
Computational Linguistics in the Netherlands Journal 4 (2014) 137-148 Submitted 06/2014; Published 12/2014

Conversions between D and MCFG:
Logical Characterizations of the Mildly Context-Sensitive

Languages

Gijs Jasper Wijnholds∗ gijswijnholds@hotmail.com

∗ILLC, Amsterdam, The Netherlands

Abstract
The Displacement Calculus (DC) of Morrill et al. (2011) extends Lambek categorial grammar

with wrapping operations for handling discontinuous dependencies. In this paper, we study two
computationally attractive fragments of DC and relate them via equivalence proofs to the well-
nested Multiple Context Free Grammars (MCFG) of Kanazawa (2009). A first fragment, first-
order DC, has been shown in earlier work to enjoy polynomial parsability, but it sacrificies the
hypothetical reasoning facilities that form a central feature of the syntax-semantics interface in
logic grammars. Our main result then is to identify a second fragment, restricted two-dimensional
DC, that allows for hypothetical reasoning, and to provide a conversion of Displacement Context-
free Grammar, a formalism equivalent to well-nested MCFG, into our restricted two-dimensional
Displacement Grammar.

1. Introduction

A central theme in computational linguistics is the balance between expressivity and computational
complexity. On the expressivity side, it is well known (Huybregts 1984, Shieber 1987) that natural
language exhibits patterns that are not recognizable by context-free grammar. The challenge then is
to extend the recognizing capacity beyond context-free, while still maintaining good computational
properties, in particular polynomial parsability, a crucial feature for formalisms employed in actual
language technology. Formalisms with the desired expressivity/complexity mix are known as Mildly
Context-Sensitive Grammars, after Joshi et al. (1990). Examples are Tree Adjoining Grammars,
Combinatory Categorial Grammars, Linear Indexed Grammars and Multiple Context-free Gram-
mars (MCFG). The latter are our point of reference in this paper. In a MCFG, non-terminals range
over tuples of strings (rather than simply strings, as in a CFG). The size of these tuples (or the
dimension) then gives rise to a fine-grained hierarchy of k-MCFG, with growing expressivity as the
dimension k increases. Kanazawa (2009) has further refined this hierarchy by distinguishing a sub-
class of well-nested MCFG. Well-nestedness puts restrictions on how the elements of string tuples
can be intercalated, and the claim is that well-nestedness would already offer enough expressivity to
capture the phenomena of discontinuity that occur. An excellent textbook dealing with the mildly
context-sensitive family of grammar formalisms, their linguistic motivation, and their use in lan-
guage technology (particularly for grammar induction from dependency treebanks and treebanks
with discontinuities) is Kallmeyer (2010).

In the tradition of logic grammars, Displacement Calculus (DC) (Morrill and Valent́ın 2010)
has been proposed as a framework that overcomes the context-free limitations of Lambek categorial
grammars. Whereas the Lambek calculus can be seen as the logic of strings composed by concate-
nation, DC adds facilities for dealing with split strings: expressions consisting of detached parts. An
example would be the idiom ‘give – the cold shoulder’. To build the phrase ‘give someone the cold
shoulder’, one wraps the discontinuous expression around its object. For the general formulation
of DC, the generative capacity is unknown. For a restricted fragment, namely first-order DC, the
corresponding grammars have the same generative capacity as well-nested MCFG, as was shown by
Wijnholds (2011) and Sorokin (2013). The proof of one direction of the equivalence as given by

c©2014 Wijnholds.

Sorokin (2013) relies on a new grammatical formalism called Displacement Context-Free Grammar
(DCFG) which is equivalent to well-nested MCFG. We complement the mentioned results by show-
ing that a different fragment of DC, namely restricted two-dimensional DC, gives grammars that can
be obtained from a DCFG. Our motivation for studying this fragment is that it keeps the facilities
for hypothetical reasoning which forms an essential ingredient of the syntax-semantics interface in
logic grammars: hypothetical reasoning corresponds to lambda binding in the semantic representa-
tion associated with derivations, and as such provides the basis for the semantic interpretation of
quantifier scope construal and long-distance dependencies.

This paper is organized as follows: in Section 2 we define Displacement Context-Free Grammars
as given by Sorokin (2013) and we introduce two restrictions of the Displacement Calculus, first-
order Displacement Calculus and restricted two-dimensional Displacement Calculus. In Section 3 we
recall the equivalence between Displacement Context-Free Grammar and first-order Displacement
Calculus as it is stated in Sorokin (2013) combined with Wijnholds (2011). Section 4 provides
our main result, namely the conversion of a Displacement Context-Free Grammar into a restricted
two-dimensional Displacement Grammar. We conclude with some suggestions for further research.

