us to interpret the results by looking at different aspects of agreeability
between assessors and ASR models. Accuracy and F1-score provided us overall metrics that show
the overall performance of the selected ASR model. Specificity and recall were chosen because they
represent the performance of the ASR model for cases where the word was judged as being read
correctly and incorrectly by assessors respectively. They allowed us to assess the performance at a
more detailed level. The higher the value for either, the better the ASR model performs. However,
an increase in specificity should not lead to a decrease in recall or vice versa.

A special note must be made about the agreement metric precision. Its inclusion in Table 4 is
only because it is used to calculate the F1-score. We consciously chose to not use it as a metric by
itself. As discussed above, specificity and recall are more suited for our purposes than precision. For
this reason, we did not report on precision in the results section.
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Table 4: Explanation of confusion matrix metrics used in this paper (Chicco & Jurman, 2020, 2023).

Metric Formula Explanation

Accuracy
(TN+TP)/(TN+
TP+FN+FP)

Proportion of words that were
judged in the same way by
both the ASR model and the
assessors.

Precision, also referred to
as positive predictive value
(PPV)

TP/(TP+FP)

Proportion of words that were
judged as incorrectly read by
the ASR model that were also
judged as incorrectly read by
the assessors.

Specificity, also referred to
as true negative rate (TNR)

TN/(TN+FP)

Proportion of words that were
judged as incorrectly read by
the assessors that were also
judged as incorrectly read by
the ASR model.

Recall, also referred to as
true positive rate (TPR) or
sensitivity

TP/(TP+FN)

Proportion of words that were
judged as correctly read by
the assessors that were also
judged as correctly read by
the ASR model.

F1-score
2*(Precision*Recall)/
(Precision+Recall)

A measure of predictive
performance, representing
both precision and recall in
a single metric.

Matthew’s Correlation
Coefficient (MCC)

((TP*TN)-(FP*FN))/
sqrt((TP+FP)*(TP+FN)*
(TN+FP)*(TN+FN))

A measure of predictive
performance. For imbalanced
datasets, MCC is more
appropriate than accuracy
and F1-score.

MCC will be used as the overall measure of agreement between ASR models and assessors in this
paper, because the ASR models had to perform a binary classification task and data in CHOREC
is imbalanced. This value will indicate the performance of a given ASR model: the closer to 1 this
correlation gets, the better the ASR model performs. The inclusion of F1-score and accuracy was
a deliberate choice. It allowed for interpretation and comparability with previous studies. Most
importantly, Cleuren et al. (2008) used accuracy to represent the inter-rater agreement between as-
sessors. Together, specificity, recall, accuracy, F1-score, and MCC represent the agreement between
ASR models’ and assessor correctness judgements in this paper.

3.6 Improvements Using Error Categories

After obtaining the baseline results, we explored in what way and how much the performance of
ASR models could be improved. For the baseline results, a word was only judged as read correctly
by the ASR model if its hypothesis was identical to the prompt. Any deviation led to it being judged
as read incorrectly. It has been shown that assessors can still assess a word as being read correctly
when the reading deviates from the prompt in certain cases (Harmsen et al. 2023). Because of this,
we postulated that if we allowed the ASR models to be more lenient, the results would improve.
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First, we performed error analysis to gain an understanding of what types of errors were com-
monly made in the baseline results. We compared the ASR transcriptions to the prompts in cases
where the judgement differed between ASR model and assessors and sorted them by frequency.
Table 5 shows an example of such a case. This is what we will refer to as a confusion pair from
this point onwards (Tillemans 2007). In this example, it would mean that there were 85 instances
where the word “cola” was transcribed as “kola” by the ASR model, causing it to be judged as read
incorrectly when assessors judged it as read correctly.

