Computational Linguistics in the Netherlands Journal 14 (2025) 365-383 Submitted 12/2024; Published 07/2025

Assessing Dutch Syllabification Algorithms and Improving
Accuracy by Combining Phonetic and Orthographic
Information through Deep Learning

Gus Lathouwers* GUSLATHOUWERSQGMAIL.COM
Wieke Harmsen* WIEKE.HARMSENQRU.NL
Catia Cucchiarini* CATIA.CUCCHIARINIQRU.NL
Helmer Strik* HELMER.STRIK@QRU.NL

*Radboud University, the Netherlands

Abstract

Syllabification describes the task of dividing words into syllables. Due to many rules and
exceptions, training an algorithm to perform syllabification with high accuracy remains a
challenge. Throughout the last decades, different algorithms have been put forth for Dutch
syllabification, yet a comprehensive comparative assessment has not been done. Additionally,
deep learning has gained significant popularity within NLP in recent years, yet no modern
deep-learning based framework has been developed for Dutch orthographic syllabification. Fi-
nally, phonetic and orthographic syllabification algorithms have been examined separately, but
not in combination. The aim of the current research was twofold: (a) to examine the perfor-
mance of existing Dutch syllabification algorithms, and (b) to investigate whether combining
phonetic and orthographic information into a single model can increase syllabification perfor-
mance. To compare the performance of algorithms, four algorithms (Brandt Corstius, Liang,
Trogkanis-Elkan (CRF), and a newly conceived deep-learning model) were applied to three
different datasets (dictionary words, loanwords, pseudowords). The algorithms show varying
performance across datasets, with the data-driven algorithms outperforming a knowledge-based
algorithm in all but one condition. The new deep-learning methods developed led to increased
performance compared to the best found in the literature (99.65% word accuracy, a 0.14%
improvement). An analysis of the words for which adding phonetic information improved syl-
labification performance indicates that these were words in which the orthographic ambiguity
could be resolved by information on pronunciation. Future research could examine other ar-
eas where phonetic information can benefit orthographic processing. In addition, the newly
developed deep learning frameworks can be applied to other languages than Dutch.

1. Introduction

Syllabification describes the task of dividing words into syllables. Automated syllabification
by algorithms remains a complex challenge due to the many rules and exceptions that govern
syllable division. For instance, Webster’s Dictionary lists more than twenty rules for dividing
words into syllables in English, each with many idiosyncrasies and exceptions for individual
words (Gove 1993). For Dutch, syllable boundaries may be determined by different, sometimes
competing, principles, such as the sonority principle, the maximum onset principle, and priority
rules for prefixes and suffixes (Schiller et al. 1996, Brandt Corstius 1970).

Beyond being of interest because of its theoretical complexity, syllabification plays an im-
portant role in underlying several Natural Language Processing (NLP) technologies, such as
text-to-speech (Pradhan et al. 2013, Sarma and Sarma 2020) and grammar processing applica-
tions (Hauer and Kondrak 2013, Dascalu et al. 2017). Syllable division can also be used to select
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texts with syllable properties, such as syllable length or specific syllable structures (Alfiansyah
and Suyanto 2018). Syllable analysis has also been used in document analysis to provide a
benchmark for text complexity (Ayyaswami et al. 2019, Man and Van Ballegooie 2021) or as a
tool for rhyme analysis through identifying the last syllable of words (Marco et al. 2021).

In spite of its relevance, research on Dutch syllabification algorithms is outdated, with the
last contribution stemming from Trogkanis and Elkan (2010). Existing research has generally
been focused on developing new methods, instead of benchmarking existing ones. Novel deep-
learning methods which have enjoyed widespread popularity within NLP in the last decade® have
been used to create new deep learning solutions for syllabification in some languages (Corlatescu
et al. 2022), yet not the Dutch language. One advantage of deep-learning approaches is that they
allow the incorporation of different sources of information, such as phonetic and orthographic
data (Gale et al. 2023), which could ostensibly help improve syllabification accuracy.

In this paper we present research that assesses existing Dutch syllabification algorithms by
applying them to different datasets. In addition, we investigate whether combining both phonetic
and orthographic information through the use of novel deep-learning techniques leads to better
syllabification performance.

1.1 Dutch syllabification algorithms

In this section, we present a brief overview of algorithms developed for syllabification over the
years. Initial work by Brandt Corstius (1970) employed a knowledge-based method to syllab-
ify words, meaning it syllabified according to explicitly outlined grammar rules manually coded
by Brandt Corstius. Two decades later, Daelemans (1989) expanded on Brandt Corstius’ work
by incorporating a lexical library among other improvements, allowing for more consistent syl-
labification results. Simultaneously, challenges related to ambiguities from sentence context and
semantic variation spurred a shift towards probabilistic and machine learning approaches. Specif-
ically, Liang (1983) introduced a different pattern-based approach to hyphenating words, which
gained popularity because it was language-agnostic, meaning it was not tied to language-specific
spelling rules and could thus be applied to any language. Work by Boot (1984) further explored
pattern-based processing and its application to Dutch.

One issue that is important to clarify is the use of the terms ”"hyphenation” versus ”syllabifi-
cation.” Although these terms are sometimes used interchangeably in the literature, they refer to
inherently different ways of processing, with hyphenation describing word breaking according to
spelling and grammar principles (for Dutch, the Groene Boekje rules)(Tutelaers 1993), whereas
syllabification follows pronunciation conventions. For the purposes of text analysis in language
processing, syllabification is often preferred, as it matches syllable division in spoken language,
which in turn can be used for applications that rely on the phonetic structure of words. See
Table 1 for examples of words where hyphenation and syllabification produce different division
patterns.

While authors such as Brandt Corstius, Liang, and Boot focused their efforts on more tra-
ditional pattern- or knowledge-based systems initially, developments afterward saw interest in
novel lines of machine learning technologies. The first instance of a neural network applied to
Dutch was formulated by Daelemans and van den Bosch (1992), who used a backpropagation
setup to syllabify texts. Afterwards, Bouma (2003) employed a different finite-state method for
syllable boundary prediction that relies on automatic rule abstraction. Approaching the problem
from yet another machine learning perspective, Bartlett et al. (2008) combined sequence predic-
tion with support vector machines, showing good results across multiple languages, including
Dutch and English. The most recent method applied to Dutch syllabification was developed by

1. See Ahmed et al. (2023) for an overview.
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Full Dutch Word | Hyphenated? Syllabified Translation
eland eland e-land moose
atoomenergie atoom-ener-gie a-toom-e-ner-gie | atomic energy
gloria glo-ria glo-ri-a gloria
aliénatie ali-ena-tie a-li-e-na-tie alienation
bakoven bak-oven bak-o-ven baking oven
bioscoop bio-scoop bi-o-scoop cinema

ruine ru-ine ru-i-ne ruin

Table 1: Examples of Dutch words with different syllabification and hyphenation word
divisions.