2. Preliminaries

We introduce — in order of appearance — Displacement Context-Free Grammar, first-order Dis-
placement Grammar and restricted two-dimensional Displacement Grammar.

Let Σ be an alphabet. We denote by ε the empty word and by 1 a separator (a unique element not
occurring in Σ). Furthermore, we use the abbreviations Σ1 = Σ∪{1}, Σε = Σ∪{ε}, Σε,1 = Σ∪{ε, 1}.
For k a natural number, define Opk = {·,+1, ...,+k}. The set of well-formed terms built from Σε,1
using Opk is denoted by Tk(Σε,1) and is defined inductively, together with the rank (denoted by
r(·))1 of a term: for a ∈ Σε, a is a well-formed term with r(a) = 0. 1 is a term with r(1) = 1. If α
and β are terms such that r(α) + r(β) ≤ k, then α · β is a term with r(α · β) = r(α) + r(β). For
1 ≤ i ≤ k, if α and β are terms such that r(α) + r(β) − 1 ≤ k and i ≤ r(α), then α +i β is a term
with r(α+i β) = r(α) + r(β)− 1. We interpret · as concatenation, i.e. an associative operation with
unit ε and we interpret +i as wrapping with respect to the ith separator, i.e. α · 1 · β +i v = α · v · β
where r(α) = i − 1. Note that we have α +i 1 = α for i ≤ r(α) and 1 +1 α = α. Naturally, the
notation Tk(Σε,1) extends to any alphabet, for instance we could also have Tk(Σε,1 ∪N) where N is
an arbitrary set of symbols. This just means that the symbols of N may appear in terms and that
they do not increase the rank of a term in any way. Finally, we introduce the notion of context of a
term, this will be useful when introducing the Displacement Calculus.

Definition 1 A context ∆〈〉 is a term with a unique occurrence of a hole 〈〉 in it. The set of contexts
is defined as follows:

∆〈〉,Γ〈〉 := 〈〉 | ∆〈〉 ∗ Γ | ∆ ∗ Γ〈〉

where ∗ ∈ Opk.

We then can refer to ∆〈Γ〉 as the context ∆〈〉 in which the hole is replaced by Γ (note that this
is only defined if it results in a well-formed term).

We are now ready to define Displacement Context-Free Grammars as given by Sorokin (2013):

Definition 2 A k-Displacement Context-Free Grammar (k-DCFG) is a quadruple G = 〈Σ, N, S, P 〉
where Σ is a finite alphabet, N is a finite ranked set of non-terminal symbols with Σ∩N = ∅, S ∈ N
is a distinguished start symbol with r(S) = 0 and P is a set of rules of the form A → α. Here we
must have A ∈ N and α ∈ Tk(Σε,1 ∪N) and r(A) = r(α).

1. The rank of a term simply counts the number of separators in it.

138

Definition 3 For every α ∈ Tk(Σε,1 ∪ N), we define yield(A) as the smallest set satisfying the
following:

1. yield(a) = {a} for a ∈ Σε,1,

2. yield(α ∗ β) = yield(α) ∗ yield(β) for ∗ ∈ Opk,

3. yield(α) ⊆ yield(A) for A→ α ∈ P .

We furthermore define the language of a k-DCFG G as L(G) = yield(S). This concludes the
definition of Displacement Context-Free Grammar.

2.1 Displacement Calculus and its Fragments

We define general Displacement Grammar in terms of labelled natural deduction, allowing us to
naturally restrict the system to first-order Displacement Grammar and restricted two-dimensional
Displacement Grammar.

Labelled natural deduction will tell us what kind of terms can be associated with what kind of
types. When a term α is associated with a certain type A, we will say that the term is an inhabitant
of the type, denoted by α : A. We will first give the formal definition of types using the connectives
•, \, /,�k, ↑k, ↓k and afterwards explain how natural deduction acts upon types. Just as we define a
rank for each term, we provide types with sorts, meaning that the sort of the type should correspond
to the rank of all of its inhabitants.

Let Tp be a sorted set of atomic types, i.e. such that there is a map s : Tp → N. The sort of
an atomic type will refer to the number of separators its corresponding terms will have. The set of
sorted general Displacement types F (Tp) is defined as follows: if A ∈ Tp, then A ∈ F (Tp) and s(A)
is given. If A,B ∈ F (Tp) then A •B ∈ F (Tp) with s(A •B) = s(A) + s(B). If A,B ∈ F (Tp) with
s(A) ≤ s(B), then B/A,A\B ∈ F (Tp) with s(B/A) = s(A\B) = s(B)−s(A). If A,B ∈ F (Tp) with
1 ≤ s(A) we have for every k ≤ s(A) that A �k B ∈ F (Tp) with s(A �k B) = s(A) + s(B) − 1. If
A,B ∈ F (Tp) and s(A) ≤ s(B) then for every k ≤ s(B)−s(A)+1 we have A ↓k B,B ↑k A ∈ F (Tp)
with s(A ↓k B) = s(B ↑k A) = s(B) − s(A) + 1. We furthermore have two constants I, J ∈ F (Tp)
with s(I) = 0 and s(J) = 1.

