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Abstract

Through transfer learning, multilingual language models can produce good results on extrinsic,
downstream NLP tasks in low-resource languages despite a lack of abundant training data. In most
cases, however, monolingual models still perform better. Using the Dutch SimLex-999 dataset,
we intrinsically evaluate several pre-trained monolingual stacked encoder LLMs for Dutch and
compare them to several multilingual models that support Dutch, including two with parallel ar-
chitectures (BERTje and mBERT). We also try to improve these models’ semantic representations
by tuning the multilingual models on additional Dutch data. Furthermore, we explore the effect of
tuning these models on written versus transcribed spoken data. While we can improve multilingual
model performance through fine-tuning, we find that significant amounts of fine-tuning data and
compute are required to outscore monolingual models on the intrinsic evaluation metric.

1. Introduction

Automatic evaluation of language models is no easy task. With the lack of available language experts
to manually evaluate models, it becomes increasingly important to have a variety of evaluation
benchmarks and procedures for a variety of languages and domains. In natural language processing
(NLP), there are two predominant schools of thought when it comes to evaluating the quality of
language models: evaluation based on results on downstream NLP tasks and evaluation based on the
core functionality of the models themselves. These are respectively known as extrinsic and intrinsic
evaluation.

In intrinsic evaluation, the quality of the language model’s language representations is most
commonly tested by comparing how similar its representations of two words are to similarity scores
elicited from human raters. This is made possible by the continuous nature of word embeddings.
Word embeddings store words in a numeric vector space, meaning relationships between words can
be calculated by the similarity between the encoded vectors. Traditionally, the cosine similarity
metric is used for this task. Words that are deemed dissimilar will have a low cosine similarity and
vice versa. Gold-standard datasets are readily available for high-resource languages such as English.

One of the early pioneers of these semantic similarity datasets is Wordsim353 (Finkelstein et al.
2001). This dataset contained 353 word pairs alongside a similarity score which was obtained from
the judgements of human raters. Since its release, many new datasets that improved upon Wordsim
in both quality and quantity have been constructed. SimLex-999 (Hill et al. 2015) refined the initial
design by separating the concepts of relatedness and similarity. Until recently there was no such
dataset for evaluating the quality of Dutch word embeddings. Dutch SimLex-999, which is based
on the English one but with human-translated items that are re-rated by native speakers, makes
intrinsic evaluation of the semantic representations of Dutch language models possible (Brans and
Bloem 2024).

Large-scale language models like BERT (Devlin et al. 2019) have gained popularity due to their
ability to easily be fine-tuned to downstream NLP-tasks with good results (Bahdanau et al. 2015).
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The large amounts of training data and transfer learning capabilities of these models allow them
to be applied to unseen or under-resourced languages. This begs the question of their performance
compared to language models that have solely been trained on one language.

Extrinsic evaluations of Multilingual BERT (mBERT) compared to monolingual variants have
shown mixed results in previous work (e.g. Virtanen et al. (2019) for Finnish, de Vargas Feijo and
Moreira (2020) for Portugese, de Vries et al. (2023) for Dutch). Even in under-resourced settings,
where we might expect mBERT to perform better, monolingual models can outperform mBERT
on POS-tagging and NER in some settings (Wu and Dredze 2020). For Dutch, on the Alpino
corpus, monolingual BERT outperforms mBERT at a labeled dependency parsing task, but mBERT
performs better with unlabeled dependencies and on part-of-speech tagging (Wu and Dredze 2020).
The Dutch Model Benchmark (DUMB, de Vries et al. (2023)) shows that mBERT outperforms the
monolingual BERTje at part-of-speech tagging, named entity recognition, word sense disambiguation
and question answering, while performing worse in natural language inference, sentiment analysis,
abusive language detection, causal reasoning and pronoun resolution.

In this paper, we address this question for Dutch from the perspective of intrinsic evaluation. We
compare mBERT, a large-scale multilingual model, to Dutch BERT variants, using Dutch SimLex-
999 as a benchmark. Furthermore, we investigate to what extent the performance of the multilingual
models can be improved by tuning them on additional Dutch data, and how much of it is needed.
Lastly, we investigate whether the use of different types of Dutch training data provide different
benefits.

The findings here could motivate the continued production of monolingual language models if
it is discovered that the results are significantly better. To the best of our knowledge, no intrinsic
evaluation of monolingual and multilingual models for Dutch has been done to this end.

2. Background

Modern language models attach semantic representations to tokens, so for studying meaning repre-
sentations of specific words in specific languages, it is important to be aware of how the tokenization
process works. During tokenization, input tokens are split into word or subword units to be fed
into deep language models. State-of-the-art models like BERT (Devlin et al. 2019) and RoBERTa
(Liu et al. 2019) employ different tokenizers with several benefits and limitations. BERT uses a
WordPiece tokenizer which determines statistically likely groups of adjacent characters and stores
them into vocabulary as subword units (Schuster and Nakajima 2012). RoBERTa uses BPE (byte-
pair-encoding), a greedy algorithm, similar to WordPiece, which merges the most frequent character
pairs into a new symbol in the vocabulary (Sennrich et al. 2016). In more recent models such as
XLM-RoBERTa (Conneau et al. 2020), the SentencePiece tokenizer (Kudo and Richardson 2018)
gained popularity, which generalizes BPE to no longer attach special meaning to spaces, among
other additions. This is relevant to languages that are written without spaces.

These subword tokenization methods help the language models deal with unseen words and
remove the possibility of out-of-vocabulary errors. These tokenizers are pre-trained on a large sample
of text, learning statistical groupings of characters that are common in that training data. These
groupings often deviate from morphological segmentation of words in a language, such as splitting
“redo” at the prefix boundary into “re” and “do”. This may cause issues in downstream tasks
such as translation (Ataman et al. 2017, Bauwens and Delobelle 2024), especially in polysynthetic
languages (Mager et al. 2022). It has been shown that applying more morphologically informed forms
of subword tokenization leads to lower perplexity for trained BERT and GPT variants on several
languages, though not always with clear performance gains on downstream tasks (Hou et al. 2023).
Morphologically rich languages, such as Turkish, benefit from a more granular tokenizer with more
subword units (Kaya and Tantug 2024).

Large multilingual models like mBERT use a single tokenizer for all languages. This means
that languages with large linguistic differences must be split according to the same rules learned by
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the tokenizer. This can lead to large model vocabularies and word-splitting/merging behavior that
adheres to neither morphological nor statistical boundaries for under-resourced languages. For En-
glish, Artetxe et al. (2023) have shown that monolingual models outperform equivalent multilingual
ones in the context of machine translation. Some research has shown that pre-trained monolingual
tokenizers outperform their multilingual counterparts and suggests using language-specific adapted
tokenizers in multilingual models to improve performance on downstream tasks (Rust et al. 2021).

Dutch is slightly more morphologically rich than English, particularly by having compound words.
Remy et al. (2023) have proposed mapping tokens of high-resource monolingual models to tokens
from a tokenizer of under-resourced languages in their tik-to-tok approach. Their approach especially
addresses the issue of tokenizing multiword compounds in Dutch and German, and this approach was
used to create the RobBERT-2023 language model for Dutch by mapping English subword tokens
to Dutch using fasttext embeddings (Delobelle and Remy 2024). Bauwens and Delobelle (2024)
propose the BPE-knockout approach to morphologically inform BPE tokenizers. Their approach
increases the morphological adherence of existing BPE tokenizers by removing subwords from the
tokenizer’s vocabulary that do not adhere to morphological decompositions in a reference lexicon.
They show that this increases model performance in token-level tasks.