Trogkanis and Elkan (2010), who used a Conditional Random Field (CRF)-based approach for
syllabifying Dutch and English, achieving comparable results to Bartlett et al. (2008).

1.2 Comparison of syllabification algorithms

Due to the large number of new machine learning methods being developed within NLP in the
last decades, the importance of comparing existing algorithms has been noted, rather than just
introducing new ones (Strobl and Leisch 2022). Pitfalls of introducing new models without testing
against existing ones include over-optimization on customized datasets, as well as selective use
of metrics that may present an algorithm in a more favorable way (Niefil et al. 2021). For these
reasons, establishing a performance baseline across algorithms (Boulesteix et al. 2013, Friedrich
and Friede 2023) and creating a database of multiple datasets for future testing (Yousefi et al.
2009) could greatly improve understanding of algorithm performance tendencies. Such systems
may help reduce reporting bias and ensure consistent testing practices on carefully vetted datasets
(Phang et al. 2021).

In the context of Dutch syllabification, no standardized review of existing algorithms exists,
yet there are reasons to believe such a comparison could be of value. Previous research on Dutch
syllabification reports varying accuracy levels (Bouma 2003, Bartlett et al. 2008, Trogkanis and
Elkan 2010), but use different, sometimes incompatible metrics. For example, hyphen accuracy
(the number of hyphens in words correctly predicted) is difficult to reconcile with character
accuracy (the number of correctly predicted characters followed by a hyphen) or word accuracy
(the number of words with all syllables predicted correctly) (Bouma 2003, Adsett and Marchand
2009, Trogkanis and Elkan 2010). Differences in dataset filtering across studies also result in
datasets with varying word makeup and size (Bartlett et al. 2008, Trogkanis and Elkan 2010). A
comparison using a single standardized dataset could help provide a coherent view of algorithm
performance.

1.3 Deep learning methods

Another area that has seen increased interest in the last decade concerns deep learning methods.
Beyond providing improved performance on many NLP tasks, deep learning may especially excel
in complex pattern analysis by utilizing neural-based pattern recognition techniques (Ahmed
et al. 2023). For syllabification, neural based methods have been developed as well (for Dutch,
starting with Daelemans and van den Bosch, 1992), showing potential for increased performance.
Recent lines of deep learning models typically employ techniques such as convolutional neural

2. Retrieved from https://woordenlijst.org/
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networks (CNNs) and Bidirectional Long Short-Term Memory (BiLSTM), which have proven
effective in tasks such as sequence modeling and feature extraction, due to their capacity for
high-level pattern analysis (Krantz et al. 2019, Corlatescu et al. 2022).

One key advantage of deep learning approaches is the degree of customizability in model
design (Sarker 2021). In many cases, deep learning can be applied in an unsupervised manner,
where models may autonomously learn to recognize patterns from raw data without the need for
manually specified features (Ahmed et al. 2023). This allows for multi-model layering setups,
such as those used in data augmentation (Gavrishchaka et al. 2018), or integrating multiple
sources of information into a single model (Gale et al. 2023).

In addition to orthographic syllabification, a secondary area of interest has been applying
syllabification algorithms to phonetic representations of words. Syllabification algorithms have
traditionally been applied to orthographic (Trogkanis and Elkan 2010) and phonetic word rep-
resentations (Krantz et al. 2019) in isolation, but the two have not been combined yet. Recent
syllabification research has moved toward integrating orthographic with phonetic input by ana-
lyzing linguistic similarities between orthographic and phonetic words (Tits 2023). To this effect,
deep learning mechanisms such as attention may provide a means of creating overarching models
that combine the two.

1.4 Current study

The current study addresses the following two research questions:

1. RQ1l: What is the comparative performance of different algorithms tested un-
der identical conditions?
To answer this question, we first provide a comparative overview of existing syllabification
algorithms. Previous research is fragmented with regard to methodology and datasets used,
making it difficult to compare performance and generalizability across datasets. Following
this, several existing Dutch syllabification algorithms will be tested under identical condi-
tions. Additionally, a newly developed deep learning framework will be applied to Dutch
orthography. All algorithms will be tested on multiple datasets that have been curated a
priori to allow for generalization benchmarking.

2. RQ2: How does the addition of phonetic information affect Dutch orthographic
syllabification performance?
Existing research has investigated the performance of orthographic (Trogkanis and Elkan
2010) and phonetic (Krantz et al. 2019) syllabification separately, but not in combination.
Following an analysis of the synergy between these two information sources (Tits 2023),
this study explores the potential of combining phonetic and orthographic information into
a single model.

2. Methodology

To answer the two research questions, two experiments were designed. Experiment 1 focuses on a
comparative assessment of Dutch syllabification algorithms. Experiment 2 examines the relation-
ship between orthographic and phonetic information and their combined effect on syllabification
performance through a combined deep learning model.
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2.1 Datasets

To evaluate the performance of the algorithms, three different datasets were compiled or retrieved
from various sources®. Previous research (Bouma 2003, Trogkanis and Elkan 2010, Bartlett et al.
2008) exclusively relied on Dutch standard dictionary words to assess algorithm performance. In
addition to testing performance on dictionary words, the current study also includes two other
datasets: a set of loanwords and a set of Dutch pseudowords. Table 2 provides an overview of
the datasets used and their characteristics.

CELEX. The CELEX (Dutch Centre for Lexical Information) database was used to measure
algorithm performance on standard Dutch dictionary words. To allow for direct comparison with
earlier research, the final list used was the same as that employed in the study by Trogkanis and
Elkan (2010), who distributed the list online 4. The total number of words included is n=293,747,
comprising words typically found within the Dutch language, such as verbs, nouns, adverbs, and
various other parts of speech (see Appendix A for a sample). In their paper, Trogkanis and Elkan
describes filtering out words that had multiple syllabification solutions (for instance, zoeven can
be syllabicated to either zoe-ven or zo-e-ven depending on its meaning). Manual inspection of
the list showed that these were still present in the dataset they distributed online, thus these
were removed (n=33), resulting in a list of n=293,714.

