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Abstract
We present an algorithm and implementation for extracting recurring fragments from treebanks. Using a
tree-kernel method the largest common fragments are extracted from each pair of trees. The algorithm presented
achieves a thirty-fold speedup over the previously available method on the Wall Street Journal dataset. It is also
more general, in that it supports trees with discontinuous constituents. The resulting fragments can be used as
a tree-substitution grammar or in classification problems such as authorship attribution and other stylometry
tasks.

1. Introduction
Treebanks are a rich source of lexical and structural patterns. A simple and common approach is to consider
the frequencies of individual grammar productions; the main example being treebank grammars for pars-
ing (Charniak, 1996), but also stylometry (cf. Baayen et al., 1996; Raghavan et al., 2010; Ashok et al., 2013).
Richer patterns involve multiple lexical items or constituents; i.e., they may consist of the co-occurrence of a
sequence of productions that make up a specific phrase or a grammatical construction. Kernel methods, which
quantify similarity by decomposing a signal into components, and specifically tree kernel methods (Collins
and Duffy, 2001, 2002), consider such patterns but obtain only a numeric value about the degree of similarity
of structures,1 without making explicit what the structures have in common. The usefulness of extracting
explicit fragments, however, is underscored by one of the conclusions of Moschitti et al. (2008, p. 222):

The use of fast tree kernels (Moschitti, 2006a) along with the proposed tree representations
makes the learning and classification much faster, so that the overall running time is comparable
with polynomial kernels. However, when used with [Support Vector Machines] their running
time on very large data sets (e.g., millions of instances) becomes prohibitive. Exploiting tree
kernel-derived features in a more efficient way (e.g., by selecting the most relevant fragments and
using them in an explicit space) is thus an interesting line of future research.

Aside from their use as features in machine learning tasks, tree fragments also have applications in
computational linguistics for statistical parsing and corpus linguistics.

Since we will focus on the problem of finding the largest common fragments in tree pairs, there is an
intuitive relation to the problem of finding all longest common subsequences of a string pair. However, in the
case of tree structures the problem is more constrained than with sequences, since any matching nodes must be
connected through phrase-structure.

An algorithm for extracting recurring phrase-structure fragments was first presented by Sangati et al.
(2010). Their algorithm is based on a Quadratic Tree Kernel that compares each node in the input to all others,
giving a quadratic time complexity with respect to the number of nodes in the treebank. Moschitti (2006b)
presents the Fast Tree Kernel, which operates in linear average time. However, his algorithm only returns a list

1. In fact, the practice of using a kernel to quantify similarity without making it explicit is referred to as the ‘kernel trick’ in the machine
learning literature.
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of matching nodes. This work presents an algorithm that exploits the Fast Tree Kernel of Moschitti (2006b) to
extract recurring fragments, providing a significant speedup over the quadratic approach. Our implementation
is available for download, including source code, cf. https://github.com/andreasvc/disco-dop

2. Applications, related work

The two main applications of tree fragment extraction so far are in parsing and classification problems.
Tree fragments can be used as grammar productions in Tree-Substitution Grammars (tsg). tsgs are used in

the Data-Oriented Parsing framework; dop (Scha, 1990; Bod, 1992). In Data-Oriented Parsing the treebank is
considered as the grammar, from which all possible fragments can in principle be used to derive new sentences
through tree-substitution. Grammar induction is therefore conceptually straightforward (although the grammar
is very large), as there is no training or learning involved. This maximizes re-use of previous experience.

Since representing all possible fragments of a treebank is not feasible (their number is exponential in the
number of nodes), one can resort to using a subset, but sampling or arbitrary restrictions are likely to lead to a
suboptimal set of fragments, since the vast majority of fragments occur only once in the treebank (Sangati
et al., 2010). Double-dop; 2dop (Sangati and Zuidema, 2011) avoids this by restricting the set to fragments that
occur at least twice. The heuristic of this model is to construct the grammar by extracting the largest common
fragments for every pair of trees, just as the tool presented in this work. A recent implementation generalizes
this model to trees with discontinuous constituents (van Cranenburgh and Bod, 2013).