2.1 Non-Contextual Word Embeddings

Word embeddings are vector representations of words used in language modeling as a vocabulary
store. Word embeddings have come a long way since their genesis, where each word was individu-
ally coded. As vocabulary size increased, vectors became longer, making efficient storage difficult.
Since then many different word embedding models have been introduced; one of the first notable
models was Word2Vec (Mikolov et al. 2013b, Mikolov et al. 2013a). Word2vec is an unsupervised
word embedding model that stores vocabulary as dense word vectors. It is cheap and efficient and
scales well with vocabulary size. Word2vec does not include contextualized embeddings; ambiguous
words only get a single vector and different senses cannot be analysed separately. For example, the
meaning of the word “tear” can change based on the context but will always have the same vector
representation.

2.2 Contextual Word Embeddings

One of the largest revolutions in language modeling tasks was the introduction of the transformer
architecture. The self-attention mechanism of the transformer allows for more efficient handling of
longer texts which lends itself naturally to all sorts of NLP tasks. This led to the development
of language models with contextual word embeddings, in which different tokens of the same word
type may have different numeric representations depending on its context, addressing the problem
of representing ambiguous words and leading to better performance at most NLP tasks (Peters
et al. 2018). One such contextual word embedding model is BERT (Bidirectional Encoder Repre-
sentations from Transformers, Devlin et al. (2019)) which includes contextualized information about
the word being encoded. BERT uses the transformer architecture, which includes a self-attention
mechanism to weigh the importance of different words in an input. Research has found contextual
word embeddings to be better suited for tasks pertaining to complex language structure, ambiguous
word usage and unseen words (Arora et al. 2020).

BERT models are pre-trained on the masked language modeling (MLM) and next-sentence pre-
diction (NSP) tasks. BERT models can be easily fine-tuned to many downstream NLP tasks such
as sentiment analysis, question answering, and more, and in doing so, have obtained state-of-the-art
results (Devlin et al. 2019). Building upon the success of BERT, the RoBERTa model was devel-
oped (Liu et al. 2019). The NSP task was found to be less beneficial than MLM and dropped from
the pre-training process. The MLM method was tweaked so that masked tokens changed between
training epochs. This is known as dynamic masking and allows the model to encounter more vari-
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ability in the pre-training stage, leading to a more robust embedding model. Additionally, while
BERT uses the WordPiece tokenizer (Schuster and Nakajima 2012) to split words into subtokens,
RoBERTa uses byte-pair encoding (BPE, Liu et al. (2019)). More recently, ModernBERT (Warner
et al. 2024) was developed, with a larger context length, larger-scale pretraining, more advanced
positional encoding and SentencePiece tokenization.

2.2.1 DUTCH-LANGUAGE MODELS

For the most popular contextual word embedding models, Dutch-specific variants have been devel-
oped. BERTje (De Vries et al. 2019) is a BERT variant pretrained only on Dutch data, specifi-
cally 2.4 billion tokens of material from the SoNaR-500 (Oostdijk et al. 2013) corpus, Wikipedia
and a few other sources. Its architecture is identical to BERT, having 110M parameters, 12 lay-
ers and a hidden size of 768. RobBERT is the Dutch equivalent of the English RoBERTa model
(Delobelle et al. 2020), with more pre-training data and byte-pair encoding. It is trained specifically
on Dutch portions of the OSCAR corpus, a large multilingual dataset gathered from Common Crawl
(Ortiz Su’arez et al. 2020). RobBERT-v1 uses the English RoBERTa tokenizer, and RobBERT-v2
is based on a Dutch BPE tokenizer. Subsequently, it was updated as RobBERT-2022 on an update
of the OSCAR corpus, and then RobBERT-2023. The 2023 version consisted of another pretraining
dataset update but also the release of a Large variant with 355M parameters (similar to English
RoBERTa-large), and a new Dutch tokenizer that uses the Tik-to-Tok method (Remy et al. 2023).
This is the most recent Dutch contextual word embedding model that we are aware of, and its Large
variant shows state-of-the-art performance on several Dutch NLP tasks (de Vries et al. 2023).

2.2.2 MULTILINGUAL MODELS

As discussed in the introduction, with Dutch being a language with fewer resources than English,
yet with a lot of typological similarity to English, multilingual models show competitive performance
on various Dutch NLP tasks (de Vries et al. 2023). BERT received a multilingual version, mBERT,
soon after its release (Devlin et al. 2019), based on the same architecture but with pretraining data
from the 100 largest language editions of Wikipedia at the time, including Dutch. On the Dutch
Model Benchmark, mBERT outperforms its nearest Dutch equivalent BERTje on the tasks of part-
of-speech tagging, named entity recognition, word sense disambiguation and question answering,
with BERTje performing better on the other five tasks in the benchmark.

A large multilingual version of Roberta, XLM-RoBERTa (Conneau et al. 2020), also gained
widespread use after performing well on various NLP tasks, still based on the masked language
modelling objective. Like RoBERTa, this model was trained on crawled web data, but for 100
languages instead of just English. The 295 billion token pretraining dataset includes 5 billion tokens
of Dutch. On the Dutch Model Benchmark, XLM-RoBERTa outperformed monolingual Dutch
models at part-of-speech tagging, named entity recognition, word sense disambiguation and abusive
language detection (de Vries et al. 2023).

The DeBERTa architecture was also applied to the same multilingual pretraining data as XLM-
RoBERTa to create mDeBERTa (He et al. 2023). This model was shown to outperform XLM-
RoBERTa for many tasks. In the Dutch Model Benchmark, it did not reach state of the art in any
task, but performed well on average. The English DeBERTa-v3-large outperformed all other models
on the question answering task and was the second-best performing model on average, so we include
it in our comparison even though it is technically an English monolingual model.

Similar to ModernBERT, EuroBERT (Boizard et al. 2025) aims to apply modern optimizations
to encoder language modelling, also aiming to extend them to all European languages. The current
version spans 15 languages and was trained on 5 trillion tokens. It does include Dutch with 50.6B
tokens. This model again uses the masked language modelling pretraining objective, but with a
subsequent annealing phase to adjust the data distribution towards that of higher-quality data,
including non-English.
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2.3 Intrinsic Evaluation

The aforementioned model comparisons are largely based on extrinsic evaluation - the performance
of the models when applied to a different task than the pre-training task, such as question answering
or sentiment analysis. For encoder transformer models, this typically involves tuning a classification
head for the task to be evaluated on top of the model to be evaluated. Performance on these tasks
is often evaluated using task-specific metrics and can demonstrate the ability of the language model
to be tuned to specific downstream tasks. However, task-specific performance can vary strongly
between models and depends on the tuning approach. When one is interested in applying a model
to a new task or new domain for which no task-specific evaluation data exists, intrinsic evaluation
of a model’s lexical-semantic representations can at least provide evidence as to whether the model
correctly represents word similarity in a language. It has been noted that intrinsic and extrinsic
evaluation scores of word embedding models correlate poorly (Bakarov 2018).

For word embedding models, intrinsic evaluation means testing the quality of the semantic rep-
resentations. This is often done with reference to human-rated benchmarks or with post-hoc evalua-
tions of model outputs by human raters. Many methods have been proposed to evaluate the quality
of language models intrinsically. Bakarov (2018) identifies and rates sixteen methods. They classify
intrinsic methods into the following four classes: methods of conscious evaluation, methods of sub-
conscious evaluation, thesaurus-based methods, and language-driven methods (Bakarov 2018). Our
work focuses on word semantic similarity, a conscious intrinsic evaluation method whereby raters
are given time to make informed decisions. In word semantic similarity, human raters judge the
similarity of word pairs and assign a score, often from 1 to 5. These similarities are compared to
the cosine similarity of the word embeddings to estimate the ability of the word embeddings to
capture semantic meaning, using a correlation metric. Many datasets have been created to this end;
earlier datasets like MEN (Bruni et al. 2012) and WordSim-353 (Finkelstein et al. 2001) have been
improved upon by SimLex-999 (Hill et al. 2015), later extended to multilingual MultiSimLex (Vulié¢
et al. 2020). SimLex separated the notions of relatedness and similarity. For example, the words
‘coffee’ and ‘cup’ are related but dissimilar. Despite this, they are rated more similar than ‘car’ and
‘train’ in datasets such as WordSim-353.