Loanwords. A set of loanwords was included to test the performance of algorithms on
words common in the Dutch language, but originating from other languages, such as English
and French. This allowed testing the adaptability of different algorithms to more challenging
word conditions. A list of 10,372 words was retrieved from Van Der Sijs (2005). Of these ten
thousand words, n=8,015 were found to be already present in the original CELEX word list used
in the first dataset and were thus removed. To exclude dated or archaic words from the list,
the remaining words were cross-checked with Gigant-Molex, a library containing contemporary
Dutch words. The final resulting dataset consisted of n=1,135 words. Appendix A lists a sample
of the words included.

Pseudowords. Pseudowords refer to non-existent words in the Dutch language that are
artificially created to resemble Dutch word forms. A list of Dutch pseudowords found in the
CHOREC (Children’s Oral Reading Corpus®) was used as a reference point. The aim of the
pseudoword set was to measure the performance of algorithms on words that conform to Dutch
word construction rules, but do not appear in the CELEX database. The CHOREC list contains
120 words, of which n=21 were found to have multiple syllabification solutions (e.g., for menuur,
both men-uur and me-nuur are grammatically correct syllable solutions in Dutch) and were
removed. This resulted in a set of n=99 words. Appendix A lists a subsection of the words
included.

2.2 Algorithms

To compare the effectiveness of existing syllabification algorithms, the performance of three
Dutch syllabification algorithms was analyzed. Two of these algorithms (Brandt Corstius, CRF)
were replicated from the literature, while new weight patterns were generated for a third algo-
rithm (Liang) adapted to Dutch syllabification. Additionally, a novel deep-learning method was
developed.

3. All datasets and algorithms used in this study can be accessed at https://github.com/guslatho/
syllabify-torch

4. https://cseweb.ucsd.edu/~elkan/hyphenation/

5. https://taalmaterialen.ivdnt.org/download/tstc-chorec-spraakcorpus
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Dataset Size (n) Origin Description

Training Testing

Dictionary 264,343 29,371 CELEX Common words found in the Dutch
dictionary. The CELEX dataset was
used as a training and testing set with
a 90%/10% split.

Loanwords - 1,135 De Sijs (2009) Words found in the Dutch language
originating from other languages, e.g.,
French or English. Used as a testing
set only.

Pseudowords - 99 CHOREC Words artificially created to imitate
Dutch word conventions. Used as a
testing set only.

Table 2: Datasets used for algorithm training and testing.

2.2.1 BRANDT CORSTIUS

The knowledge-based algorithm proposed by Brandt Corstius (1970) is notable for being a lin-
guistic algorithm built specifically on Dutch spelling and grammar rules. It operates by first
compressing words into different vowel and consonant clusters, for example marking common
Dutch vowel combinations such as eu, au, ieu as distinct entities. Words are subsequently
processed by a combination of maximum onset principle and consonant-priority patterns. For
example, loonbrief (pay slip) is first compressed into [l][oo][n][b][r][ie][f], for which maximum
onset processing for valid consonant combinations produces loon-brief.

Brandt Corstius originally developed his algorithm in Algol-70 and tested it on a sample of
43,712 word tokens compiled from Dutch newspapers, poems, and books. He reported a word
error rate of only 0.5%. Brandt Corstius notes that his linguistic knowledge-based algorithm is
effective for most Dutch words, but struggles with compound words where the maximum onset
principle may falter. In the current study, a recreation was made in Python, following the logic
of his system as outlined in his paper.

2.2.2 LIANG

Originally introduced for hyphenation purposes in LaTeX, the algorithm by Liang (1983) has
since seen widespread usage in various software applications. Liang’s algorithm functions by
storing hyphenation and exception patterns, resulting in a list with weights. Unlike the Brandt
Corstius algorithm, Liang’s algorithm is data-driven and non-language specific, and thus can be
applied to any dataset with hyphenation or syllabification solutions agnostically.

Various studies have assessed the performance of Liang’s algorithm. A comparison study by
Adsett and Marchand (2009) found it to be effective at word hyphenation and syllabification,
reaching a mean word accuracy of roughly 96% tested across nine languages (Adsett and Mer-
chand did not report accuracy for individual languages). For Dutch, a word accuracy rate of
93.08% is reported (Trogkanis and Elkan 2010). However, the Trogkanis and Elkan study de-
scribes applying hyphenation rules in training the Liang algorithm on their dataset, which may re-
sult in a skewed representation of performance. For the current study, custom patterns were gen-
erated for Dutch that conform to syllabification conventions, using the original TeX software tool
PATGEN.EXE, found at https://www.tug.org/texlive/doc/texlive-en/texlive-en.html.
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2.2.3 CONDITIONAL RANDOM FIELD ALGORITHM

This approach employs Markov chain principles through a conditional random field implemen-
tation. Developed by Trogkanis and Elkan (2010), the CRF model processes input words by
capturing windows around each character for syllable prediction. For each input character a
>0’ or ’1’ is assigned, with ’0’ signifying no syllable break following the character, and ’1°
signifying a syllable break following. Trogkanis and Elkan report excellent word accuracy rates,
with 99.51% of the words in their dictionary words set syllabified correctly.

Trogkanis and Elkan’s model was originally implemented in CRF++, a software package for
conditional random field modeling. The current implementation was developed in Python, using
Chaine, an open-source package for creating CRF models. A few optimizations were found to
benefit performance of the model. A 6-window size for each character was applied instead of a
5-character window, as described by Trogkanis and Elkan. Start-of-word and end-of-word tokens
were also added to better capture word boundaries, and the coding scheme was slightly modified.

2.2.4 DEEP LEARNING MODEL (NEW MODEL)

A new deep-learning model was developed in TensorFlow and subsequently ported to Torch®.
Previously, CNN, BiLLSTM, and CRF components were shown to be effective for syllabification
of phonemes (Krantz et al. 2019) and Romanian syllabification (Corlatescu et al. 2022), and were
thus chosen as the starting components for the architecture of the current model. However, the
design of the current model differs by using a sequential setup, where individual letter-windows
of a word are first locally processed through convolution layers before being combined at a
higher-order BiLSTM/CRF layer.