We need to introduce a notion of order because we use it in our proofs. The order of a type
is inductively defined as follows: ord(A) = 0 for A ∈ Tp, ord(A • B) = max(ord(A), ord(B)),
ord(A\B) = ord(B/A) = max(ord(A) + 1, ord(B)), ord(A �k B) = max(ord(A), ord(B)), and
finally ord(A ↓k B) = ord(B ↑k A) = max(ord(A) + 1, ord(B)).

We will now give an intuitive interpretation of what types do. As noted above, labelled natural
deduction associates terms with certain types, and in our system of natural deduction we have
constructive and destructive operations on types (and hence on terms). We begin with an explanation
of constructive operations: the • is called the concatenation connective, intuitively corresponding to
the idea that from a term α : A and a term β : B we can construct α · β : A • B. The connectives
\, / are then called residuals with respect to •, which means that a term β : A\B will want to
concatenate to the left with α : A to give a term α · β : B. By a similar process, / is the right
residual of •. The �k connective we will call the wrapping connective, corresponding to the idea
that from a term α inhabiting A (the circumfix) and a term β inhabiting B (the infix), we can
form the term α +k β inhabiting A �k B (provided that the ranks/sorts are respected). Here we
have ↑k, ↓k as residuals with respect to �k, meaning that a term γ : B ↑k A will want a term α : A
to be inserted to give γ +k α : B. Similarly, a term γ : A ↓k B inserts itself into a term α : A in
order to get α+k γ : B. These operations correspond to the introduction rules for • and �k and the
elimination rules for their residuals, respectively. As for the destructive operations on types, these
correspond to the elimination rules for • and �k and the introduction rules for their residuals: if we

139

can derive from the assumptions that α : A and β : B a term ∆〈α · β〉 : C and we have derived a
term γ : A •B then we may derive ∆〈γ〉 : C. Similarly, we may derive ∆〈γ〉 : C given that we have
derived γ : A �k B and ∆〈α +k β〉 : C from the assumptions α : A and β : B. For the residuals,
we need only one assumption: if we can derive α · γ : B from the assumption α : A we may discard
α and derive γ : A\B. Similarly we may derive γ : B/A given that we have derived γ · α : B from
the assumption α : A. From a derivation of α +k γ : B out of the assumption α : A we may derive
γ : A ↓k B and given a derivation γ +k α : B from assumption α : A we may derive γ : B ↑k A.
Finally, we have two constant types I, J that will have as their sole inhabitant ε and 1 respectively.
This is reflected in the fact that they take the form of axioms in the system. The types I and J act
as units with respect to • and �k exactly like the terms ε and 1 are units to · and +k.

All the operations on term/type associations are summarized in the following definition, due to
Morrill et al. (2011):

Definition 4 (Natural Deduction) The proof theory for the full General Displacement Calculus
is as follows:

ε : I
Ax.I

....
α : A

....
β : B

α · β : A •B I•

....
γ : A •B

....
α : A

....
β : B....

∆〈α · β〉 : C

∆〈γ〉 : C
E•

α : A....
α · γ : B

γ : A\B
I\

....
α : A

....
γ : A\B

α · γ : B
E\

α : A....
γ · α : B

γ : B/A
I/

....
γ : B/A

....
α : A

γ · α : B
E/

1 : J
Ax.J

....
α : A

....
β : B

α+k β : A�k B
I�k

....
γ : A�k B

....
α : A

....
β : B....

∆〈α+k β〉 : C

∆〈γ〉 : C
E�k

α : A....
α+k γ : B

γ : A ↓k B
I ↓k

....
α : A

....
γ : A ↓k B

α+k γ : B
E ↓k

α : A....
γ +k α : B

γ : B ↑k A
I ↑k

....
γ : B ↑k A

....
α : A

γ +k α : B
E ↑k

where k ∈ N.

Now we need a system to characterize sets of strings. This is achieved by defining Displacement
Grammars over sets of atomic types:

Definition 5 A Displacement Grammar (DG) over a set of types Tp is a triple G = 〈Σ, δ, S〉 where
Σ is a finite alphabet, δ ⊆ Σ×F (Tp) is a type assignment relation such that for every (a, T) ∈ δ we
have that r(a) = s(T) = 0, and S ∈ F (Tp) is a distinguished start type with s(S) = 0.