Word Semantic Similarity datasets are abundant for high-resource languages such as English but,
until recently, did not exist for Dutch, and Dutch is not included in MultiSimLex. Recently, Dutch
SimLex-999 was created (Brans and Bloem 2024) with the same word pairs as the English one,
manually translated and/or culturally adapted to Dutch, and re-rated by Dutch native speakers.

2.4 Related Work

Several studies have compared and contrasted the intrinsic evaluation scores of language models,
particularly in higher resource languages like English and Mandarin (Pranav et al. 2024), but also
in Finnish (Venekoski and Vankka 2017), Polish (Mykowiecka et al. 2018) and many others (e.g.
Vulié et al. (2020)). The majority of work comparing monolingual and multilingual language models
comes from extrinsic evaluation. This is often done by evaluating model performance on different
downstream NLP tasks. For example, Litake et al. (2023) compared the results of monolingual and
multilingual BERT models on named entity recognition (NER) in Hindi and Marathi. They found
that results depended on the language, with the monolingual MahaRoBERTa model performing
best in Marathi and the multilingual XLM-RoBERTa performing best in Hindi. Despite these
results, the authors claim monolingual models do not outperform multilingual models in this context.
Similar work has been done in Portuguese by de Vargas Feijo and Moreira (2020), who found that
monolingual models as a whole performed better, if only slightly, than multilingual models on a
wide range of NLP tasks. These tasks included question answering, recognizing textual entailment,
semantic textual similarity (sentencewise) and many more. The aforementioned Wu and Dredze
(2020) focused on several under-resourced languages, but found mixed results regarding the two
types of models. Also for Dutch, as mentioned before, such comparisons have been performed in the
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context of the Dutch Model Benchmark (de Vries et al. 2023) and in the context of the development
of models such as RobBERT-2023 (Delobelle and Remy 2024), but always on extrinsic tasks.

2.4.1 FINE-TUNING MULTILINGUAL MODELS

There has been some work on the effect that fine-tuning has on word embeddings. Zhou and
Srikumar (2022) showed that tuning multilingual BERT models results in slight changes in the
underlying embeddings of words. They argue that, while the spatial dimensions of embeddings
remain largely similar, fine-tuning for specific tasks alters the embeddings slightly to capture the
nuances of those tasks better. This is supported by other research as well. Cheong et al. (2021)
studied how tuning multilingual BERT for code-switching between English and Chinese achieved
better results on intrinsic evaluation and the downstream speech recognition task.

In the space of generative decoder LLM models, all major Dutch models were created by con-
tinued pretraining on predominantly English models, such as the 2.8B parameter Fietje model
(Vanroy 2024), where Phi 2 was trained on 28 billion tokens of Dutch, and the 7.2B parameter
GEITje-7B model (Rijgersberg and Lucassen 2023), which was based on the English Mistral-7B
(Jiang et al. 2023) by training on the Dutch Gigacorpus and a webcrawling corpus. This shows
that multilingual generative decoder LLM models can be improved by language-specific continued
pretraining, but again this was mostly evaluated using extrinsic classification tasks (Vanroy 2024).
We are not aware of any research on how the altered word embeddings obtained from fine-tuning
multilingual stacked encoder models affect intrinsic evaluation scores.

2.4.2 WRITTEN VERSUS SPOKEN LANGUAGE

One of our ideas is to tune on transcribed spoken language rather than written language, as this may
have a higher density of basic vocabulary compared to average crawled web text. There have been
several studies on the differences between written and spoken languages. In Dutch, additional context
on the speaker and subject can be derived on the basis of spoken language (Keune et al. 2005). It has
also been found that there are significant differences in the linguistic phenomena between written and
spoken Dutch. Research has shown that spoken Dutch tends to rely more heavily on using personal
pronouns, among other methods, in subject-object ambiguous sentences, to disambiguate (Jansen
2005). It has also been shown that Dutch LSTM models better predict word associations (as opposed
to homophone control words) when trained on 1M tokens of transcribed spoken data as opposed
to written data (Bay and Bloem 2023). This study used the dataset of Drieghe and Brysbaert
(2002), the only Dutch word similarity dataset available before Dutch SimLex-999. Knowing this,
we can intuit that pre-training or tuning language models on transcripts of spoken text could lead
to different representations of words.

3. Methodology

In this section, the experimental setup is described in detail. In Subsection 3.1, we describe the
intrinsic evaluation. Here we introduce the pre-trained models used in our work. This section also
explains how word embeddings are extracted from these models, how word similarity is calculated,
and how we compare these results to our our evaluation set to get an intrinsic evaluation score.
In Subsection 3.2, we describe the experimental setup used to finetune our language models. This
includes language models used, hyperparameters, datasets on which they are tuned, and more.

3.1 Intrinsic Evaluation

To perform intrinsic evaluation, word embeddings that encode tokens in various language models
must be extracted. Extraction methods differ between models, but as we only include BERT-
based stacked encoder models, we are able to use similar evaluation pipelines (besides accounting
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Model Type | Parameters | Layers Data Tokenizer
mBERT Multi 178M 12 ? WordPiece
BERTje Mono 110M 12 2.4B WordPiece
RobBERT-v2 Mono 117M 12 6.6B BPE
RobBERT-2023-large | Mono 355M 24 19.6B Tik-to-Tok
XLM-RoBERTa-large | Multi 561M 24 295B (5B) | SentencePiece
mDeBERTa Multi 276M 12 295B (5B) | SentencePiece
DeBERTa-v3-large English 304M 24 ? SentencePiece
EuroBERT-210m Multi 210M 12 5T (50.6B) | BPE (Llama 3)
EuroBERT-610m Multi 610M 26 5T (50.6B) | BPE (Llama 3)
EuroBERT-2.1B Multi 2.1B 32 5T (50.6B) | BPE (Llama 3)

Table 1: Pretrained language models evaluated for monolingual vs. multilingual performance

for different special tokens that the different models use). We evaluate the ten model variants
described in Table 3.1. This includes a BERT and RoBERTa-based model for both the monolingual
and multilingual cases, although only mBERT and BERTje have parallel architectures for direct
comparison. While their training data may differ, their intrinsic evaluation scores could inform a
conclusion about the efficacy of domain-specific training data rather than large multilingual training
sets.

We use the Hugging Face transformer package (Wolf et al. 2020) to extract word embeddings
from all models. We benchmark the cosine similarities of word pairs from the Dutch SimLex-999
benchmark (Brans and Bloem 2024) against human similarity ratings from that benchmark.

Each word in each pair is embedded without any context, following Brans and Bloem (2024),
adding only the necessary special tokens for each model using add_special_tokens=True. While this
does not take advantage of the contextual capabilities of contextual word embedding models, it is
more faithful to the task that human raters got and enables comparisons to static (non-contextual)
word embedding models such as Word2Vec.

Words in the benchmark may be subtokenized into several subword units by the various models
that each have their own representations. Therefore, we take the average over all subtoken embed-
dings (special tokens excepted) as our word embedding for evaluation. The embedding is taken as
the average over all tokenized embeddings. This is done since, during tokenization, words can be
split into several subword units that are encoded separately.