An alternative to the all-fragments assumption of dop takes a Bayesian approach to selecting fragments
and assigning probabilities. Bayesian tsgs (O’Donnell et al., 2009; Post and Gildea, 2009; Cohn et al., 2010;
Shindo et al., 2012) are induced by sampling fragments using Markov Chain Monte Carlo (mcmc) following a
Zipfian long tail distribution.

Aside from the generative use of fragments in tsgs, tree fragments are also used for discriminative re-
ranking. Implicit fragment features (counted but not extracted) are used in Collins and Duffy (2001, 2002)
through a tree kernel, and explicit fragment features are used in Charniak and Johnson (2005, p. 178: HeadTree
and NGramTree features). Another discriminative application of recurring fragments is in text classification
tasks. Common tree fragments can be used to define a similarity measure between texts, which can be applied
to the task of authorship attribution (van Cranenburgh, 2012c). In the latter case the efficiency of extracting
fragments has been exploited by extracting fragments at classification time, i.e., a memory-based approach,
without defining features in advance. Other classification tasks have been modeled with fragments induced
by Bayesian tsgs: e.g., native language detection (Swanson and Charniak, 2012), stylometry of scientific
papers (Bergsma et al., 2012), and corpus analysis of source code (Allamanis and Sutton, 2014).

Finally, there is a tradition in the data mining literature called frequent tree mining or frequent structure
mining (Jiménez et al., 2010). This tradition does not apply the maximal fragment constraint and explores
different kinds of fragments and trees. The approach is based on the Apriori algorithm and works by generating
candidates that occur with a specified minimum frequency. However, the relaxation of the maximality
constraint results in an exponential number of fragments, while for linguistic applications the focus on frequent
fragments is arguably in conflict with the importance of the long tail in language, specifically, the importance of
low frequency events. See Martens (2010) though, which applies a frequent tree mining approach to unordered
dependency trees.

3. Definitions

The notion of a tree fragment is defined as follows:

Definition 1 A fragment f of a tree T is a connected subgraph of T , such that f contains at least 2 nodes, and
each node in f either is an empty node (a substitution site), or immediately dominates the same immediate
children as the corresponding node in T .
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Figure 1: Left: two example trees containing recurring patterns; the superscript denotes an identifier for each
node. Right: all maximal fragments in the pair of trees on the left (frequencies in parentheses). Note
that the second fragment is a subgraph of the first fragment, but is still a maximal fragment when
considering 〈NP1,NP2〉 of the first and second tree, respectively.

In this paper we identify a non-terminal node of a tree with its (grammar) production. The production at a
non-terminal node is a tuple of labels of that node and its immediate children. A label is either the phrase label
of a non-terminal node, or the lexical item of a terminal node.

Note that in Moschitti (2006a), this fragment definition corresponds to the subset tree (sst) kernel. The sst
kernel can be contrasted with the subtree (st) kernel where all descendants of a subtree are retained, and the
partial tree (pt) kernel where nodes may include a subsequence of the children of the corresponding node in
the original tree. In this work we only address the sst kernel.

The subset of possible recurring fragments we consider is defined by the largest overlapping fragments for
any pair of trees in the input:

Definition 2 Given a pair of trees 〈a, b〉, and a pair of nodes 〈p, q〉 such that p is a node in a, q is a node in
b, with p and q having the same production, the maximal common fragment defined by 〈p, q〉 is the largest
fragment f that occurs in a incorporating node p and occurs in b incorporating node q.

Note that our definition of maximal common fragment differs from the one in Sangati et al. (2010, sec. 2):

“A (partial) fragment τ shared between [two] trees is maximal if there is no other shared (partial)
fragment starting with the same node as in τ and including all its nodes.”