The architecture of the deep learning model consists of three parts. First, a 5-character
window is formed around each letter of the input word. This window-based approach allows
the model to focus on local information around each character and detect nearby patterns. The
5-character window is first passed into an embedding layer, followed by a convolution layer,
dropout, and global pooling layer. The entire first block—embedding, convolution, dropout, and
pooling—can be conceptualized as a ‘micro-level’ local analysis for extracting information around
each character.

For each 5-character window for each letter analyzed this way during the convolution stage,
the output is flattened and forwarded to a stack of two BILSTM layers. The BIiLSTM layers
integrate the local 'micro-level’ analyses information into larger patterns. Finally, the second
BiLSTM outputs to a CRF, which makes predictions for each character of the input word. Here,
'0’ represents no syllable boundary following the letter, and "1’ represents a syllable boundary.
As in Trogkanis and Elkan’s (2010) coding scheme, the binary string forms the prediction for the
final output. For example, the Dutch word input berekening (calculation), after being processed
by the model, would result in the string ’0101010000’. This binary string would denote hyphens
after the 2nd, 4th, and 6th letters, resulting in the output syllabification be-re-ke-ning.

Token length was set at 34, in line with the maximum word length found in the training
wordset; words were post-padded. The addition of L2 normalization (batch norm) was found
to increase model consistency in early testing and was therefore applied. The training batch
size was set at 64. The initial embedding layer was set at 128 units, producing an input shape
of [64 x 34 x 5 x 128] for [batch x token x window x embedding]. The convolution layer
was set at 40 filters with a kernel size of 3 and a sliding window of 1. Following a dropout rate
of 0.3, a global max pooling layer with a kernel of 3 was applied. The output was then flattened,
resulting in a [64 x 34 x 200] shape, which was forwarded to the first BiLSTM layer. The

6. Template for the Torch training model and weights for Dutch can be found at https://github.com/guslatho/
syllabify-torch
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unit size for both BiLSTM layers was set at 128, producing a shape of [64 x 34 x 256], which
was forwarded to the final CRF layer.

2.3 Training and testing procedure

Of the four algorithms used in the benchmark analysis, three required a training library: Liang,
CRF, and the deep learning model. The fourth algorithm, Brandt Corstius, syllabified according
to predefined Dutch language rules, and thus required no training data. For these three data-
driven algorithms, 90 percent of the CELEX dataset was used for training and the remaining 10
percent for testing. Similar to the ten-fold cross validation approach used by Trogkanis and Elkan
(2012), the deep learning network was trained on ten 90/10 splits generated by ten consecutive
random seeds. The Liang and CRF libraries produced consistent results; as such, only five
random 90/10 splits were sampled for each algorithm.

Whereas Chaine for CRF and PATGEN.EXE for Liang contained automatic stopping proce-
dures, the deep learning model could be trained indefinitely. As such, a limit of 180 training
epochs was set. Practice trials revealed small increments in training after 180 epochs, but due to
time considerations, the limit was set at 180 epochs. Training time for the CRF algorithm was
approximately 40 minutes per model. For the deep learning model, GPU acceleration resulted
in a mean training time of roughly 2.5 hours using a modern GPU (RTX 4080).

2.3.1 EVALUATION METRICS

In total, six metrics were used to assess algorithm performance.

Word/Character Accuracy Metrics. Given syllabification is a sequential prediction task
at the word level, algorithm performance is commonly measured using Overall Word-Level Error
Rate (OWER%) (Adsett and Marchand 2009, Trogkanis and Elkan 2010, Bartlett et al. 2008).
However, other metrics such as Overall Letter-Level Error Rate (OLER%) (Trogkanis and Elkan
2010) and Hyphen Error Rate (HER%) have also been used (Bartlett et al. 2008, Bouma 2003).
Given the widespread use of these different metrics, all three have been included here.

Overall Word-Level Error Rate expresses the proportion of words incorrectly syllabified by
an algorithm (Equation 1). It is usually expressed as a percentage, with an OWER% of 10
indicating that one out of ten words in the test set were predicted incorrectly in its entirety.
Overall Letter-Level Error Rate describes the total number of individual characters across the
full word set for which a prediction (’0’ for no syllable follows, "1’ for a syllable follows) was made
incorrectly (Equation 2). Since most letters in a word are not followed by a syllable, OLER%
is susceptible to be inflated by a high number of true negatives. Lastly, Hyphen Error Rate
(HER%) represents the number of hyphens not predicted out of all hyphens (Equation 3). Like
OLER%, HER is liable to distort algorithm performance since it does not penalize false hyphen
predictions.”

Words containing at least one FP or FN

OWER % = Total words (1)
FN+ FP
OLER%*FN+TP+TN+FP (2)
FN
HER% = 557w )

7. It should be noted that, in the current study, HER% refers to the error rate in relation to syllabification,
not hyphenation. Given its widespread use in syllabification research, the same term will be used here out
of convention, even though it is technically incorrect since hyphenation refers to word breaking according to
spelling and grammar principles, not pronunciation.
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As an example for application of these metrics, for the Dutch word 'we-reld-be-ker’ (world
cup), an incorrect solution of 'wereld-beker’ would result in an Overall Letter-Level Error Rate
of 18.18%, since 2 out of 11 characters were predicted incorrectly. Hyphen Error Rate would be
66.67%, with only 1 of 3 syllable boundaries predicted correctly. Overall Word-Level Error Rate
would classify the whole word as incorrectly syllabified due to the presence of two false negatives.

Precision, recall, F1. In addition to the three metrics above, Precision (Equation 4), Recall
(Equation 5), and F1 (Equation 6) were also included to assess algorithm performance. Note
that Recall is the complement of HER, expressed as R = 100% — HER.

.. TP
Precision = m (4)
TP

2 - Precision - Recall
Precision + Recall

F =

3. Results

3.1 Experiment 1: comparison of algorithms on Dutch datasets

Four algorithms, Brandt Corstius, Liang, CRF, and Deep Learning (DL), were tested against
three dataset. See Figure 1 for a bar plot containing the word accuracy rates per datasets. A
complete overview of metrics including standard deviations is listed in Table 3.