Next, we calculate the similarity between our paired word embeddings using the cosine similarity
metric:

A-B

NINIE] o

cosine similarity = cos(6)

This returns a score between -1 and 1 for each word pair in Dutch Simlex-999. A high score

indicates highly similar words, and a low score, the opposite. Scores typically do not go far below

0 as the models are not optimized to encode non-association or antonymy. Based on these results,

we generate a correlation score between the model-predicted, and human-rated similarity scores in
Dutch SimLex-999. This is done using the Spearman rank correlation coefficient p:

63 d7

n(n? —1) 2)

p=1-
where n is the number of data points and d; is the difference between the ranks of the ith

element in the dataset. We calculate p for each layer of each model, allowing us to gauge the models
performance over several layers. Prior research has suggested that embeddings extracted from earlier
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layers have a stronger correlation to contextless human semantic similarity ratings (or benchmarks of
lexical semantics in general) and that the final contextual layer has a weaker correlation (Bommasani
et al. 2020, Brans and Bloem 2024).

3.2 Fine-tuning

Next, we aim to investigate the effect that fine-tuning language models has on their intrinsic eval-
uation scores. We do this for several scenarios. First, we fine-tune language models and explore
how the quantity of tuning data affects the scores achieved. Second, we compare how the medium
of tuning data affects intrinsic evaluation score. To do so, we finetune models on tuning sets from
written sources and transcribed, spoken sources.

Our tuning data comes from the SoNaR (Oostdijk et al. 2013) and CGN (Corpus Gesproken
Nederlands, Spoken Dutch Corpus) (Oostdijk 2000) corpora. The SoNaR corpus contains over 500
million words of Dutch written text from the Netherlands and Flanders, obtained from various
sources. These include native sources but also sources translated by experts. The second corpus
we use, CGN, contains over 900 hours of transcribed audio text. This amounts to approximately 9
million words. The sources of the transcriptions come from interviews, news broadcasts, and more
from both the Netherlands and Flanders. Both datasets are described in Table 3.2.

Corpus Domain | # Words
Corpus Gesproken Nederlands (CGN) (Oostdijk 2000) | Spoken 9IM
SoNaR Corpus (Oostdijk et al. 2013) General 500M

Table 2: Corpora used for fine-tuning multilingual language models

We tune the mBERT, XLM-RoBERTa, mDeBERTa and EuroBERT-2.1B models to discover the
effect that tuning these models on additional Dutch data has on intrinsic evaluation scores, if any.
To do so, we created several subsets of the SoNaR, corpus. The subsets contain approximately 10k,
100k, 1M, 10M and 100M words. These subsets were created by randomly drawing sentences from
the SoNaR corpus until the threshold number of words was reached. Various preprocessing steps
were also taken to remove HTML and non-text information in the corpus files.

Once the subsets are created we proceed to fine-tuning the models. This is done on the masked
language modeling (MLM) task, where random words in the textual input are replaced with a MASK
token, and the language model must predict which words fit in their spot. This is done using the
‘transformers’ package and creating a pipeline which loads the models and their tokenizers. The
pipeline then tokenises the tuning data, masks 15% of words, and performs continued training on
the MLM task. The tokenizers are not affected by our fine-tuning process. The hyperparameters
for fine-tuning all models are kept consistent for fair comparison and can be seen in Table 3.

Next, we investigate the effect of the medium of the tuning data on intrinsic evaluation scores.
We hypothesize that the relationship between words embedded by the model fine-tuned on spoken
language will more closely resemble that of the Dutch SimLex-999 human evaluation set. Meaning
that they will score higher on the intrinsic evaluation task, and thus provide a more suitable base
for training or tuning than written text.

To explore this, we finetune the mBERT, XLM-RoBERTa (base and large), mDeBERTa and
EuroBERT-2.1B models on written and spoken text. This too, is done on the masked language
modeling (MLM) task, where words in sentences are masked, and the language model must predict
the masked words. For the written text model, we used the variants of the previously defined models
that were tuned on the 1M word subset of the SoNaR corpus. For the spoken model, we created
an additional 1M word subset, this time from the CGN corpus. One issue in distinguishing spoken
and written language is that language may be written to be spoken. This type of data may be less
representative of spontaneous speech. Therefore, for the CGN subset, we have only sampled from
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Hyperparameter Value

Epochs 3*
Learning Rate 5e-5
Weight Decay 0
Train Batch Size 64
Optimizer adamw
adam_betal 0.9
adam_beta2 0.999
adam_epsilon 1e-8

Table 3: Hyperparameter settings for all fine-tuned models. * EuroBERT was only trained for 1
epoch on the largest tuning dataset due to resource restrictions.

corpus components A to I, which include more spontaneous forms of speech such as face-to-face
conversations, interviews, business negotiations and sports commentary. For a full overview of these
components, see Appendix E. SoNaR also includes written-to-be-read components, but these are
relatively small and we consider them similar to written language, so they were not excluded from
our sampling.

Again, we randomly selected sentences from the chosen components of the corpus until we reached
an equal number of token as in the SoNaR 1M sample (respecting sentence boundaries). Additionally,
transcription-specific cleaning steps had to be taken here to ensure data quality was not impacted.
This means removing transcript-specific code data such as [UNKNOWN]-, [ggg]-, and [xxx]-tokens,
and more. These codes were originally added for annotation purposes but are not necessary for
tuning. A complete list of the filtered codes is included in Appendix F.

We are left with 30 tuned models (5 models x 6 data samples). All of these finetuned models
undergo the same intrinsic evaluation that the pretrained language models underwent in Section 3.1.
For each word pair in Dutch SimLex-999, each word is embedded separately, similarity scores are
calculated between the words of the pair for each layer, and a correlation score per layer is calculated.
We report results for the first layer and the best-scoring layer, which may differ per model.

4. Results

In Section 4.1, we present the intrinsic evaluation scores obtained by the pre-trained monolingual and
multilingual language models. In 4.2, we explore the results obtained from mBERT, XLM-RoBERTa,
mDeBERTa and EuroBERT-2.1B when finetuned on additional Dutch text of varying amounts. In
Section 4.3, we present the results of the medium study, where we compare the performance of these
four multilingual models when finetuned on written vs spoken Dutch. Finally, in section 4.4, we
present some additional results related to tokenisation.

4.1 Pretrained Model Results

Using the Dutch Simlex-999 evaluation data we were able to benchmark the intrinsic evaluation
scores obtained by the models in Table 3.1. For each model, we calculate the Spearman correlation
between similarity scores obtained by our model and those reported in Dutch Simlex. This is done
for all layers of the model. In Table 4, we show the correlation score for the first layer and the
best-performing layer of each model.

533



Model | First Layer | Highest Score | Best Layer | Layers
BERTje 0.396 0.396 1 12
RobBERT-v2 0.179 0.188 5 12
RobBERT-2023-1arge 0.157 0.157 1 24
mBERT 0.135 0.137 5 12
XLM-RoBERTa 0.184 0.184 1 12
XLM-RoBERTa-large 0.141 0.180 3 24
mDeBERTa 0.178 0.313 6 12
DeBERTa-v3-large 0.100 0.116 9 24
EuroBERT-210m 0.037 0.052 2 12
EuroBERT-610m 0.029 0.034 4 26
EuroBERT-2.1B 0.058 0.058 1 32

Table 4: Peak results achieved by all pretrained models.

Spearman Cerrelation

Figure 1: Aggregate and POS-based layer-wise intrinsic evaluation scores for mDeBERTa model
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Figure 2: Aggregate and POS-based layer-wise intrinsic evaluation scores for BERTje model




In Figure 1, we see the scores obtained by the mDeBERTa model, the best-performing pretrained
multilingual model, and in Figure 2 we see BERTje, the best-performing pretrained monolingual
model. Similar figures for other models can be found in Appendix C. The same BERTje result
is discussed by Brans and Bloem (2024), who note the best performance in the first layer. As for
mDeBERT4, in contrast to BERTje and most other pretrained models, middle layers (4 through 8)
achieve the highest aggregate correlation score. As expected, the contextualized layers score worst,
with layer 11 being both the lowest and the only negative scoring layer. The reported intrinsic
evaluation scores of the pre-trained models also reveal interesting results.