Furthermore, in their formulation, maximality of fragments is determined with respect to the first tree
in the comparison (cf. Sangati et al., 2010, Algorithm 2, second statement). Our formulation determines
maximality with respect to node pairs, i.e., involving both trees. A consequence of this is that for the algorithm
of Sangati et al. (2010), the order of the trees in the input can have an effect on the result; i.e., the extraction of
fragments from a node pair is not a commutative operation. Consider a pair of trees and the fragments that
FragmentSeeker (Sangati et al., 2010) extracts from them:
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When the order of the input is reversed, the second fragment is not extracted, because it is a subset of the

first. With our algorithm following definition 2, the two fragments are extracted regardless of the order of the
input.
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We are also interested in the frequencies of fragments. The frequency is not defined with respect to
occurrences as maximal common fragment, but with respect to all occurrences:

Definition 3 The occurrence count of a fragment in a treebank is the total number of occurrences of a fragment
in a collection of trees.

As an example of the preceding definitions, see figure 1, which shows two trees and their maximal common
fragments with occurrence counts.

4. Fragment extraction with tree kernels

In this section we first discuss the Fast Tree Kernel, followed by the algorithm to extract fragments from the
matching nodes it finds. We then discuss two extensions that find occurrence counts and handle discontinuous
constituents.

Algorithm 1 lists the pseudocode for the Fast Tree Kernel (ftk) by Moschitti (2006b). The pseudocode
for extracting fragments is shown in algorithm 2; the main entry point is function recurring-fragments. This
formulation is restricted to binary trees, without loss of generality, since trees can be binarized into a normal
form and debinarized without loss of information.

Sangati et al. (2010) define the extraction of fragments as considering all pairs of trees from a single
treebank. Since it may also be interesting to investigate the commonalities of two different treebanks, we
generalize the task of finding recurring fragments in a treebank to the task of finding the common fragments of
two, possibly equal, treebanks. In case the treebanks are equal, only half of the possible tree pairs have to be
considered: the fragments extracted from 〈tn, tm〉, with n < m, are equal to those of 〈tm, tn〉.

Input: A pair of trees 〈a, b〉, with the nodes of each tree sorted by a common ordering on their productions.
a[i] returns the i-th production in a.

Output: A boolean matrixM withM[i, j] true iff the production at a[i] equals the one at b[ j].
1: function fast-tree-kernel(a, b)
2: i← 0, j← 0
3: M← |a| × |b| boolean matrix, values initialized as false.
4: while i < |a| ∧ j < |b|
5: if a[i] < b[ j]
6: j← j + 1
7: else if a[i] > b[ j]
8: i← i + 1
9: else

10: while a[i] = b[ j]
11: j′ ← j
12: while a[i] = b[ j′]
13: M[i, j′]← true
14: j′ ← j′ + 1
15: i← i + 1

Algorithm 1: The Fast Tree Kernel, adapted from Moschitti (2006b).

4.1 The Fast Tree Kernel

See algorithm 1 for the pseudocode of the Fast Tree Kernel. The insight that makes this kernel fast on average
is that the problem of finding common productions can be viewed as the problem of finding the intersection of
two multisets that have been sorted in advance. The input of the function fast-tree-kernel is a pair of trees
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〈a, b〉, that are represented as a list of nodes sorted by their productions.2 The requirement for sorted input
depends on an ordering defined over the grammar productions, but note that the nature of this ordering is
irrelevant, as long as it is consistently applied (e.g., productions may be sorted lexicographically by the labels
of the left and right hand sides of productions; or productions can be assigned a sequence number when they
are first encountered). The output is a boolean matrix where the bit at (n,m) is set iff the nodes at those indices
in the respective trees have the same production. From this table the bitvectors corresponding to fragments are
collected and stored in the results table.