140

Given a Displacement Grammar G we can reason with strings in the system by adding the rule

(a,A) ∈ δ
a : A

Lex.

which states that we can associate any letter in the grammar with some type given in the type
assignment relation, and construct further derivations with it. We then would like to define the
dimension of a DG over Tp as the maximal sort of a type in Tp, and call a DG of dimension k a
k-DG. Furthermore, we want to define the language of a DG as follows: let `C w : S denote that
according to the labelled natural deduction of calculus C (up to this point the only calculus we have
considered is the full general Displacement Calculus D) one can derive w : S. Then the language
generated by a k-DG G is defined as L(G) = {w ∈ Σ∗| `C w : S}.

We will now define the two (different) fragments of the full general Displacement Calculus that
we will investigate:

Definition 6 We obtain first-order Displacement Calculus, denoted by D1, by dropping the E•,E�k,
I\, I/, I ↓k, I ↑k rules. We obtain restricted two-dimensional Displacement Calculus, denoted 1-DJ

from first-order Displacement Calculus by dropping the I�k, E ↓k, E ↑k rules for k > 1 but adding
the I ↑1 rule with the restriction that α 6= ε.

It follows from the proof system of D1 that it is, in such a grammar, one can do with types that
are only of order less than or equal to 1. This means that in effect, using D1 as a proof system and
having only first-order types in the lexicon are essentially the same. For a 1-DJ grammar we omit
the subscripts as we only have 1 as a subscript, i.e. we write �, ↑, ↓ instead of �1, ↑1, ↓1.

The difference between the two fragments D1 and 1-DJ is that the former only uses first-order
types but with (possibly) a lot of separators in its terms, while the latter system only has one
separator in its terms at a time, but allows for hypothetical reasoning as it keeps the I ↑1 rule. We
will give some examples to illustrate the difference between the two systems, and our main result
will show that at least D1 can be simulated in the system 1-DJ .

This concludes the definition of first-order and restricted two-dimensional Displacement Gram-
mar.

Examples

To illustrate the definitions above, we will provide some examples of phenomena that can be described
using the systems D1 and 1-DJ .

Natural language phenomena like cross-serial dependencies in Dutch and Swiss German but also
unbounded scrambling in German and Korean exemplify the need for going beyond the context-free
boundary. By means of a suitable string homomorphism such patterns can be mapped to formal
languages like the copy language {w2 | w ∈ {a, b}+}, the kind of pattern that can be handled by
Tree Adjoining Grammars (Kallmeyer 2010, Chapter 1). To understand how copying patterns can
be dealt with in D1 and 1-DJ , we consider the double copy language {w3 | w ∈ {a, b}+}, which goes
beyond the expressivity of Tree Adjoining Grammars. The reason for taking w3 rather than w2 is
that for the standard w2 copy language one only would need one separator and thus it would not
very much distinguish the systems D1 and 1-DJ .

Any displacement grammar can be denoted by indicating what the distinguished goal type S is,
and then writing a lexical entry (a,A) ∈ δ by simply writing a : A, as in the following examples.

The following D1 grammar does indeed generate the double copy language:

S = (P �2 I)�1 I
a : A a : J\(A\(J\(A\P))) a : J\(P ↓2 Q) a : J\(Q ↓1 (A\P))
b : B b : J\(B\(J\(B\P))) b : J\(P ↓2 R) b : J\(R ↓1 (B\P))

141

The following 1-DJ grammar also generates the double copy language:

S = (((P ↑ XP
2)� I) ↑ XP

1)� I
a : A b : B xP1 : XP

1 xP2 : XP
2

xQ1 : XQ
1 xQ2 : XQ

2 xR1 : XR
1 xR2 : XR

2

a : XP
2 \(A\(XP

1 \(A\P))) b : XP
2 \(B\(XP

1 \(B\P)))

a : XP
2 \(A\(X

Q
1 \(A\P))) b : XP

2 \(B\(X
Q
1 \(B\P)))

a : XP
2 \(A\(XR

1 \(A\P))) b : XP
2 \(B\(XR

1 \(B\P)))

a : XP
2 \((P ↑ XP

2) ↓ Q) b : XP
2 \((P ↑ XP

2) ↓ R)

a : XQ
2 \((P ↑ XP

2) ↓ Q) b : XR
2 \((P ↑ XP

2) ↓ R)

a : XQ
1 \((Q ↑ X

Q
1) ↓ (A\P)) b : XQ

1 \((R ↑ XR
1) ↓ (B\P))

a : XR
1 \((Q ↑ X

Q
1) ↓ (A\P)) b : XR

1 \((R ↑ XR
1) ↓ (B\P))

a : XP
1 \((Q ↑ X

Q
1) ↓ (A\P)) b : XP

1 \((R ↑ XR
1) ↓ (B\P))

Derivations in any fragment of the Displacement Calculus may be denoted by gluing together the
natural deduction rules. This is precisely what is done in Figure 1, where we provide derivations for
bababa : S — in each of the two given grammars — to illustrate the conceptual similarity between
the two systems.