Table 5: Example of a confusion pairs based on which we defined error categories
Prompt ASR model Assessor judgement ASR model Occurrences

transcription judgement judgement (N)
cola kola Correct Incorrect 85
cola Koola Correct Incorrect 3

By looking at the most frequently occurring confusion pairs, we categorized the types of errors
made by the ASR model in the validation set. The example in the first row of Table 5 was defined
as the error category “k/c confusion”. This use of confusion pairs is a common error analysis
approach for obtaining a better understanding of the errors (Hussein et al. 2021, Prasad and Jyothi
2020, Tejedor-Garćıa et al. 2022). We stopped trying to define new rules when the frequency of
uncategorized confusion pairs got lower and we had to define extremely specific rules instead of
general ones.

After we defined the error categories through these rules, we used them to change ASR model’s
judgements in post-processing. If the difference in prompt and hypothesis was only due to one of
these error categories, we changed the ASR model’s correctness judgement from incorrectly read to
correctly read. This allowed us to experiment with the error categories to see the effects on the
agreement metrics in the validation set.

However, we noticed that this approach was imperfect. Only one error category could be checked
for at a time. Looking at Table 5, the first row would fall under the error category “substitution k/c”.
The second row also contains this error, but was not found using this method. This is because it
occurs together with another error category we would define later: “substitution long/short vowels”.
To account for cases in which the ASR model’s transcription deviated from the prompt across
multiple error categories, further analysis was conducted to determine whether this would lead to
substantial improvements.

Because of this, we also generated the results for when we allowed words to be judged as read
correctly where this occurs. We therefore have two sets of results on top of the baseline results:
one applying error categories in isolation and one applying error categories simultaneously. While
this latter method did not provide improved results, it does provide insight into how changing the
ASR model’s correctness judgements affect agreement metrics specifically for imbalanced datasets
in which the vast majority of words are read correctly.

4. Results

4.1 Audio Quality

First, the results of the SNR-analysis showed that almost all recordings have an SNR-value of at
least 20dB (N = 926, M = 32.07, SD = 5.80). We checked recordings with SNR-values under 20dB
(N = 11) manually to assess the audio quality, none were judged as having poor audio quality. No
participants were excluded from the results.
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4.2 Baseline Results

In order to see how well the ASR models performed on making correctness judgements, we assessed
them by calculating agreement metrics between them and assessor judgements. The more alike
their judgements were, the higher the values for the agreement metrics. Table 6 shows how often
each confusion matrix metric was found in the results separated by ASR model. Table 7 shows the
agreement metrics that were calculated from this.

Table 6: Confusion matrix metrics for baseline results
ASR model Dataset TN (%) TP (%) FN (%) FP (%)
Wav2Vec2.0-CGN Validation 55.28 4.28 0.73 39.71
Wav2Vec2.0-CGN Test 47.39 9.74 0.64 42.22
Average 51.34 7.01 0.69 40.97
Faster-Whisper-v2 Validation 83.27 3.07 2.01 11.66
Faster-Whisper-v2 Test 76.5 7.62 2.76 13.12
Average 79.89 5.36 2.39 12.39

Table 7: Agreement metrics for baseline results
ASR model Dataset Specificity Recall Accuracy F1-score MCC
Wav2Vec2.0-CGN Validation .58 .85 .60 .18 .19
Wav2Vec2.0-CGN Test .53 .94 .57 .31 .29
Faster-Whisper-v2 Validation .88 .60 .86 .31 .30
Faster-Whisper-v2 Test .85 .73 .84 .49 .44

This data shows that Wav2Vec2.0 performs worse than Faster-Whisper-v2 overall. While we con-
sider MCC the most important overall agreement metric, Faster-Whisper-v2 outperformedWav2Vec2.0-
CGN for all three overall agreement metrics: accuracy (.84 vs. .57), F1-score (.49 vs. .31), and
MCC (.44 vs. .29). Even though the test dataset results are what we will consider final, the same
is true for the validation dataset: accuracy (.86 vs. .60), F1-score (.31 vs. .18), and MCC (.30 vs.
.19). This means that when we use these ASR models out-of-the-box, without any post-processing,
Faster-Whisper-v2 is better at making correctness judgements for this oral word reading task than
Wav2Vec2.0-CGN.