Given the trees from the introduction as input, the resulting set of matching node pairs can be seen as a
matrix; cf. table 1. The matrix visualizes what makes the algorithm efficient: there is a diagonal path along
which comparisons have to be made, but most node pairs (i.e., the ones with a different label) do not have
to be considered. The larger the number of production types, the higher the efficiency. In case there is only
a single non-terminal label, and hence only one phrasal, binary production, the efficiency of the algorithm
degenerates and the worst-case quadratic complexity obtains.
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Table 1: Matrix when trees in figure 1 are compared. Highlighted cells are nodes with a common production.
The numbers indicate the fragments extracted, corresponding with those in figure 1. Note that for
expository purposes, the nodes are presented in depth-first order.

4.2 Extracting maximal connected subsets

After the matrix with matching nodes has been filled, we identify the maximal fragments that matching nodes
are part of. We traverse the second tree in depth-first order, in search for possible root nodes of fragments;
cf. algorithm 2, line 6.

The fast tree kernel in algorithm 1 returns matching node pairs as output. The resulting adjacency matrix
M is iterated over in line 8. This may appear to be quadratic in the number of nodes of the trees, but only the
cells for matching node pairs need to be visited, and each pair is visited once. Since it is possible to scan for
cells with 1-bits efficiently (cf. sec. 5), the linear average time complexity is maintained.

Whenever a 1-bit corresponding to a matching node pair is encountered, a fragment with that node pair is
extracted. Both trees are traversed in parallel, top-down from that node pair onwards, to collect the subset
of nodes for the fragment; cf. algorithm 2, line 9. Both trees need to be considered to ensure that extracted

2. The requirement for sorted input does not affect the asymptotic complexity of the algorithm because each tree is sorted separately, so
is not affected by the total number of nodes in the treebank. Furthermore, the sorting is done offline and only once.
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Input: A treebank TB, with the nodes of each tree sorted by their productions.
Output: A set F with maximal recurring fragments from TB.

1: function recurring-fragments(TB)
2: F← ∅
3: for all 〈a, b〉 ∈ TB × TB with a , b
4: M← fast-tree-kernel(a, b)
5: F← F ∪ fragments(a, b, root(b),M)

Input: a, b are trees with a[i]l, a[i]r the index of
the left and right child of node i of a (mutatis mutandis for b[ j]l and b[ j]r).
M is a boolean matrix withM[i, j] true iff the production at a[i] equals the one at b[ j].

Output: The set F of maximal fragments in a and b.
6: function fragments(a, b, j,M) {Traverse tree b top-down starting from j.}
7: F ← ∅
8: for all i such thatM[i, j]
9: F← F ∪ extract-at(a, b, i, j,M)

10: if has-left-child(b[ j])
11: F← F ∪ fragments(a, b, b[ j]l,M)
12: if has-right-child(b[ j])
13: F← F ∪ fragments(a, b, b[ j]r,M)

Input: Indices i, j denoting start of a fragment in trees a, b.
Output: The fragment f rooted at a[i] and b[ j].
14: function extract-at(a, b, i, j,M) {Traverse a and b top-down, in parallel.}
15: f← tree-from-production(a[i]) {Create a depth 1 subtree from a grammar production.}
16: M[i, j]← false {do not extract a fragment with this node pair again.}
17: if has-left-child(a[i]) ∧M[a[i]l, b[ j]l]
18: fl ← extract-at(f, a, b, a[i]l, b[ j]l,M) {add as left subtree}
19: if has-right-child(a[i]) ∧M[a[i]r, b[ j]r]
20: fr ← extract-at(f, a, b, a[i]r, b[ j]r,M) {add as right subtree}

Algorithm 2: Extract maximal recurring fragments given common nodes for each pair of trees in a treebank.

subsets are connected in both trees. Every node pair that is visited contributes a subtree corresponding to the
production at the node pair, which is added to the fragment that is being constructed. The node pair is marked
such that it will not be used in another fragment.

Note that the algorithm of Sangati et al. (2010) combines the tree kernel and extraction of maximal
connected subsets in a single pass, and is thus a dynamic programming approach. That is, as the algorithm
iterates over possibly matching pairs of nodes, a new fragment may result which subsumes a fragment extracted
at an earlier stage. Our approach is able to use a greedy algorithm for finding maximal subgraphs by using a
two pass approach consisting of first finding all matching nodes, and then extracting fragments.