To illustrate the — from the viewpoint of semantics — interesting property of allowing hypo-
thetical reasoning, we notice the numerous examples given for phenomena like quantification and
apposotive relativization using type assignments with the type (A ↑ B) ↓ A in it (Morrill et al. 2011).
These type assignments require hypothetical reasoning (i.e. using the ↑k I rule) to account for differ-
ent semantic readings (for example, the different readings of Everybody loves someone.). The point
is, of course, that this hypothetical reasoning is available in the system 1-DJ while it is not available
in D1, indicating that the former system would be favourable over the latter one. However, the
system D1 already has a known generative capacity, whereas 1-DJ does not, as the following section
shows.

3. Related Results

In this section, we recall the result of Sorokin (2013) combined with the result of Wijnholds (2011) to
obtain an equivalence between DCFG and first-order DG. Moreover, this equivalence is dimension-
specific in the sense that every k-DCFG corresponds to a first-order k-DG and vice versa.

As is usual in formal language theory, the notation Xi for some i ∈ N means i copies of X, i.e.
X1 = X, Xn+1 = XnX.

Definition 7 (Greibach Normal Form) A k-DCFG is said to be in modified Greibach Normal
Form if all of its rules are of one of the following forms:

1. A→ Xia where A ∈ N − {X},

2. A→ XiaB or A→ BXia where A ∈ N − {X},B ∈ N ,

3. A→ BXiaC where A ∈ N − {X},B,C ∈ N ,

4. A→ B +j (XiaC) or A→ B +1 (Xia) where A,B ∈ N − {X},C ∈ N ,

5. A→ BXi or A→ XiB where A,B ∈ N ,

6. S → ε or X → 1.

where a ∈ Σ and i, j ∈ N and X is a distinguished non-terminal that generates 1s.

We then get the following lemma, due to Sorokin (2013):

142

Lemma 8 Every k-DCFG is equivalent to some k-DCFG in modified Greibach Normal Form.

To properly understand Sorokin’s construction and our subsequent proof, we need to characterize
the set of simple types and define the head of such a simple type. Simple types are characterized by
the following grammar:

T1 := A | A\T1 | T1/A | J\T1 | T1/J | A ↓k T2
T2 := A | A\T2 | T2/A | J\T2 | T2/J

where A is atomic and k ∈ N.

We define the head of a simple type inductively: hd(A) = A for A atomic, hd(A\B) = hd(B/A) =
hd(J\B) = hd(B/J) = hd(B) and hd(A ↓k B) = hd(B).

We then get the main theorem of Sorokin’s paper (Sorokin 2013):

Theorem 9 Every k-DCFG is equivalent to some first-order k-DG.

We give the construction of Sorokin because we will use it explicitly in our following proofs. So, given
a k-DCFG G = 〈Σ, N, P, S〉 in modified Greibach Normal Form, we define a k-DG G′ = 〈Σ′, δ, S′〉
over N (where the sorts of the basic types are exactly the ranks of the non-terminals) as follows:

1. Σ′ = Σ

2. S′ = S

3. δ is constructed as follows:

(a) For every rule A→ Xia, we add (a, J1\(...(Ji\A))) to δ,

(b) For every rule A→ XiaB or A→ BXia, we respectively add
(a, J1\(...(Ji\(A/B))))) or (a, J1\(...(Ji\(B\A)))) to δ,

(c) For every rule A→ BXiaC we add (a, J1\(...(Ji\(B\(A/C))))) to δ,

(d) For every rule A→ B +j (XiaC) or A→ B +1 (Xia) we respectively add
(a, J1\(...(Ji\((B ↓k A)/C)))) or (a, J1\(...(Ji\(B ↓1 A)))) to δ,

(e) For every rule A → BXi or A → XiB, we add for every assignment (c, C) ∈ δ such
that hd(C) = B, the assignment (c, C ′) where C ′ is C but with the head replaced by
(J1\(...(Ji\A))) or (((A/Ji)...)/J1) respectively.