3.1.1 RESULTS

For the first dataset, dictionary words (n=29,375), the deep learning model showed the best
overall performance (OWER%, 0.446; OLER%, 0.068; HER%, 0.145; Precision, 99.852; Recall,
99.855; F1, 99.853). The Overall Word-Level Error Rate of 0.446 indicates less than 1 in 200
words being syllabified incorrectly in the test set. The second-best performing algorithm was the
CRF model, showing a 0.129 higher word error rate than the deep learning model (OWER%,
0.575; OLER%, 0.087; HER%, 0.178; Precision, 99.807; Recall, 99.822; F1, 99.814). The Liang
and Brandt Corstius algorithms scored worse than CRF and the deep learning model across all
metrics. For Overall Word-Level Error Rate, Liang’s algorithm had a rate of 1.460%, whereas
Brandt Corstius scored above the 10% threshold for incorrectly syllabified words (Overall Word-
Level Error Rate of 16.819%, translating to 83.181% of all dictionary words syllabified correctly).

For the loanwords dataset (n=1,135), all algorithms scored worse in comparison with their
performance on the dictionary words set. The deep learning algorithm showed superior perfor-
mance on all metrics except precision (OWER%, 12.916; OLER%, 2.433; HER%, 4.666; Pre-
cision, 93.870; Recall, 95.334; F1, 94.596). The Brandt Corstius algorithm showed the worst
performance across all metrics (with an OWER% of 20.441 meaning less than 4 out of 5 loan-
words were syllabified correctly). Liang’s algorithm scored better than the Brandt Corstius
algorithm, but worse than CRF and the deep learning algorithm (OWER%, 16.088; OLER%,
2.571; HER%, 6.576; Precision, 95.258; Recall, 93.424; F1, 94.332).

On the last word set, pseudowords (n=99), the performance of the algorithms followed a
different trend in comparison to the first two datasets. Whereas Brandt Corstius was least ac-
curate when applied to the first two datasets (dictionary and loanwords), in the pseudowords
condition it showed the lowest Overall Word-Level Error Rate (OWER% of 2.02). CRF showed
a similar performance, scoring lower on Overall Word-Level Error Rate but slightly higher on

373



20

—_
ot

Word Error Rate (%)
=)

20.44

16.82
16.09
| 14.04 N
12.92
L 9.29 n
i 3.64 |
2.63
1.46 2.02
0.58 0.45
T T T
Dictionary Words Loanwords Pseudowords
Datasets
U0 Brandt Corstius' I Liang ' CRF ' Deep learning

Figure 1: Word accuracy rates (OWER%) for algorithms across datasets.

Dataset Metric Deep Learning CRF Liang Brandt Corstius*
OWER% 0.446 (+0.038) 0.575 (£0.037) 1.460 (£0.073) 16.819 (+0.125)
OLER% 0.068 (4+0.007) 0.087 (£0.005) 0.180 (£0.006) 3.143 (£0.014)
CELEX HER% 0.145 (40.017) 0.178 (£0.016) 0.438 (£0.011) 6.818 (£0.023)
Precision 99.852 (£0.016) 99.807 (£0.011) 99.669 (£0.013) 93.350 (£0.037)
Recall 99.855 (40.017) 99.822 (£0.016) 99.562 (4+0.011) 93.182 (40.023)
F1 99.853 (40.015) 99.814 (+0.012) 99.616 (40.012) 93.266 (4+0.027)
OWER% 12.916 (£0.638) 14.044 (£0.16) 16.088 (£0.321) 20.441
OLER% 2.433 (40.116) 2.563 (£0.028) 2.571 (£0.041) 4.160
Loanwords HER% 4.666 (+£0.289) 6.840 (£0.079) 6.576 (£0.072) 7.815
Precision 93.870 (£0.297) 95.538 (£0.051) 95.258 (£0.211) 89.898
Recall 95.334 (40.289) 93.160 (£0.079) 93.424 (4+0.072) 92.185
F1 94.596 (10.256) 94.334 (+0.061) 94.332 (40.087) 91.027
OWER% 3.636 (£1.794) 2.626 (£0.553) 9.293 (£1.317) 2.020
OLER% 0.835 (£0.454) 0.395 (40.083) 2.094 (+0.271) 0.455
Pseudowords HER% 2.041 (£1.273) 0.000 (40.000) 4.694 (£0.559) 1.020
Precision 96.492 (£1.759) 97.418 (£0.531) 91.041 (£1.209) 97.980
Recall 97.959 (£1.273) 100.000 (+£0.000) 95.306 (4+0.559) 98.980
F1 97.219 (£1.503) 98.691 (£0.272) 93.123 (40.869) 98.477

Table 3: Accuracy means and standard deviations for metrics for algorithms tested across three
datasets. Best performing algorithm for each metric is displayed in bold.

(* The Brandt Corstius algorithm was only applied to the pseudowords and loanwords set once due to
requiring no training library, as such no standard deviations is listed for these two sets.)

character-level metrics in comparison with Brandt Corstius (OWER%, 2.626; OLER%, 0.395;
HER%, 0; Precision, 97.418; Recall, 100.000; F1, 98.691). Liang’s algorithm performed compara-
tively worse than any other algorithm (OWER%, 9.293; OLER%, 2.094; HER%, 4.694; Precision,
91.041; Recall, 95.306; F1, 93.123).

374



3.1.2 DiscussioN

The results of the first experiment show that the algorithms achieved high accuracy (fewer than
1 in 160 errors for the CRF and deep learning algorithms) when syllabifying dictionary words,
which is consistent with findings in the literature (Trogkanis and Elkan 2010, Bartlett et al. 2008).
All algorithms struggled more in the loanwords condition, which is expected since loanwords from
other languages (e.g., English, French) often have syllable structures that differ from those of
native Dutch words.

One notable finding was that the knowledge-based algorithm by Brandt Corstius (1970)
showed the worst performance on dictionary words and loanwords, but performed best at the
word level when syllabifying pseudo-words. This may initially seem counterintuitive, given that
knowledge-based algorithms are explicitly designed to capture patterns in existing Dutch words
and are not developed to generalize to unknown words. However, qualitative analysis shows
that the Brandt Corstius algorithm is adept at syllabifying Dutch pseudowords that follow strict
Dutch language conventions. The data-driven models, by contrast, struggled in certain scenarios
because they overfit to patterns in the training set. For example, the pseudowords ‘jien’ and
‘leum’ were incorrectly syllabified as ‘ji-en’ and ‘le-um’ because the training set contained ref-
erence words with similar syllable breaks (e.g., ‘o-le-um’, ‘ju-bi-le-um’; ‘boei-en’, ‘ski-en’). The
linguistic rules embedded in the Brandt Corstius algorithm, however, allowed it to recognize that
the middle vowel patterns ‘ie’ and ‘eu’ should not be split, resulting in the correct classification
of these as one-syllable words.