4.3 Occurrence counts

It is possible to keep track of the number of times a fragment is extracted. Because of the maximality constraint,
this count will typically be a lower bound on the true occurrence count of a fragment. The true occurrence
count may be useful for a probabilistic model or for corpus analysis. To do this, a second pass needs to be
made over the treebank, in which for each fragment, all its occurrences are counted—including occurrences
that are not maximal for any tree pair.

Counting exploits an index listing the set of trees which contain a given production. By taking the
intersection of the sets for all productions in a fragment, a set of candidate trees can be composed efficiently.
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These candidates will contain all of the productions in the fragment, but it is necessary to traverse the
candidates exhaustively to confirm that the productions are present in the right configuration corresponding to
the fragment.

Aside from obtaining counts, it is also possible to obtain for each fragment a vector of indices of all trees
that contain the fragment. This makes it possible to address diachronic questions, if the trees in the input are
presented in chronological order.
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Figure 2: An illustration of the representation for trees with discontinuous constituents. Shown on the left is
the original discontinuous tree from the Alpino treebank (van der Beek et al., 2002). On the right is
a version in which the phrase structure has been decoupled from its surface form using indices.
Translation: That verb she had invented herself.

4.4 Trees with discontinuous constituents

Our implementation supports trees with discontinuous constituents. A discontinuous constituent is a constituent
whose yield does not consist of a single contiguous string, but rather a tuple of strings. As a simple example in
English, consider:

(1) Wake your friend up

(2) [VP Wake . . . up]

Where the phrasal verb in (1) may be said to constitute the discontinuous constituent (2).
The first treebank that introduced discontinuous constituents as a major component of its annotation is the

German Negra treebank (Skut et al., 1997). Syntax trees in this style of annotation are defined as unordered
trees, with the caveat that there is a total ordering of the words in the original sentence. This caveat is important
because for example in the case of the problem of calculating the tree-edit distance between trees, the problem
is tractable for ordered trees, but not for unordered trees (Zhang et al., 1992).

We use a transform-backtransform approach which makes it possible to use the fragment extraction
algorithm without further modification. In order to use the unordered trees from treebanks with discontinuous
constituents, we use the ordering of the words in the sentences to induce a canonical order for the internal
nodes of the tree. This makes it possible to use the same data structures as for continuous trees. We use a
representation where leaf nodes are decorated with indices indicating their position in the sentence (cf. figure 2).
Using the indices a canonical order for internal nodes is induced based on the lowest index dominated by each
node. Indices are used not only to keep track of the order of lexical nodes, but also to store where contributions
of frontier non-terminals end up relative to the contributions of other non-terminals. This is necessary in order
to preserve the configuration of the yield in the original sentence. The indices are based on those in the original
sentence, but need to be decoupled from this original context, so that the indices of a fragment are independent
from the position in which the fragment occurred in the original tree. This process of canonicalization is
analogous to how a production of a Linear Context-Free Rewriting System (lcfrs) can be read off from a
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tree with discontinuous constituents (Maier and Søgaard, 2008), where intervals of indices are replaced by
variables. The canonicalization of fragments is achieved in three steps:

1. Translate indices so that they start at 0; e.g.:
VB

uitgevonden5

VB

uitgevonden0

2. Reduce spans of frontier non-terminals to length 1;
move surrounding indices accordingly; e.g.:

S

VP2

0:1 5:5

VB

had2

NN

ze3
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0 5

VB

had1

NN

ze2
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3. Compress gaps to length 1; e.g.:
VP2

NP

0

VB

uitgevonden5

VP2

NP

0

VB

uitgevonden2

As an example of this procedure, consider two variants of a famous quotation attributed to Churchill,
mocking the notion that sentences should not end with a preposition:

(3) a. This is the sort of English up with which I will not put.
b. Ending a sentence with a preposition is the sort of English up with which I will not put.