A large contributing factor to Wav2Vec2.0-CGN’s worse performance is its tendency to generate
fewer TNs (47.39% vs. 76,5%) and FNs (0.64% vs. 2.74%), while generating more TPs (9.74%
vs. 7.62%) and FPs (42.22% vs. 13.12%) than Faster-Whisper-v2. Once again, this is true for the
validation set as well for TNs (55.28% vs. 83.27%), FNs (0.73% vs. 2.01%), TPs (4.28% vs 3.07%)
and FPs (39.71% vs. 11.66%). Because of these tendencies, it is no surprise that Wav2Vec2.0-
CGN had higher recall values (.94 vs. .73 in the test dataset and .85 vs. .60 in the validation
dataset) since obtaining a high value requires a high number of TPs and a low number of FNs.
Similarly, Faster-Whisper-v2 had higher specificity values (.85 vs. .53 for the test dataset and .88
vs. .58 for the validation dataset) as obtaining a high value requires a high number of TNs and
a lower number of FPs. Seeing as the overall metrics are much better for Faster-Whisper-v2 than
Wav2Vec2.0-CGN, having a higher specificity value is more important than having a higher recall
value for the CHOREC dataset. In other words, there are more words that were read correctly than
read incorrectly according to assessors. We will return to this point in the overall results.
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4.3 Error Categories

To get a better understanding of the types of errors made by the ASR models, we analyzed the
errors and attempted to group them into error categories. We did this by looking at confusion pairs
sorted by frequency and attempting to find patterns therein. Of course, we only did this for the
validation set as the test set only functioned as a way to test our final improvements. Our goal
was to introduce leniency in the ASR models’ correctness judgements to help reduce the number of
FPs, as these were far more prominent in the baseline results than FNs for both models. Table 8
shows an overview of the error categories that we defined. These will be used in the remainder of
the results section for error analyses.

Table 8: Overview of error categories
Error category Example Example Explanation
name prompt ASR output
Insertion spaces Ruziemaken Ruzie maken Addition of one or more

(to argue) spaces into the prompt
Insertion Dichtbij Dichtsbij Addition of a letter

(close) that is not part of the
prompt.

Deletion final Huis (house) Hui Removal of final letter

Deletion liquids Groei (growth) Goei Removal of a liquid
inside a consonant cluster

Substitution Groen (green) Groon Replacement of ‘oe’
oe/oo by ‘oo’ or vice versa
Substitution Kleuren Cleuren Replacement of ‘k’ by
k/c (colors) ‘c’ or vice versa
Substitution Auto (car) Outo Replacement of ‘au’ by
au/ou ‘ou’ or vice versa
Substitution Reis (travel) Reys Replacement of ‘i’ by
i/y ‘y’ or vice versa
Substitution Groen (green) Groem Replacement of a nasal
nasals by a different nasal
Substitution Stoppen Stopen Replacement of a double
double/single (to stop) consonant by a single
consonants one or vice versa
Substitution Feest (party) Fest Replacement of long
long/short vowels by a short one
vowels or vice versa
Substitution Zacht (soft) Sacht Replacement of a voiced
fricative fricative by a voiceless
voice one or vice versa.
Substitution Duur (duration) Tuur Replacement of a voiced
plosive plosive by a voiceless one
voice or vice versa
Ch confusions Chocolade Shocolade Replacement or deletion

(chocolate) of “ch”.

Table 9 shows the total number of errors that the error categories represent in the validation set.
These categories caught the greatest number of errors in the validation set we could find. We found
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that the error categories shown in Table 9 accounted for 34.13% of the FPs in wav2vec2.0-CGN’s
and 42.98% of FPs in faster-whisper-v2’s validation sets.