It is not hard to see that the type lexicon that comes out of Sorokin’s construction has only
(first-order) simple types.

To obtain the equivalence, we notify the reader of the following theorem, which is due to Wijn-
holds (2011):

Theorem 10 Every first-order k-DG is equivalent to some k-DCFG.

The proof of this theorem amounts to a staged construction in which one first adds rules RA → a
(meaning a rule R labelled with the type A) for every (a,A) ∈ δ and in each stage decomposing the
types until finally, one reaches a fixed point and the grammar is complete. For a detailed exposition
of the proof, we refer the reader to Wijnholds (2011, Lemma 6).

143

4. Main Result

In this section we show our main result: For every Displacement Context Free Grammar there is an
equivalent restricted two-dimensional Displacement Grammar. We rely on the fact that Sorokin’s
conversion results in a first-order Displacement Grammar with an atomic start type and with only
simple types in its lexicon. We will use this fact to convert these kind of grammars into restricted
two-dimensional ones.

Next to the head of a (simple) type, we define the left and right degree2 of a simple type as
follows: lDeg(A) = 0 for A atomic, lDeg(A\B) = s(A) + lDeg(B), lDeg(J\B) = 1 + lDeg(B),
lDeg(B/A) = lDeg(B/J) = lDeg(B), lDeg(A ↓k B) = (k − 1) + lDeg(B) and rDeg(A) = 0 for
A atomic, rDeg(A\B) = rDeg(J\B) = rDeg(B), rDeg(B/A) = s(A) + rDeg(B), rDeg(B/J) =
1 + rDeg(B), rDeg(A ↓k B) = (s(A)− k) + rDeg(B).

If l is a list and i an index, we denote by len(l) the length of the list and by l!i the (i + 1)th
element of the list. We furthermore denote by l(i, j) the sublist of l from and including the ith
element up to and including the jth element. Finally, we denote by l1 + l2 the list concatenation of
lists l1 and l2. We define the following conversion map of simple types, given a list of basic types:

C(A, l) = A for A atomic,
C(A\B, l) = A\C(B, l)
C(J\B, l) = (l!i)\C(B, l) where i = lDeg(B)
C(B/A, l) = C(B, l)/A
C(B/J, l) = C(B, l)/(l!i) where i = len(l)− rDeg(B)− 1
C(A ↓k B, l) = (A ↑ XA

k) ↓ C(B, l)

We proceed to define a map3 that takes as input a lexical entry, a lexical assignment, and a list
(containing basic types) and returns a list of new lexical entries without separator unit J in it:

F ((a,A), δ, l1) = {(a,C(A, l1))} ∪
⋃
{F (e, δ, l2) | (e, l2) ∈ H(A, δ, l1)}

where

H(A, δ, l) = ∅ for A atomic
H(A\B, δ, l) = {((c, C), l(i, j)) | (c, C) ∈ δ, hd(C) = A} ∪H(B, δ, l)

where i = lDeg(B) + 1 and j = i+ s(A)− 1
H(J\B, δ, l) = H(B, δ, l),
H(B/A, δ, l) = {((c, C), l(i, j)) | (c, C) ∈ δ, hd(C) = A} ∪H(B, δ, l)

where i = len(l)− rDeg(B) and j = i+ s(A)− 1
H(B/J, δ, l) = H(B, δ, l)

H(A ↓k B, δ, l) =

{
{((c, C), l′) | (c, C) ∈ δ, hd(C) = A} ∪H(B, δ, l) if s(A) > s(B)

{((c, C), l′′) | (c, C) ∈ δ, hd(C) = A} ∪H(B, δ, l) otherwise

where l′ = l(1, k − 1) + [XA
k] + l(k, len(l)) and l′′ is l(1, s(A)) but with the kth element replaced by

XA
k .

We then define G((a,A), δ) as the fixed point of F ((a,A), δ, [X
hd(A)
1 , ... , X

hd(A)
s(hd(A))]).

Definition 11 Let G = 〈Σ, δ, S〉 be a D1 grammar such that S is atomic and δ contains only simple
types. We construct a DJ grammar G′ = 〈Σ′, δ′, S′〉 over Tp′ as follows:

1. For each A ∈ Tp of sort n, we introduce Avar = {xAi | 1 ≤ i ≤ n} and Atype = {XA
i | 1 ≤ i ≤ n}

(where each xAi is not in Σ and each XA
i is not in Tp),

2. The left (right) degree measures how many separators are yet to be inserted on the left (resp. right).
3. For a Haskell implementation of the whole conversion algorithm, see https://github.com/Holdwin/clin/blob/

master/clin2

144

https://github.com/Holdwin/clin/blob/master/clin2
https://github.com/Holdwin/clin/blob/master/clin2