If we apply an analysis with discontinuous constituents, these sentences contain a common verb phrase as an
argument to the verb phrase “I will not”, namely (4-a) and (4-b). If these are canonicalized, they map to the
same fragment (4-c):

(4) a. [VP up6 with7 which8 . . . put12 ]
b. [VP up11 with12 which13 . . . put17 ]
c. [VP up0 with1 which2 . . . put4 ]

5. Implementation
A number of strategies have been employed to implement the fragment extraction algorithm as efficiently as
possible. We use the Cython programming language (Behnel et al., 2011) which is a superset of the Python
language that translates to C code and compiles to Python extension modules that seamlessly integrate with
larger Python applications. We use manual memory management for the treebank and temporary arrays of the
algorithm. This avoids the overhead of garbage collection and the requirement that all values must reside in an
object (‘boxed’) as in Python and other managed languages.

A tree is represented as an array of tightly packed structs for each node, with the grammar production
represented as an integer ID, and child nodes using array indices. Mapping productions to integer IDs ensures
that comparisons between productions are cheap. In contrast to a pointer-based tree, traversing this array
representation does not require indirection and has good memory locality.

When a pair of trees is compared, the results are stored in a bit matrix. The operations that need to iterate
over set bits exploit CPU instructions to do this efficiently on one machine word (typically 64 bits) at a time
(e.g., the ‘find first set’ instruction that finds the index of the first set bit of an integer). Fragments are first
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stored as a bitvector of a given tree, where each bit refers to the presence or absence of a particular production
in the tree. These bitvectors are later converted to a string with the fragment in bracket notation. This ensures
that fragments as extracted from different trees are recognized as equivalent and it is the format in which the
results are returned.

The problem of extracting fragments from a treebank is a so-called embarrassingly parallel problem. This
means that the work on a single tree pair is not affected by any other part of the treebank, and computations
can be trivially distributed over any available computing power. In order to exploit multiple processing cores,
we use the Python multiprocessing library. After reading the treebank the tree pairs are distributed evenly
over a pool of processes, after which the results are collected.

Number of Time (hr:min)
Method Corpus Trees Fragments Wall cpu

Sangati et al. (2010):
qtk wsj 2–21 39,832 990,156 8:23 124:04

This work:
ftk wsj 2–21 39,832 990,890 0:18 4:01
ftk Negra, train set 18,602 176,060 0:04 0:32
ftk Gigaword, nyt 1999–11 502,424 9.7 million 9:54 ∼ 160

Table 2: Performance comparison of fragment extraction with the Quadratic Tree Kernel (qtk) and the Fast
Tree Kernel (ftk) based algorithm. Wall clock time is when using 16 cores.

6. Benchmark

As a benchmark we use the training sections of the wsj and Negra treebanks (Marcus et al., 1993; Skut et al.,
1997), and a section of the Annotated Gigaword (Napoles et al., 2012, nyt eng 199911), to validate that the
more efficient algorithm makes it possible to handle larger treebanks. The wsj treebank is binarized with h = 1,
v = 2 markovization (Klein and Manning, 2003) and stripped of traces and function tags. To demonstrate
the capability of working with discontinuous treebanks, we use the German Negra treebank, also binarized
with h = 1, v = 2 markovization, and punctuation re-attached as described in van Cranenburgh (2012a). The
Gigaword section is binarized without markovization. Work is divided over 16 cpu cores to demonstrate that
the algorithm lends itself to parallelization.