The most frequently found error categories were the same for both Wav2Vec2.0-CGN and Faster-
Whisper-v2: Ch confusions (7.68% and 15.25%), substitution long/short vowels (6.47% and 3.89%),
insertion spaces (5.22% and 9.12%), and substitution plosive voice (3.66% and 4.71%) were found
to represent the largest part of the total errors. We can also that some error categories were only
found for Wav2Vec2.0-CGN: Deletion final (1.62%), substitution k/c (1.21%), and substitution i/y
0.72%), which could have contributed to the worse overall performance of Wav2Vec2.0-CGN in the
baseline results.

Table 9: Error category distribution for the validation datasets
Error category Wav2vec2.0-CGN Faster-Whisper-v2

Frequency Part of Frequency Part of
(N) total errors (N) total errors

(%) (%)
Ch confusions 350 7.68 204 15.25
Substitution long/short 295 6.47 52 3.89
vowels
Insertion spaces 238 5.22 122 9.12
Substitution plosive 167 3.66 63 4.71
voice
Deletion final 74 1.62 0 0
Substitution oe/oo 69 1.51 4 0.30
Substitution double/single 64 1.40 17 1.27
consonants
Substitution k/c 55 1.21 0 0
Insertion [n] 48 1.05 95 7.10
Substitution nasals 45 1.00 3 0.22
Substitution au/ou 41 1.00 2 0.15
Substitution fricative 36 0.80 1 0.08
voice
Deletion liquids 33 0.79 12 0.90
Substitution i/y 11 0.72 0 0
Total 1526 34.13 575 42.98

4.4 Error Category Application Results

Figures 1 and 2 show how the post-correction of ASR model correctness judgements based on
identified error categories affected the metrics compared to the baseline results. Figure 1 shows the
change in confusion matrix metrics, and Figure 2 the changes in agreement metrics. In these figures,
we can observed that the baseline results are mostly improved by application of error categories in
isolation. In addition, the performance of Wav2Vec2.0-CGN increased more than that of Faster-
Whisper-v2.

Applying the rules in isolation increased the percentage of TNs and reduced the percentage of
FPs. Table 10 shows the best obtained results for each ASR model. From this table, we can see that
this resulted in higher values for all agreement metrics but recall for all models. Most importantly, the
overall agreement metrics for the test datasets show improvements over the baseline results. Faster-
Whisper-v2’s accuracy, F1-score, and MCC increased by .05, .09, and .10, while they increased by
.12, .08, and .09 for Wav2Vec2.0-CGN respectively.
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Despite the larger improvements, Wav2Vec2.0-CGN did not perform as well as Faster-Whisper-
v2. It only has a better recall value than Faster-Whisper-v2 (.94 vs. .72). Specificity (.67 vs. .91),
accuracy (.69 vs. .89), F1-score (.39 vs. 58), and MCC (.38 vs. .54) were all lower for Wav2Vec2.0-
CGN than Faster-Whisper-v2.

Allowing simultaneous application of error categories did not improve the results. For Wav2Vec2.0-
CNG’s test set it reduced performance for all metrics to a point below the baseline results. For
Faster-Whisper-v2’s test set, the same can only be said for recall, all other metrics show improve-
ments. Compared to the isolated application of error categories, accuracy (.88 vs. .89) was lower.
Specificity (.93 vs. .85), F1-score (.62 vs. .49), and MCC (.55 vs. .44) all reached higher values.
However, recall (.60 vs. .73) was lower than the baseline value.

Despite these improvements for Faster-Whisper-v2, this is only true for the test dataset. The
validation dataset shows a performance worse than the baseline for all metrics for Faster-Whisper-v2
as well. The reason seems to be the drop in TNs and subsequent increase in FNs. Faster-Whisper-
v2’s test dataset is the sole exception where this does not happen.