2. Σ′ = Σ ∪
⋃
A∈Tp

Avar,

3. Tp′ = Tp ∪
⋃
A∈Tp

Atype,

4. Given A ∈ Tp′, if A ∈ Tp with s(A) = 0, then A also has sort 0 in Tp’, otherwise the sort of
A in Tp′ is 1,

5. δ′ = {(xAi , XA
i) | XA

i ∈ Atype, xAi ∈ Avar} ∪
⋃
{G(e, δ) | e ∈ δ}

6. S′ = S.

Before we prove correctness of the construction, let us note that the newly constructed lexicon
is a subset of the lexicon one would get when inserting all possible separator variables for J types.
This means that the construction is always bounded in space by the size of the lexicon times the
dimension of the grammar. Thus, we have that the construction does not give exponential blowup
in the size of the grammar.

Now we only need to define one more notion, that of a principal leaf of a derivation tree. Let t
be a derivation tree in a first-order Displacement Grammar G. If t just consists of a leaf l holding
a lexical entry, then l is the principal leaf of t. Otherwise, the principal leaf of t is the first lexical
entry encountered when following the most complex formula from the root of t. That is, if t is made
up of a deduction rule having two subtrees t1 and t2 then the roots of t1 and t2 are labelled with
a type. One of them must have an atomic type, and so we consider the principal leaf of the other
subtree to be the principal leaf of t.

Lemma 12 Let G = 〈Σ, δ, S〉 be a D1 grammar over Tp (such that S is atomic and δ contains
only simple types) and let G′ = 〈Σ′, δ′, S′〉 over Tp′ be the corresponding DJ grammar. Then
L(G) = L(G′).

Proof We show that for every derivation w1 ·1 · ... ·1 ·wn+1 : A (where A is atomic, s(A) = n and for
each wi for 1 ≤ i ≤ n+ 1 we have r(wi) = 0) in G there exists a derivation w1 · xA1 · ...xAn ·wn+1 : A
and vice versa. As s(S) = 0 and S′ = G(S) = S we get that for every w ∈ L(G) we have that
w ∈ L(G′) and vice versa.

(⇒) We show that for every derivation tree in G for some w1 ·1·...·1·wn+1 : A there exists a derivation
tree in G′ for w1 ·xA1 · ...xAn ·wn+1 : A. So, let t be a derivation tree in G for w = w1 ·1 · ... ·1 ·wn+1 : A.
We proceed by recursing over the map G: Consider the principal leaf of t holding b : B. As b : B is a
lexical entry (and hd(B) = A), we have that (b : C(B, [XA

1 , ..., X
A
s(A)])) is in δ′. We can replace b : B

by exactly this new lexical entry, thereby enforcing to change the types and derived strings in the
rest of the tree (in particular, the final derived string will be transformed into w1 · xA1 · ...xAn ·wn+1).
Then one can replace every 1 : J on the way up in the tree by the corresponding separator variable
assignment. Moreover, for each subtree t′ such that its root is used in the derivation of w : A from
the entry b : B, let v = v1 · 1 · ... · 1 · vm+1 : C (where s(C) = m) be the element at the root of t′ and
let D be the subformula of B such that it used to deduce together with C a some new type.

Then, if D = C\E, then we should replace v by v1 ·XA
i · ... ·XA

i+mvm+1 (where i = lDeg(E)). But
then we can use the recursive definition of F to claim that the principal leaf of t′ holds a lexical entry
f : F such that (c, [XA

i , ..., X
A
i+k]) ∈ H(A, δ, [XA

1 , ..., X
A
s(A)]), and repeat the process. The argument

is exactly similar if D = E/C. When D = C ↑k E, then either s(C) = s(E) + 1 or s(C) < s(E).
When s(C) = s(E) + 1 we should replace v by v1 ·XA

1 · ... ·XC
k · ... ·XA

m · vm+1 (and of course, insert
an instance of the I ↑ rule to get rid of XC

k). But in this case, the definition of H gives us exactly
the right list to apply the conversion map C to for the lexical entry in the principal leaf of t′. A
same argument goes for the case where s(C) < s(E). So, recursively applying the map G gives us

145

a new derivation tree in G′ for w1 ·XA
1 · ... ·XA

s(A) · ws(A)+1 : A. As s(S) = 0, this means that for

every w ∈ L(G) we obviously have a proof of w ∈ L(G′).