To derive more useful insights from the reported scores, we separate these results by part-of-
speech label. This allows us to judge the performance of each model on different word types.
The POS evaluation scores from Figure 2 show a fairly regular pattern, with nouns and adjectives
performing similarly and verbs trailing behind while all categories decline across layers. Patterns
in mDeBERTa are more varied, with adjectives scoring best in the initial layers, while verbs and
nouns peak in the middle layers. Interestingly, verbs have nearly as good correlations with human
judgements as nouns here, while usually language models struggle more with verbs in this task.

In Table 4, we see that in both the RoBERTa and the BERT cases, the monolingual models
scored higher than their multilingual variants on this task. For the BERT models, BERTje achieves
a peak score at the first layer with a Spearman correlation of 0.396, compared to mBERT’s peak of
0.135 at layer 1. The results of the RoBERTa models are similar, with the monolingual RobBERT
model achieving a peak score of 0.179 compared to XLM-RoBERTa’s 0.141. Interestingly, the older
RobBERT v2 with the BPE tokenizer scores better than the newer 2023 version with the Tik-to-Tok
tokenization approach here.

We can also observe that the smaller but multilingual mDeBERTa outperforms the larger English
DeBERTa-v3-large, even though on the Dutch Model Benchmark (de Vries et al. 2023), DeBERTa-~
v3-large outperforms on five out of nine tasks. As noted by de Vries et al. (2023), this may be due
to English interference from the automatic translation involved in creating some of the task-specific
benchmarks, making a largely English model perform well. Lastly, we see that the EuroBERT
models perform very poorly on this benchmark, despite being the most modern and largest ones.

4.2 Fine-tuning and ablation study

In this section, we describe the results obtained from the fine-tuning study, where we tune mBERT,
XLM-RoBERTa-large, mDeBERTa and EuroBERT-2.1B on increasing quantities of Dutch sentences
from the SoNaR corpus. The models were fine-tuned on the MLM objective, with 15% of words
being masked. We tested the following amounts of additional training data: 10k, 100k, 1M, 10M
and 100M tokens. All models were tuned separately, so it is not the case that the 100k model is a
continuation of the 10k model. Every model used the same sample of text for every data size, so it
is not the case that a different 10k tokens were sampled each time. The peak intrinsic evaluation
scores over all layers for each fine-tuned model are presented in Figure 3, and with numbers for the
largest tune of 100M tokens in Table 5.

As we would expect, we see that the peak scores achieved by each tuned model increases with the
size of the tuning data. For mBERT, the strongest correlation was achieved by the model trained
on the 100M token subset of the SoNaR corpus, which achieved a peak score of 0.298, a significant
improvement over all the other SoNaR-~tuned mBERT models and an improvement of approximately
0.161 over the peak result obtained by the pre-trained mBERT model. Nevertheless, this score trails
behind the comparable monolingual model of BERTje, which achieved a correlation of 0.396.

We can also see that more modern versions of the architecture struggle to match this result
with this amount of tuning data, with only mDeBERTa and XLM-RoBERTa-large outperforming
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Figure 3: Peak (best layer) correlation scores per model per ablation

Model | First Layer | Highest Score | Tune-diff | Best Layer | Layers
mBERT 0.206 0.298 +0.161 6 12
XLM-RoBERTa 0.224 0.341 +0.157 5 12
XLM-RoBERTa-large 0.181 0.438 +0.281 14 24
mDeBERTa 0.190 0.399 +0.086 7 12
EuroBERT-2.1B 0.070 0.281 +0.223 9 32

Table 5: Peak results achieved by all models tuned on 100M tokens of written Dutch from the SoNaR
corpus. The EuroBERT-2.1B model was tuned for one epoch due to resource limitations,
the others for three. Tune-diff is the absolute difference in correlation score between the
untuned model and the tuned model
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Model ‘ Data First Layer | Highest Score

mBERT Written 0.157 0.211
mBERT Spoken 0.173 0.222
XLM-RoBERTa-large Written 0.153 0.329
XLM-RoBERTa-large Spoken 0.169 0.351
mDeBERTa Written 0.178 0.371
mDeBERTa Spoken 0.166 0.305
EuroBERT-2.1B Written 0.057 0.096
EuroBERT-2.1B Spoken 0.013 0.082

Table 6: Results for models tuned on an equivalent amount of written or spoken data

BERTje. mDeBERTa, a model with the same number of layers and only around double the param-
eters of BERTje, barely outperforms it with a correlation score of 0.399 on its layer 7 when tuned
with 100M tokens. XLM-RoBERTa-large also only outperforms BERTje when tuned with 100M
tokens of data, but with a solid correlation score of 0.438 on layer 14, the highest in our study. This
model is significantly larger than BERTje, however.

The base-sized XLM-RoBERTa shows similar results to mBERT, with a more rapid rise in
performance when tuned on more data, and a peak correlation of 0.340 on the 100M subset. Tuning
had a similar impact on the intrinsic evaluation score as in mBERT’s case, with an improvement of
0.157 in terms of absolute correlation score over the pre-trained XLM-RoBERTa model compared
to mBERT’s 0.161. XLM-RoBERTa-large showed the largest absolute improvement from tuning on
100M tokens of written Dutch text with 0.281.

The case of EuroBERT is interesting — despite being the largest and most modern model, its
base model performs the worst and requires a significant amount of fine-tuning to reach a reasonable
correlation with human semantic similarity ratings. With 100M tokens of fine-tuning data, it is still
outperformed by all other tuned multilingual models, though we were only able to tune it on this data
sample for one epoch instead of three. Due to the large scale of this model, further improvements
can be expected with significantly more tuning data.

In all cases, the results obtained suggest that we can improve the intrinsic evaluation scores
of multilingual models by tuning on additional Dutch data, but quite a lot of data is required.
Tuning these models on 100M tokens for three epochs also comes at a significant computational
cost, requiring several days to a week when using a single modern high-end GPU (and longer for
EuroBERT).

4.3 Media Study

In this section, we present the results of the media study. Here, we evaluate pairs of tuned mBERT,
XLM-RoBERTa, mDeBERTa and EuroBERT-2.1B models. These models are tuned on either writ-
ten or spoken Dutch data taken from the SoNaR and CGN corpus, respectively. The models are
tuned on the MLM tasks, with 15% of words being masked.

These results are shown in Table 6. We see inconsistent results between models. For mBERT
and XLM-RoBERTa-large, the model tuned on spoken data performs slightly better, but for the
best multilingual model mDeBERTa, the model tuned on written data is clearly better. For Eu-
roBERT, the written data model is also slightly better, although this study would probably have to
be done with 100M tokens of tuning data or more for reliable results. A layer-wise comparison for
mDeBERTa, the model with the largest difference between spoken and written, is shown in Figure 4.
For the other models, the layer-wise patterns also look similar, though XLM-RoBERTa-large loses
more performance in the last layers when tuned on written data than when tuned on spoken data.
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Figure 4: Layer-wise Dutch SimLex-999 correlation scores of mDeBERTa when tuned on written
(SoNaR) versus spoken (CGN) Dutch data.