Figure 1: Changes in confusion matrix metrics after applying error categories

Figure 2: Changes in agreement metrics after applying error categories

357



Table 10: Best obtained results for test datasets, change compared to baseline results given in
parentheses

ASR Model Dataset
Specifity
(change)

Recall
(change)

Accuracy
(change)

F1-score
(change)

MCC
(change)

Wav2Vec2.0-CGN Test .67 (.14) .94 (0) .69 (.12) .39 (.08) .38 (.09)
Faster-Whisper-v2 Test .91 (.06) .72 (-.01) .89 (.05) .58 (.09) .50 (.10)

5. Discussion

In the current study, we investigated to what extent commonly used pre-trained ASR models can
be employed to automate the assessment of oral word reading tests made by children. To this
end, we developed an ASR-based procedure that can automatically assess whether a word is read
correctly. We investigated the performance of two different ASR models for this task, Wav2Vec2.0-
CGN and Faster-Whisper-v2. In addition, we analyzed the recognition errors of the ASR models and
investigated whether rule-based correction of these errors in a post-processing procedure improved
the performance.

We found that applying error categories in isolation resulted in higher agreement between the
automatic assessments and the human assessments. On the test set, the agreement was higher for
Faster-Whisper-v2 (MCC = .54) than for Wav2Vec2.0-CGN (MCC = .38).In addition, we found
that the simultaneous application of error categories led to slightly stronger agreement for Faster-
Whisper-v2 (MCC = .55) on the test set. However, simultaneous application of error categories did
not result in robust increases of agreement with human assessors, since these results were not found
for the validation set. It is unclear why this is the case. It might have been because of dividing
the data in validation and test sets. In future research, it might be good to pay more attention to
intermediate results when applying this method., since in the current pipeline we are only able to
inspect the results when all error categories are applied simultaneously. Perhaps one error category,
or a specific combination of error categories, led to these noticeably different results. Future research
could aim to improve this method by trying to find out if there is a ‘sweet spot’ at which the ideal
number and types of error categories are enabled.

Faster-Whisper-v2 always outperformed Wav2Vec2.0-CGN. It seems that Faster-Whisper-v2 is
more suited for children’s speech, especially for word lists. This might be because the data in
CHOREC is imbalanced, only 8.97% of the words were judged as being read incorrectly by assessors
(Cleuren et al. 2008). The tendency of Faster-Whisper-v2 to produce more TNs and FNs, while
producing fewer TPs and FPs than Wav2Vec2.0-CGN works in its favor in this context. As touched
upon in the results section, these tendencies lead to higher specificity values for Faster-Whisper-
v2 and higher recall values for Wav2Vec2.0-CGN. The vast majority of words are judged as read
correctly by the assessors. This results in specificity being more important for the CHOREC dataset
than recall, since it is much harder to generate FNs when there are so few words read incorrectly in
the first place.

Furthermore, the imbalance of the data in CHOREC proves that having a more robust agreement
metric, such as F1-score or preferably MCC, is crucial. If we had looked at just accuracy, we could
have based conclusions on the fact that Faster-Whisper-v2’s agreement (.89) with the assessors is
higher than the inter-rater agreement in CHOREC (.86) when applying error categories isolation
alone. The high accuracy scores are partially due to the imbalanced dataset. For instance, an even
higher level of accuracy (.90) can be reached by simply judging everything as correctly read. F1-
score and MCC are affected far less by this imbalance in the data, which is why we strongly suggest
that future research always makes use of these more robust measures.

While the results that we obtained with commonly used pre-trained ASR models are in some
ways better than expected, caution should be exercised in the use of the procedures. Still, these
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procedures can be valuable tools for teachers. Three of the most prominent theoretical models for
oral reading proficiency, the DRC-model, the triangle model, and the CDP++ model, all predict
that children’s oral reading skills will increase as they become more familiar with the letters, clusters
of letters, or full words that they are asked to read (Castles et al. 2018, Coltheart et al. 2001, Harm
and Seidenberg 2004, Perry et al. 2013). While the commonly used pre-trained ASR models can not
yet detect completely correct which types of sounds or words the pupils struggle with, the results
can still provide the teachers with useful information on frequently made errors, which would allow
them to focus on these sounds and words specifically. In this way, pupils become more familiar with
the letters, clusters of letters, or full words that they struggle with reading leading to improved
reading skills.