In comparison to the best results in the literature for Dutch, the current deep learning solu-
tion shows slightly increased performance on the same dataset (0.45% word error rate instead of
0.49% as reported by Trogkans and Elkan 2010). Furthermore, the Liang algorithm tested here
shows a word error rate of only 1.46% versus the nearly 7% reported in the Trogkanis and Elkan
(2010) study. A possible explanation for this discrepancy is that the current implementation was
explicitly aimed at syllable-division instead of hyphenation. The results of the CRF implementa-
tion of the current study show slightly decreased performance to the CRF results mentioned by
Trogkanis and Elkan (2010) (Trogkanis & Elkan, 0.49 OWER%; current study, 0.58 OWER%),
possibly owing to different software tools being used to implement the algorithm. Of interest are
the results for F1, Recall, and Precision, which show the deep learning model achieving high bal-
ance between Precision and Recall, contributing to its high overall performance in the loanwords
and CELEX datasets.

3.2 Experiment 2: combining phonetic and orthographic information

Given that the deep learning model was effective at Dutch syllabification, follow-up research
was conducted to combine phonetic and orthographic word information. Using phonetic infor-
mation as input requires access to phonetic word representations; fortunately, CELEX provides
these for each word (for example, CELEX lists 'prote’jin@’ for the orthographic notation ’pro-
teine’). The goal was to investigate whether adding phonetic information improved orthographic
syllabification accuracy and, if so, how this improvement was achieved.

Since phonetic notations were not available for the loanwords and pseudowords datasets, these
were excluded from the current analysis.®

8. During development, an early version incorporated a grapheme-to-phoneme component that generated pho-
netic representations for the model. While these setups performed well, the multi-stage nature of the pipeline
led to a decision to exclude them here for reasons of parsimony. Future research could explore these and
related approaches, such as automatic phoneme prediction during model training.
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Figure 2: Architecture of model C, combining model A and B.

3.2.1 ARCHITECTURE

In building a model that combines orthographic with phonetic input, a number of setups were
experimented with, including transformer-based models. Ultimately, the model that appeared
to be most effective was one that relied on combining pre-trained models. First, two instances of
the deep learning model were trained on the orthographic and phonetic word presentations sep-
arately. Crucially, the orthographic model (model A) and phonetic model (model B) shared the
same wordset, the only difference being that they were exposed to orthographic versus phonetic
notations of the words.

After pre-training, both A and B were frozen and had their final BILSTM and CRF layer
removed. A new model, C, was formed on top of the original two, by adding a BiLSTM layer and
a new classification layer (softmax), see Figure 2 for an overview of the model. The orthographic
output (A4) connected directly with the new BiLSTM layer, with dot-attention tying the output
from B to A. The attention mechanism was important, given that the orthographic and the
phonetic notations of words often do not line up automatically (for example, the orthographic
notation ”proteine” is 8-length, while the phonetic notation of the same word ”prote’jin@” is
10-length). As a last addition, adding a high dropout layer (p=0.5) after A and B was found to
be very effective in increasing performance. This is likely due to model C not being stimulated
to rely on new information from B in the absence of dropout layers.

3.2.2 RESULTS

Figure 3 displays the results for combined model C' as well A and B, the models it was built on,
charted across training duration. The individual models both scored a respective 0.46% (phonetic
model) and 0.45% (orthographic model) Overall Word-Level Error Rate. The combined model,
C, showed a decreased Overall Word-Level Error Rate, namely 0.35% (OLER% of 0.05, HER%
of 0.12). See Appendix B for a sample of words that the combined model C' predicted correctly
that the individual orthographic model failed.
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Figure 3: Word-level error rate after each epoch for the orthographic (blue), phonetic (red), and
combined (green) models. The combined model, which integrates information from both the
pretrained orthographic and phonetic models, shows a lower error rate on the validation set than
the individual models.

3.2.3 DISCUSSION

In the second experiment, the inclusion of phonetic information through a deep-learning model
was found to enhance syllabification performance. Combining phonetic information with ortho-
graphic information resulted in a word accuracy rate of 99.65%, an absolute 0.14% improvement
over the best reported in the literature (Trogkanis & Elkan, 2010; 99.51%). Analysis of the words
improved by the combined model shows that phonetic information can be particularly useful in
providing additional context when orthographic information alone is ambiguous. For example,
in the case of leptosoom, the orthographic model incorrectly produced the output lep-tos-oom,
misattributing the first o as a short vowel. In the phonetic representation, short and long vowels
are coded differently, enabling the model to distinguish between these two vowel patterns and
correctly produce lep-to-soom.

4. Discussion and Conclusions

The goal of the current research was to evaluate the performance of existing Dutch syllabifica-
tion algorithms across different datasets and to apply novel deep learning techniques to improve
accuracy. While previous research exclusively used CELEX dictionary words to test algorithm
performance (Trogkanis and Elkan 2010, Bouma 2003, Bartlett et al. 2008), the inclusion of
loanword and pseudoword datasets here shows that algorithm performance may not be consis-
tent across different datasets. Although some algorithms achieve high accuracy under certain
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conditions, they may struggle when applied to other datasets. Specifically, the knowledge-based
algorithm by Brandt Corstius, which performed worst on two datasets (dictionary words and
loanwords), showed the highest word accuracy on the third (pseudowords). Additionally, metrics
such as hyphen accuracy may not fully reflect overall performance at the word accuracy level.

The second research question explored whether adding phonetic information could enhance
performance. The inclusion of phonetic information in a deep-learning model improved Dutch
syllabification accuracy, resulting in a word accuracy rate of 99.65%, a 0.10% increase compared
to the orthographic-only deep-learning model. Beyond improving accuracy, an analysis of the
words where the combined model outperformed the orthographic model reveals how phonetic
information contributes to accuracy. For example, Appendix B illustrates that Dutch contains
several unique character combinations with context-dependent pronunciations. In particular,
consonant sequences such as ng can be divided in different ways depending on context, and the
combined model performed better than the orthographic-only model when ng corresponded to
the phonetic notation 'N.” Similarly, phonetic notation that differentiates between short and long
vowels was often a key factor in predicting correct syllable divisions through the combined model.