Model ‘ Input ‘ Tokenization
mBERT razendsnel | [‘raz’, ‘##end’, ‘HH#sne’, ‘H##]]
BERTje razendsnel [‘razendsnel’]
RobBERT-v2 razendsnel [ra’, ‘zen’, ‘ds’, ‘nel’]
RobBERT-2023 | razendsnel [‘razendsnel’]
XLM-Roberta razendsnel [‘raz’, ‘end’; ‘s’, ‘nel’]
mDeBERTa razendsnel [‘raz’, ‘end’, ‘s’, ‘nel’]
DeBERTa-v3-large | razendsnel [‘raz’, ‘ends’, ‘nel’]
EuroBERT razendsnel [‘raz’, ‘ends’, ‘nel’]

Table 7: Manual inspection of tokenization of Dutch input

4.4 Tokenisation

Our results indicate that pre-trained monolingual language models outperform multilingual models
in terms of intrinsic evaluation, unless they are tuned with significant amounts of additional Dutch
data.

Several potential obstructions prevent these models from achieving high intrinsic evaluation
scores. One such obstruction is the tokenizer. An important benefit of training language mod-
els on a monolingual corpus is the performance of the tokenizer. Tokenizers in multilingual models
such as mBERT need to be one-size-fits-all. This means that they should be able to create effec-
tive subword units in several languages at the same time. The problem with this is that languages
with significant linguistic differences need to be tokenized by the same tokenizer. For example, in
the Dutch language, compounding is used to add meaning. Take the word ‘razendsnel’ (English:
lightning fast). It comprises two Dutch words compounded: ‘razend’ (English: furious or enraged)
and ‘snel’ (English: fast or quick). Splitting this word at the compound word boundary during
tokenization might be beneficial for effective meaning representation (Bauwens and Delobelle 2024),
and as we discussed in section 2, such benefits have been observed in the literature for various
morphologically rich languages.

Language models like RobBERT, which are solely trained in Dutch, may have tokenizers that
are better attuned to the morphological structure of Dutch. This could explain why, in our results,
monolingual models outperform multilingual models on the intrinsic evaluation score. This is the case
in both RoBERTa and BERT models. To verify this claim, we perform a small manual investigation
into the tokenization of words by the four pre-trained models.
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In Table 7, we see how the different models tokenize this particular example. There are significant
differences between the model strategies for this task. BERTje, the model with the highest intrinsic
evaluation score, represents the entire word as one token. While this tokenization strategy can
lead to good scores, it is not as efficient at scale. With this technique the words need to be stored
individually in vocabulary which scales poorly with vocab size, additionally, it makes it more difficult
for the model to handle unseen words.

Language models employ sub-wording algorithms, like WordPiece or BPE, to split words into
bytes. This can be seen in the tokenization of ‘razendsnel’ (lightning fast) in Table 7. This is an
important feature, as adding different languages can cause the vocabulary size to explode. Storing
subword bytes allows you to reconstruct words using common subword units. However, the subword
units generated by the tokenizers are, therefore, trained on data from several languages. This leads
to the creation of common subword units that may not necessarily correspond to any useful semantic
subword units in Dutch. Meaning can be lost as a result. We can see that none of the major models
tokenize ‘razendsnel’ morphologically into ‘razend’ and ‘snel’. We list some further examples in
Appendix D.

4.4.1 COMPOUND WORDS EXPERIMENT

One interesting observation from the manual inspection is that the multilingual models seem to
tokenize shorter words according to morphological boundaries but struggle with compound words.
To test whether this property of the multilingual model’s tokenizer affects the reported intrinsic
evaluation score, we divided the Dutch Simlex-999 benchmark into two subgroups. These groups
are determined by the number of compound words in the word pairs: 0, or 2. We define a compound
word as a word that consists of two Dutch words that can each exist independently. For example,
‘huiswerk’ (homework) is a compound word because ‘huis’ (house) and ‘werk’ (work) can both exist
on their own.

An example of a pair with no compounding from the dataset is ‘boek-informatie’ (book-information),
examples of pairs with one compound word are ‘verjaardag-jaar* (birthday-year) and ‘nemen-achterlaten
(take-leave_behind), and examples of pairs with two compound words are ‘vliegtuig-luchthaven'
(airplane-airport), ‘aanmoedigen-ontmoedigen‘ (encourage-discourage) and ‘uitgang-deuropening’
(exit-doorway). The categories are of course quite imbalanced — there are 846 pairs with no com-
pound words, 129 pairs involving one compound word and 24 pairs with two compound words. In
the 24 pairs with two compounds, seven are pairs of particle verbs, two are pairs of adjectives and
the others are nouns. These pairs include both highly related and unrelated words, and of course
the words involved are longer than average.

For each of the pre-trained models from Table 3.1, we calculated intrinsic evaluation scores for
each compound word group subset of Dutch Simlex-999. The results are visualized in Figure 5.
We observe that for BERTje, mBERT and XLM-RoBERTa-large, performance on pairs with 2
compounds is worse — two models with WordPiece tokenization and one SentencePiece model.
However, mDeBERTa, which tokenizes quite similarly to XLM-RoBERTa, does not show this ef-
fect. Furthermore, EuroBERT and DeBERTa-v3-large show an opposite pattern where 2 compound
words perform better. These two models also tokenize similarly and their tokenizers appear largely
influenced by English (DeBERTa-v3-large being a monolingual English model) so it is interesting
that they perform better on pairs of Dutch compound words.

Similar results for the tuned models are shown in Figure 6. After tuning, EuroBERT and mDe-
BERTa perform worse at 2 compound word pairs, despite overall performance gains. EuroBERT,
mBERT and XLM-RoBERTa-large score worse on pairs of compound words than on pairs of non-
compound words. Since the tokenizers do not change during tuning, this could be due to limitations
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Model Input ‘ Tokenization

RoBERTa-BPE-39k razendsnel | [razendsnel’]
RoBERTa-BPEko-39k razendsnel | [‘razend’, ‘snel’]
RoBERTa-BPE-30k-BPEko-9k | razendsnel | [‘razend’, ‘snel’]

Table 8: Tokenization of Table 7 example with BPE-knockout

Model First Layer | Highest Score ‘ Best Layer ‘ Layers
RoBERTa-BPE-39k -0.015 0.005 5 12
RoBERTa-BPEko-39k -0.042 -0.026 6 12
RoBERTa-BPE-30k-BPEko-9k -0.042 -0.032 7 12

Table 9: Results for models from the BPE-knockout paper (Bauwens and Delobelle 2024)

of the multilingual tokenizers. This further investigation somewhat suggests that performance gains
from language-specific tuning of multilingual models are limited by the multilingual tokenizer. How-
ever, these results are inconclusive and for clearer evidence, an experiment with a controlled dataset
of compound words of different complexity would be needed.

4.4.2 BPE-KNOCKOUT EXPERIMENT

The BPE-knockout approach of Bauwens and Delobelle (2024) aims to make tokenization more
morphological by pruning trained BPE tokenizers to remove subtoken merge steps that result in
subtokens that span morpheme boundaries. This results in better adherence to derivational and
compound boundaries during tokenization, and might be a solution for the lack of language-specific
morphological information that multilingual tokenizers have.

As well as English and German, Bauwens and Delobelle (2024) test their approach on small
Dutch monolingual RoBERTa models and show better performance on downstream tasks with those
models, both when pretrained with a BPE-knockout tokenizer (RoBERTa-BPEko-39k) and when
taking a model pretrained with a regular tokenizer and tuning it with BPE-knockout (RoBERTa-
BPE-30k-BPEko-9k). In Table 8, we see that on our ‘razendsnel’ example, these models perform
the expected morphological tokenization, unlike all models from Table 7. RoBERTa-BPE-39k is
Bauwens and Delobelle (2024)’s base model without BPE-knockout.