See table 2 for a performance comparison. For the Sangati et al. (2010) implementation we use the
implementation published as part of Sangati and Zuidema (2011). Because we use the markovization setting
of h = 1, v = 2 described above, we get a larger number of fragments and longer running time than the
results for the non-binarized wsj treebank in Sangati et al. (2010). The times reported include the work for
obtaining occurrence counts of fragments.3 Note that there is a slight difference in the number of fragments
found, but both implementations agree on 99.93 % of fragments found in the wsj treebank. This difference is
due to the difference in definition of what constitutes a maximal fragment discussed in section 3. The figure
of 124 hours for the wsj treebank with the implementation of Sangati et al. (2010) might seem large, as the
training set of wsj is not particularly large, at about 40K sentences, and quadratic algorithms are typically
considered reasonable. However, note that the algorithm is quadratic with respect to the number of nodes in
the treebank. After binarization, there are 2,045,118 nodes in the training set of wsj, and the square of that
number is considerable.

The Fast Tree Kernel delivers a substantial asymptotic improvement: we obtain a 30-fold speedup over
Sangati et al. (2010). This speedup opens up the possibility of applying fragment extraction to much larger

3. Erratum: an earlier report on this work (van Cranenburgh, 2012b) reported run times without occurrence counts, while the results of
Sangati et al. (2010) include them, which exaggerated the speedup.
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Figure 3: A plot of the running time and the number of fragments as a function of the number of trees in the
input. The input is the Penn treebank, Wall Street Journal section 2–21, binarized h = ∞, v = 1;
without extracting occurrence counts.

corpora. In addition to the improvement in runtime, the memory usage is eight times lower (less than 1 gb per
process).

Part of this speedup is attributable to the more low-level style of programming using bitvectors and tightly
packed data structures. However, in earlier experiments with a re-implementation of the algorithms specified
by Sangati et al. (2010) with these optimizations, only a two-fold speedup was achieved. Therefore, most of
the speedup comes from the Fast Tree Kernel and the greedy depth-first fragment extraction introduced in this
work.

About 8.5 % of fragments extracted from the Negra treebank contain a discontinuous root or internal node,
compared to 30 % of sentences in the treebank that contain one or more discontinuous constituents.

When the fragment extraction is applied to a larger number of trees from Gigaword, the extraction of
fragments is still feasible, as long as occurrence counts are not requested, which does not scale as well as the
other parts in terms of run time. This is because obtaining the counts requires iterating over all fragments and
trees, both of which grow proportionately with treebank size. Future work should focus on optimizing this
aspect of the algorithm by improving the indexing of the treebank. Perhaps this can be done using a variant of
a suffix array. A suffix array of a corpus allows for arbitrary substring search in time linear to the length of
the substring (Abouelhoda et al., 2004). Suffix arrays have been used for machine translation (Lopez, 2007).
However, suffix arrays only deal with strings. They would either need to be generalized to tree structures, or
adapted as a filter to speed up finding trees with matching terminals. Alternatively, it may be the case that for
the application of Probabilistic Tree-Substitution Grammars, approximate frequencies suffice.

Figure 3 plots the number of fragments and run time as the number of trees is increased. It is clear that the
number of fragments extracted grows linearly with the number of trees. The plot of the running time appears
close to linear, with a slight curvature (similar to the graphs in Moschitti 2006a). While the tree kernel is linear
average time in the number of nodes, the number of tree pairs that are compared is quadratic in the number
of trees, when all tree pairs are considered. The complexity can be limited further by only considering tree
pairs with a certain number of overlapping lexical items, or looking only at a sample of tree pairs. A further
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optimization, suggested in Collins and Duffy (2001, sec. 5) and implemented in Aiolli et al. (2007), is to
exploit common subtrees in the input by representing the set of trees as a single directed acyclic graph. Rieck
et al. (2010) present an Approximate Tree Kernel which attains a large speedup by significantly reducing the
space of fragments that are considered.

7. Conclusion
We have presented a method and implementation for fragment extraction using an average case linear time
tree kernel. We obtain a substantial speedup over the previously presented quadratic-time algorithm, and the
resulting fragments and frequencies have been validated against the output of the latter. Additionally, we
introduced support for discontinuous constituents.

The fragment extractor including source code is available for download as part of disco-dop,
cf. https://github.com/andreasvc/disco-dop
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