Deep learning models were found to be effective at syllabifying Dutch. The orthography-
based model achieved a 99.55% word accuracy, representing a 0.04% absolute improvement and
an 8.2% error reduction compared to the best performance reported in the literature for Dutch
(99.51%, Trogkanis and Elkan 2010). Similarly, a model combining orthographic and phonetic
information achieved 99.65% word accuracy, a 0.14% absolute improvement and a 28.6% error
reduction compared to the best performance by Trogkanis and Elkan (2010). An interesting
finding concerns how deep learning models process syllabification. Internal analysis showed an
error overlap of only 30% between the deep learning and CRF models at the word level. This
suggests that the deep learning model may be processing the input dataset in a different way,
causing errors on different words.

In modern deep-learning architectures, transformer models have been shown to outperform
BiLSTM-based models on linguistic tasks (Ahmed et al. 2023). Regarding syllabification, early
exploratory testing with different deep-learning models in the current study showed that an
approach using a BiLSTM setup was the most effective. This aligns with previous research
comparing the performance of BILSTM/CNN/CRF and transformer structures on Romanian
syllabification, which found that a BILSTM/CRF setup outperformed a transformer model on
the same task (Corlatescu et al. 2022). There are several reasons why BiLSTM-based models may
be particularly effective for syllabification. First, syllabification largely depends on local textual
relationships to identify syllable boundaries. Therefore, the connection between more distant
characters in a word may provide limited additional advantage compared to more localized
processing. Similarly, word analysis typically involves a limited number of tokens (a maximum
word length of 34 letters was used here for Dutch), which may benefit from being processed
through a BiLSTM rather than a transformer. Finally, the relatively small size of the training
datasets used may be insufficient for a transformer model to fully capture the nuances needed to
make complex deductions about patterns.

Despite the potential of deep learning approaches, some limitations remain. First, the pseu-
doword dataset used here is small because a larger official pseudoword dataset is not available
for Dutch. Second, the effectiveness of the combined models on the pseudoword and loanword
datasets could not be tested due to the lack of available phonetic notations. Third, some Dutch
algorithms from the literature were excluded from the comparison because their source code or
documentation was unavailable (Bouma 2003, Bartlett et al. 2008). Future research could explore
modern deep learning approaches incorporating phonetic information for other orthographic pro-
cessing tasks. Additionally, the combined and orthographic deep learning models developed in
this study could be applied to other languages, such as English and German.

378



References

Adsett, C. R. and Y. Marchand (2009), A comparison of data-driven automatic syllabification
methods, in Karlgren, J., J. Tarhio, and H. Hyyrd, editors, String Processing and Infor-
mation Retrieval, SPIRE 2009, Vol. 5721 of Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, pp. 357-368.

Ahmed, S. F., M. S. B. Alam, M. Hassan, M. R. Rozbu, T. Ishtiak, N. Rafa, M. Mofijur, A. B.
M. S. Ali, and A. H. Gandomi (2023), Deep learning modelling techniques: current progress,
applications, advantages, and challenges, Artificial Intelligence Review 56 (11), pp. 13521—
13617.

Alfiansyah, F. and Suyanto (2018), Partial greedy algorithm to extract a minimum phonetically-
and-prosodically rich sentence set, International Journal of Advanced Computer Science and
Applications.

Ayyaswami, V., D. Padmanabhan, M. Patel, A. V. Prabhu, D. R. Hansberry, N. Agarwal, and
J. W. Magnani (2019), A readability analysis of online cardiovascular disease-related health
education materials, HLRP Health Literacy Research and Practice.

Bartlett, S., G. Kondrak, and C. Cherry (2008), Automatic syllabification with structured svms
for letter-to-phoneme conversion, Meeting of the Association for Computational Linguistics,

pp. 568-576. https://webdocs.cs.ualberta.ca/ kondrak/papers/acl08Syl.pdf.
Boot, M.N.M. (1984), Taal, tekst, computer, Servire, Katwijk.

Boulesteix, Anne-Laure, S. Lauer, and Manuel (2013), A plea for neutral comparison studies in
computational sciences, PLOS ONE 8 (4), pp. e61562-e61562.

Bouma, G. (2003), Finite state methods for hyphenation, Natural Language Engineering 9
(1), pp- 5-20.

Brandt Corstius, H. (1970), Exercises in computational linguistics, Doctoral dissertation, Uni-
versity of Amsterdam.

Corlatescu, D. G., S. Ruseti, and M. Dascalu (2022), Romanian syllabification using deep neural
networks, in Mealha, O., M. Dascalu, and T. Di Mascio, editors, Proceedings of the Ludic,
Co-design and Tools Supporting Smart Learning FEcosystems and Smart Education, Vol. 249
of Smart Innovation, Systems and Technologies, Springer, pp. 89-100.

Daelemans, Walter (1989), Automatic hyphenation: Linguistics versus engineering, in Heyvaert,
F.J. and F. Steurs, editors, Worlds behind words, Leuven University Press, Leuven, pp. 347—
364.

Daelemans, Walter and Antal van den Bosch (1992), A neural network for hyphenation, Pro-
ceedings of the 1992 International Conference on Artificial Neural Networks (ICANN-92),
Brighton, United Kingdom, pp. 1647-1650.

Dascalu, Mihai A, Gabriel S Gutu, Stefan S Ruseti, Ionut S Cristian Paraschiv, Philippe Dessus,
Danielle A Mcnamara, Scott A Crossley, and Stefan A Trausan-Matu (2017), ReaderBench
Learns Dutch: Building a comprehensive automated essay scoring system for Dutch lan-
guage, Springer International Publishing AG.

Friedrich, S. and T. Friede (2023), On the role of benchmarking data sets and simulations in
method comparison studies, Biometrical Journal.

379



Gale, R., A. Salem, G. Fergadiotis, and S. Bedrick (2023), Mixed orthographic/phonemic lan-
guage modeling: Beyond orthographically restricted transformers (bort), ACLWeb; Associ-
ation for Computational Linguistics.

Gavrishchaka, Valeriy, Zhenyi Yang, Rebecca Miao, and Olga Senyukova (2018), Advantages of
hybrid deep learning frameworks in applications with limited data, International Journal of
Machine Learning and Computing 8 (6), pp. 549-558.

Gove, Philip Babcock (1993), Webster’s Third New International Dictionary of the English Lan-
guage, Unabridged, Merriam-Webster Inc.