In Table 9, we also evaluated these models on Dutch SimLex-999, but found that the base BPE
model outscores the BPE-knockout models and that correlations are near-zero. The general poor
performance is likely to be caused by the small amount of training data used by Bauwens and De-
lobelle (2024). Tt would be very interesting to evaluate whether the BPE-knockout approach can
improve the score of multilingual models or tuned multilingual models on the Dutch SimLex-999
benchmark, but none of the popular multilingual models use a regular BPE tokenizer (see Table 3.1).
In future work, it would be interesting to adapt the BPE-knockout approach for SentencePiece tok-
enizers, which also often have a BPE component, to evaluate whether language-specific adaptation of
the multilingual tokenizer can improve the quality of semantic representations for a target language.

5. Discussion

We evaluated a number of pretrained models on a semantic similarity benchmark for Dutch. The
results of this study are intended to motivate the continued development of monolingual or mul-
tilingual models depending on the obtained results. We find that monolingual models outperform
multilingual models in this intrinsic evaluation, and multilingual models require a significant amount
of fine-tuning to catch up to a base-BERT-equivalent monolingual model on the Dutch SimLex-999
intrinsic evaluation benchmark. In our setup with up to 100M tokens of fine-tuning data, only mDe-
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BERTa and XLM-RoBERTa-large managed to catch up, with mDeBERTa being more optimized and
XLM-RoBERTa-large being bigger. The recent EuroBERT-2.1B model, while officially supporting
the Dutch language, shows quite poor results on semantic similarity, except when tuned on larger
amounts of data.

5.1 Fine-tuning and ablation study

While the pre-trained model results indicate that monolingual models outperform multilingual mod-
els, it is not always a practical solution to train a domain-specific and language-specific model for
every situation. Additionally, the transfer learning capabilities of these models mean that very low-
resource languages could benefit from some learned semantic knowledge obtained from other lan-
guages. Therefore, we investigated whether fine-tuning large-scale pre-trained multilingual language
models on domain-specific data could provide similar results as their monolingual counterparts.

Our results indicate that tuning on additional Dutch data does improve the intrinsic evaluation
scores of both models, and it is possible to surpass the performance of BERTje with 100M tokens of
fine-tuning data while 2.4B tokens were used to train BERTje. However, this was done with more
modern architectures, for which there are no Dutch pre-trained equivalents. To establish exactly
how much tuning data is necessary for a multilingual model to surpass an equivalent monolingual
model, a larger-scale follow-up experiment would be required in which a Dutch model is pretrained
on large quantities of data with the same setup as mDeBERTa or XLM-RoBERTa. Nevertheless, our
results are promising especially for more under-resourced languages where the amount of available
data is sufficient for fine-tuning a multilingual model but not for pre-training a monolingual model.

As expected, the results improved with the quantity of fine-tuning data used. In future work, we
would like to see if this trend continues by increasing the quantity of fine-tuning data even further
to be similar to the amount of data that monolingual models are pretrained with. In particular,
for larger-scale models such as EuroBERT, it might be necessary to tune with much larger volumes
of data to bring out reasonable performance. This parallels the approach taken for Dutch decoder
language models such as Fietje (Vanroy 2024).

5.2 Media Study

Equally, if not more important than data quantity is data quality. Traditionally language models
are trained using written text from large corpora, scraped from the web, documents, books, and
more. This is the case since this data is easier to collect and requires little transformation and
formatting adjustments. Whether this text provides a better base for training language models in
Dutch is unclear. Thanks to projects like the CGN (Oostdijk 2000), we can access large amounts of
transcription data, including many hours of transcribed text, formatted and annotated. Thus, we
can investigate the effects of tuning multilingual models on written vs spoken text.

To this end, we fine-tuned the multilingual models on equally sized subsets (10000 words) of
written and spoken text. We found mixed results: mBERT and XLM-RoBERTa-large did better
with spoken data, mDeBERTa and EuroBERT did better with written data. These results suggest
that older and smaller models benefit more from transcribed spoken data, though this is speculative.
If there is any such effect, it is model-dependent, and a more controlled study would be needed to
figure out what aspects of model architecture affect this, such as the tokenizer, the type of pre-
training data used or the language mix in the multilingual model. We do observe a clear difference
when we compare the type-token ratios of our 1M sample of the SoNaR corpus and of the CGN.
Excluding punctuation SoNaR has a TTR of 0.104 while the CGN sample has 0.044, indicating a
larger diversity of vocabulary in the written text.

It is possible that spoken data is more beneficial for tuning smaller models, as spoken language is
also what humans initially learn from in their language acquisition process. It may be more similar
to child-directed speech, which is also used to train language models more efficiently, e.g. in the

542



BabyLM challenge (Hu et al. 2024). It also better reflects what native speakers would hear and
learn from.

5.3 Implications

Our study dealt with investigating the performance of Dutch language models and comparing mul-
tilingual and monolingual performance in this domain. We chose this domain for several reasons.
Firstly, Dutch is a relatively high-resource language with several good-quality corpora and other
linguistic resources available, allowing us to experiment with different sizes and types of fine-tuning
data. Additionally, the Dutch language has some interesting linguistic phenomena which we wanted
to explore. Among these phenomena are compounding which we explored in further detail. Despite
these specific choices, our research has further reaching implications. Insights from our work can
help develop the field of natural language processing by motivating the creation of language-specific
language models which use higher-quality embeddings. This is not only applicable to higher resource
languages like Dutch and English, but even to under-resourced languages with few small-scale cor-
pora on which to train.

While large-scale multilingual language models use single tokenizers, we hypothesize that de-
veloping tokenizers for individual languages or adapting them to target languages will improve the
quality of word embeddings used by LMs. This is not a tall task for languages with many resources,
such as Dutch. However, lower-resource languages still struggle due to a lack of data on which to
train tokenizers. In this case, dictionary-based approaches like BPE-knockout may help, though we
are not aware of any applications of this method to (tuned) multilingual models so far.

Our work pertains to stacked encoder LLMs, but decoder LLMs such as GPT-40 (OpenAI 2024)
are gaining prominence and these are often adapted from English or multilingual models by neces-
sity. Little work has been done on intrinsic evaluation of these models against semantic similarity
benchmarks, though it has been found that OpenATl’s text-embeddings-3-large can achieve a 0.41
correlation with Dutch SimLex-999 (Snelder et al. 2025), which is similar to BERTje and our tuned
multilingual models. For English, it has also been shown that prompt-based decoder LLMs can
achieve far higher correlations (0.86) with human word similarity ratings when prompted to perform
a rating task (Trott 2024), although this task is a bit different than the typical intrinsic evaluation
setup as the model receives more context. It would be interesting to investigate whether tuning
a multilingual model or pre-training a monolingual model yields better word embeddings also for
generative decoder LLMs, although for Dutch we are not aware of any large monolingual models of
this type to compare to. Also, this type of evaluation can only be performed on open-source mod-
els. Therefore, it is difficult to speculate how our findings would generalize to this class of models.
Further research is needed to evaluate the quality of lexical-semantic representations of such models
intrinsically.

6. Conclusion

In this work, we evaluated the performance of monolingual and multilingual language models for
Dutch using a benchmark of human semantic similarity ratings for intrinsic evaluation. Furthermore,
we propose and test methods by which we can improve the language-specific semantic representations
of multilingual language models through tuning. By tuning models on target language data using
the masked language modelling task, we were able to improve intrinsic evaluation scores compared to
pre-trained mBERT, XLM-RoBERTa, mDeBERTa and EuroBERT models. We found that models
fine-tuned with the most additional Dutch data showed the greatest improvements. Notably, XL.M-
RoBERTa-large and mDeBERTa fine-tuned on 100M tokens from the Dutch SoNaR corpus outscored
the monolingual BERTje model on the benchmark. Interestingly, the recent EuroBERT-2.1B model
did not score well, but shows potential for larger amounts of fine-tuning data.
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We also compared tuning the multilingual models on transcribed spoken and written textual
data. Here, we found model-specific effects - the older mBERT and XLM-RoBERTa-large did better
on spoken data, while the newer mDeBERTa and EuroBERT did better with written data.