From a pedagogical viewpoint, it is far more important to avoid FPs than FNs, as FPs can lead
to unneeded frustration and stress for learners (Cucchiarini et al. 2009). This is what we observe
for Faster-Whisper-v2, it has a tendency to generate fewer FPs than FNs. Put otherwise, a high
specificity is more important than a high recall. The fact that we find a specificity of .91 (see 10) is
thus an interesting result, indicating Faster-Whisper-v2 shows promise for oral word reading tasks
such as the RWRT in CHOREC or DMT in general.

5.1 Future Research

Bernstein et al. (2017) showed that self-administered oral reading assessment is feasible for children
as young as five. In future studies, researchers could collaborate with teachers and assessors to
see if the results from the ASR models are usable to them, so that these accuracy judgements can
partly be automated. One possible way in which this could be explored is through a large-scale
experimental study in which one group of teachers use the results of ASR models to help them
assess oral word reading texts for children. These findings could then be compared to the results
of a group of teachers using a procedure without ASR. The results could be compared to see if the
use of the results of ASR models leads to valid judgements. Furthermore, the teachers who used the
results of ASR models could share their experiences. This could then help researchers find the most
suitable way of implementing ASR for teachers.

Finally, we underline an issue which remains a challenge for the application of ASR models is
alignment. The use of ADAGT for alignment in this paper was due to the availability of both
forward and backward alignment. This proved beneficial, as either method would sometimes be
more successful. Despite this, as Table 11 shows, there were many instances where neither of these
alignment directions could correctly align the ASR output with the prompt. The reason this could
be problematic is that the alignment may ascribe an attempt at reading a specific word to the wrong
prompt. In the recordings of CHOREC, children read the words unnaturally; they often tried to
read as fast as possible. This led to stuttering, mumbling, and restarts. While ADAGT’s backwards
alignment helped, this still made it difficult to align the words to the prompts correctly. In future,
researchers should be open to testing new or improved existing alignment algorithms, as these could
lead to more valid and reliable alignment.

Table 11: Example of ADAGT-alignment going wrong
Prompt ADAGT forward alignment ADAGT backward alignment
Appel (apple) Spelen (to play) Spelen (to play)
Auto (car) Ouders (parents) Ouders schilder (parents painter)

6. Conclusion

The aim of this study was to investigate how well commonly used pre-trained ASR models performed
at making correctness judgements for oral reading tests made by children. If it is possible to use these
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ASR models for this purpose, they could potentially be incorporated in practice and aid teachers
in the assessment process of these types of exams. Furthermore, we aimed to explore the use of
commonly used pre-trained ASR models in the context of oral word reading tasks because this is an
understudied context, as most studies applying ASR models on children’s speech focus on sentences
and/or stories.

For the commonly used, ’out-of-the-box’ pre-trained ASR models that we used in the current
study, the results were sometimes already better than we expected beforehand. For instance, we
found an accuracy of .89, but noted that this high accuracy might be partially due to the imbalanced
data. The metrics F1 and MCC are more robust to imbalanced data, and they provide a more
realistic picture: the ASR models show mild agreement with the assessors. One thus has to be
cautious to apply these procedures. Faster-Whisper-v2 shows potential, and esp. a specificity of
.91 is an interesting result. If one takes into account the limitations and possibilities of these
procedures, and if it is possible to improve the performance of such procedures, they can be useful
to assist teachers, e.g. to provide them with additional information. It then becomes interesting to
study how these procedures can be used to assist teachers. Obviously, collaboration with teachers
is crucial for this.
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