Hauer, B. and G. Kondrak (2013), Automatic generation of english respellings, North
American Chapter of the Association for Computational Linguistics, pp. 634-643.
https://citeseerx.ist.psu.edu/viewdoc/download ?doi=10.1.1.353.96 70rep=repltype=pdf.

Krantz, J., M. Dulin, and P. De Palma (2019), Language-agnostic syllabification with neural
sequence labeling, 2021 20th IEEFE International Conference on Machine Learning and Ap-
plications (ICMLA), Vol. 3, pp. 804-810. https://doi.org/10.1109/icmla.2019.00141.

Liang, F. M. (1983), Word hy-phen-a-tion by com-put-er, Doctoral dissertation, Stanford Uni-
versity.

Man, A. and C. Van Ballegooie (2021), Assessment of the readability of web-based patient
education material from major canadian pediatric associations: cross-sectional study, JMIR
Pediatrics and Parenting.

Marco, G., J. De La Rosa, J. Gonzalo, S. Ros, and E. Gonzalez-Blanco (2021), Automated metric
analysis of spanish poetry: Two complementary approaches, IEEE Access 9, pp. 51734—
51746.

Niefil, C., M. Herrmann, C. Wiedemann, G. Casalicchio, and A. Boulesteix (2021), Over-
optimism in benchmark studies and the multiplicity of design and analysis options when
interpreting their results, Wiley Interdisciplinary Reviews Data Mining and Knowledge Dis-
covery.

Phang, Jason, Angelica Chen, William Huang, and Samuel R. Bowman (2021), Adversarially con-
structed evaluation sets are more challenging, but may not be fair, arXiv. arXiv:2111.08181
[cs.CL]. https://doi.org/10.48550/arXiv.2111.08181.

Pradhan, A., A. S. S, A. Prakash, K. Veezhinathan, and H. Murthy (2013), A syllable
based statistical text to speech system, Furopean Signal Processing Conference, pp. 1-5.
https://dblp.uni-trier.de/db/conf/eusipco/eusipco2013.htmlPradhanSPVM13.

Sarker, I. H. (2021), Deep learning: A comprehensive overview on techniques, taxonomy, ap-
plications and research directions, SN Computer Science. https://doi.org/10.1007 /s42979-
021-00815-1.

Sarma, Parismita and S. K. Sarma (2020), Syllable based approach for text to speech synthesis
of assamese language: A review, Journal of Physics: Conference Series.

Schiller, N. O., A. S. Meyer, R. H. Baayen, and W. J. M. Levelt (1996), A comparison of lexeme
and speech syllables in dutch, Journal of Quantitative Linguistics 3 (1), pp. 8-28.

Strobl, C. and F. Leisch (2022), Against the “one method fits all data sets” philosophy for
comparison studies in methodological research, Biometrical Journal.

380



Tits, Noé (2023), Mustp-srl: Multi-lingual and unified syllabification in text and phonetic do-
mains for speech representation learning, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing: Industry Track, Association for Computational
Linguistics, Singapore, pp. 74-82.

Trogkanis, N. and C. Elkan (2010), Conditional random fields for word hyphenation, Meeting of
the Association for Computational Linguistics, pp. 366-374.

Tutelaers, P. (1993), Herziene afbreekpatronen voor het nederlands.
https://www.ntg.nl/maps/11/35.pdf.

Van Der Sijs, Nicoline (2005), Van Dale Groot Leenwoordenboek: De invloed van andere talen op
het Nederlands, Van Dale Lexicografie. https://www.dbnl.org/tekst/sijs002groo01_01/.

Yousefi, M. R., J. Hua, C. Sima, and E. R. Dougherty (2009), Reporting bias when using real
data sets to analyze classification performance, Bioinformatics 26 (1), pp. 68-76.

381



Appendix A. Sample Words

An overview of words contained within the three different datasets used. The first column
features a sample of words present within the CELEX Dictionary Words dataset, which served
as a training and testing set. The second dataset concerned a compilation of loanwords (second
column). The third dataset was comprised of pseudowords (third column).

Dictionary Words Loanwords Pseudowords
abonneren mesjogge frijk

vignet internet millen
keten videoscherm sjobel
ontleer ciao zwieten
dier yakuza wachteniek
bezorgd telewerken sprieuw
welkom freaken eemde
vervoeren cashen spekkeraai
tijger fitness grek
adoptiekind lawntennis kneurem

Table 4: Sample words from the three different datasets used.
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Appendix B. Words Combined Model Improved On

The following table features a subsample of the words on which the combined model improved.
The first two columns show the orthographic input and phonetic input the models used. The
third column shows the erroneous solution the orthographic-only model output as a prediction.
The last column shows the correct prediction made by the combined model, which improved on
the solution provided by the orthographic only model.

In many cases, the combined model improved upon the orthographic model by relying on
phonetic information that differentiated between pronunciations. For example, in geinlijn, the
vowel combination ei was uniquely coded as K in the phonetic notation. The orthographic-only
model incorrectly marked gein as containing a syllable break, likely because ge is a common
prefix in many Dutch words (e.g., in ge-in-ves-teerd or ge-ind). Likewise, the phonetic notation
allows for distinction between long and short vowels. In leptosoom, the phonetic model coded the
first o character as being a long vowel, allowing the combined model to leverage this information
and correctly output lep-to-soom over the incorrect lep-tos-oom predicted by the orthographic
model (the latter assumed the first o to be a short vowel).

Input Model Translation
Orthographic = Phonetic Orthographic Only Combined
suede sy'w)d@ sue-de su-e-de suede
leptosoom 1Epto’som lep-tos-oom lep-to-soom leptosome
aasgieren ‘asxir@ aas-gi-e-ren aas-gie-ren vultures
hostesses 'hOst@s@s hos-tes-ses hos-tess-es hostesses
care k)r ca-re care care
geinlijn xKnlKn ge-in-lijn gein-lijn prank call line
liane li’jan@ li-ane li-a-ne liane (plant)
anglofobie ANGIlofo’bi  ang-lo-fo-bie an-glo-fo-bie  anglophobia
rizoom 'ri’zom riz-oom ri-zoom rhizome

Table 5: Comparison between output from the orthographic model (third column) and the
output from the combined model (fourth column) that predicted correct syllable-boundaries
through use of phonetic information (second column).
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