We noted significant differences in tokenization between the models and potential issues in ap-
plying multilingual tokenizers for Dutch, which may cause a performance bottleneck when tuning
multilingual models, as the tuning process does not adapt the tokenizer to the language. Other work
suggests that incorporating more morphological tokenization may help to improve performance. Ex-
isting solutions could be evaluated for adapting multilingual tokenizers to Dutch in future work.

Overall, we found that monolingual models BERTje and RobBERT outperformed multilingual
models in terms of intrinsic evaluation, and that a significant amount of computational resources
is required to fine-tune multilingual stacked encoder models to the same level, even ones that have
more modern architectures. Nevertheless, we did observe our highest benchmark score from a XLM-
RoBERTa-large model tuned on 100M tokens of Dutch written text, outperforming BERTje.

We suggest several directions for future work to build upon our findings. Firstly, pretraining
monolingual language models using both written and spoken text data could provide further in-
sights into their performance across intrinsic and extrinsic tasks, including various downstream NLP
applications. Because this is computationally costly, we could not conduct the ablation study to
its fullest extent. We would like to research further the effect of tuning data quantity on intrinsic
evaluation scores to see if the trend continues. We were also not able to explore hyperparameter
tuning for the model tuning process as this would be computationally costly, but in future work, this
would be a way to get more performance from a limited amount of language-specific tuning data.

Finally, further exploration of the limitations of multilingual language model tokenization and
its interaction with language-specific morphology, such as negation, compounding, and prefix/suffix
usage, could reveal critical factors affecting model performance and guide the development of more
effective multilingual models with language-specific tokenizer adaptations. Our compound word
experiment suggests that it would be interesting to evaluate morphological tokenization for Dutch
large language models in future work.
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Appendix A. Code and notebooks

All code and raw results used in this study can be found at:
https://github.com/bloemj/dutch_mono_multi_bert.

Appendix B. Full layer-wise results of pretrained models

These figures show layer-wise correlation scores with Dutch SimLex-999 for all pretrained models in
the study.
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Figure 7: Aggregate layer-wise intrinsic evaluation scores for all pretrained models, excluding mDe-
BERTa which is shown in Figure 1

Appendix C. Layer-wise results of tuned models

These figures show layer-wise correlation scores with Dutch SimLex-999 for the models tuned on the
largest (100M tokens) SoNaR written text dataset.
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Figure 8: Aggregate layer-wise intrinsic evaluation scores for all models tuned on the 100M token
SoNaR corpus sample
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Appendix D. Manual Inspection of Tokenisers

Model Input Tokenization Tokenizer
mBERT werknemer [‘werk’, ‘##nemer’] WordPiece
BERTje werknemer [‘werknemer’| WordPiece
RobBERT werknemer [‘werk’, ‘nemer’] BPE
RobBERT-2023 werknemer [‘werknemer’] Tik-to-Tok
XLM-RoBERTa werknemer [‘werk’, ‘nemer’] SentencePiece
mDeBERTa werknemer [‘werk’, ‘nemer’] SentencePiece
DeBERTa-v3-large werknemer [‘we’, ‘Tk’, ‘ne’, ‘mer’] SentencePiece
EuroBERT werknemer [‘wer’, *kn’, ‘emer’] BPE (Llama 3)
RoBERTa-BPE-39k werknemer ['werk’, ‘nem’, ’er’] BPE-knockout
RoBERTa-BPEko-39k werknemer [‘werknemer’] BPE
RoBERTa-BPE-30k-BPEko-9k | werknemer ['werk’, 'nem’, ’er’] BPE+knockout
mBERT aanwezigheid [‘aanwezig’, ‘#F#heid’] WordPiece
BERTje aanwezigheid [‘aanwezigheid’] WordPiece
RobBERT aanwezigheid [faan’, ‘we’, ‘zigheid’] BPE
RobBERT-2023 aanwezigheid [faanwezigheid’] Tik-to-Tok
XLM-RoBERTa aanwezigheid [‘aanwezig’, ‘heid’] SentencePiece
mDeBERTa aanwezigheid [‘aan’, ‘wezi’, ‘gheid’] SentencePiece
DeBERTa-v3-large aanwezigheid | [‘a’, ‘an’; ‘we’, ‘zig’, ‘heid’] | SentencePiece
EuroBERT aanwezigheid | [‘aan’, ‘we’, ‘zig’, ‘heid’] BPE (Llama 3)
RoBERTa-BPE-39k aanwezigheid [aanwezig’, "heid’] BPE-knockout
RoBERTa-BPEko-39k aanwezigheid [‘aanwezigheid’] BPE
RoBERTa-BPE-30k-BPEko-9k | aanwezigheid [aanwezig’, "heid’] BPE+knockout
mBERT schuim [‘sc’, ‘##hw’, ‘HH#im'] WordPiece
BERTje schuim [‘schuim’] WordPiece
RobBERT schuim [‘schuim’] BPE
RobBERT-2023 schuim [‘schuim’] Tik-to-Tok
XLM-RoBERTa schuim [‘sch’, ‘w, ‘im’] SentencePiece
mDeBERTa schuim [‘schui’, ‘m’] SentencePiece
DeBERTa-v3-large schuim [‘sch’, ‘u’, ‘im’] SentencePiece
EuroBERT schuim [‘sch’, ‘u’, ‘im’ BPE (Llama 3)
RoBERTa-BPE-39k schuim [‘schuim’] BPE-knockout
RoBERTa-BPEko-39k schuim [‘schuim’] BPE
RoBERTa-BPE-30k-BPEko-9k schuim [‘schuim’] BPE+knockout

Table 10: Manual inspection of tokenization of Dutch input with different models and tokenizers
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Appendix E. Sampled CGN subcorpora

Text type | Description
tta | Spontaneous conversations (face-to-face)
ttb | Interviews with teachers of Dutch
ttc | Spontaneous telephone dialogues (recorded via a switchboard)
ttd | Spontaneous telephone dialogues (recorded on MD with local interface)
tte | Simulated business negotiations
ttf | Interviews/discussions/debates (broadcast)
ttg | (political) discussions/debates/meetings (non-broadcast)
tth | Lessons recorded in a classroom
tti | Live (e.g. sport) commentaries (broadcast)

Table 11: Text types sampled from CGN (Weijers 2004, p. 37), representing relatively spontaneous
speech

Table 12: Text types not sampled from CGN (Weijers 2004, p. 37), representing prepared speech

Text type | Description

ttj | Newsreports/reportages (broadcast)

ttk | News (broadcast)

ttl | Commentaries/columns/reviews (broadcast)
ttm | Ceremonious speeches/sermons

ttn | Lectures/seminars

tto | Read speech

Appendix F. Transcript specific codes

Symbol Description

*v foreign (= non-Dutch) word

*d dialect

*a incomplete word

*u slip of the tongue or onomatopoeia

*z word with dialectal pronunciation

*x word difficult to hear

ggg a non-speech sound produced by the speaker

XXX one or more incomprehensible words or partial words
Xxx an incomprehensible word that is clearly a title or proper name
” the full stop marks the end of a sentence

7LD the ellipsis sign marks the end of an incomplete sentence
” ‘?77

the question mark indicates the end of an interrogative sentence

Table 13: CGN codes removed from training data and their definitions

Appendix G. Hardware specifications

GPU: 8x NVidia RTX6000 Ada

GPU Memory: 48GB
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CPU: 2x AMD 9554
Memory: 768 GB
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