(⇐) We show that for every derivation tree in G′ for some w ∈ L(G′) there exists a derivation tree
in G for w ∈ L(G). So, let t be a derivation tree for some w ∈ L(G′). As for each introduced
separator variable, there was a J basic type in its place in the original grammar, we can map the
following function over the tree to obtain a legitimate tree in G for w showing that w ∈ L(G):
f(v : A) = g(v) : h(A) where g is the following string homomorphism: g(a) = a if a ∈ Σ and
g(a) = 1 otherwise (i.e. g maps separator variables to separators and other letters to itself) and
where h maps types back to their original type:

h(A) = A if A ∈ Tp, h(A) = J otherwise,
h(A\B) = h(A)\h(B),
h(B/A) = h(B)/h(A),

h((A ↑ XA
k) ↓ B) = A ↓k h(B)

It should be clear that mapping this over t and then conflating the pieces in the derivation where
the I ↑ is used gives a correct derivation in G as each of the leaves (representing a lexical entry) is
mapped either to 1 : J or to a lexical entry of G. Furthermore, the string homomorphism g maps w
to itself (as w cannot contain separator variables). Thus we have shown L(G′) ⊆ L(G).

Theorem 13 For every Displacement Context-Free Grammar, there is an equivalent restricted two-
dimensional Displacement Grammar.

5. Conclusion & Future Directions

We have shown that, besides the already known equivalence result between the frameworks of well-
nested Multiple Context Free Grammar and first-order Displacement Calculus, we can simulate the
use of separators by means of separator variables and thus have obtained that well-nested Multiple
Context Free Grammars are included in restricted two-dimensional Displacement Grammars. We
state here the conjecture that the converse is also true: every restricted two-dimensional Displace-
ment Grammar can be converted to a first-order Displacement Grammar, and thus to a well-nested
Multiple Context Free Grammar. If this conjecture were to be proven true, one would obtain a
second logical characterization of the Mildly Context-Sensitive Languages. If the conjecture were
to be given by a polynomial conversion, we would also obtain polynomial parsability for restricted
two-dimensional Displacement Grammars. Furthermore, it would be interesting to see how far one
can go when employing the general Displacement Calculus, e.g. whether its generative capacity is
equal to, or goes beyond that of general Multiple Context-Free Grammar. Some clues are given, for
instance that the general Displacement Calculus generates the permutation closures of context-free
languages (see Morrill and Valent́ın (2010)), and that MIX3 = {w ∈ {a, b, c}+ | |w|a = |w|b = |w|c}
(which is the permutation closure of a context-free language) can be generated by a (non-well-nested)
2-MCFG (Salvati 2011).

As for linguistic applications of the systems D1 and 1-DJ , it is clear that the former system does
not preserve the desirable property of hypothetical reasoning, while the latter keeps it (in a restricted
form). Thus, for most of the semantic phenomena addressed by Morrill et al. (2011, Chapter 3) one
will want to opt for the system 1-DJ . For instance, the approach given there to quantification leads
to a promising semantic analysis of the words every and some, which could probably not be treated
as elegantly within the system D1.

146

References

Huybregts, Riny (1984), The weak inadequacy of context-free phrase structure grammars, in
de Haan, Ger, Mieke Trommelen, and Wim Zonneveld, editors, Van periferie naar kern, Foris,
Dordrecht, pp. 81–99.

Joshi, Aravind K., K. Vijay Shanker, and David Weir (1990), The convergence of mildly context-
sensitive grammar formalisms.

Kallmeyer, Laura (2010), Parsing Beyond Context-Free Grammars, 1st ed., Springer Publishing
Company, Incorporated.

Kanazawa, Makoto (2009), The pumping lemma for well-nested multiple context-free languages,
Developments in Language Theory, Springer, pp. 312–325.

Morrill, Glyn and Oriol Valent́ın (2010), On calculus of displacement, Proceedings of the 10th Inter-
national Workshop on Tree Adjoining Grammars and Related Formalisms, pp. 45–52.

Morrill, Glyn, Oriol Valent́ın, and Mario Fadda (2011), The displacement calculus, Journal of Logic,
Language and Information 20 (1), pp. 1–48, Springer.

Salvati, Sylvain (2011), MIX is a 2-MCFL and the word problem in Z2 is solved by a third-order
collapsible pushdown automaton, Rapport de recherche. http://hal.inria.fr/inria-00564552.

Shieber, Stuart M (1987), Evidence against the context-freeness of natural language, The Formal
complexity of natural language, Springer, pp. 320–334.

Sorokin, Alexey (2013), Normal forms for multiple context-free languages and displacement lambek
grammars, Logical Foundations of Computer Science, Springer, pp. 319–334.

Wijnholds, G.J. (2011), Investigations into categorial grammar: Symmetric pregroup grammar and
displacement calculus. http://dspace.library.uu.nl/handle/1874/207634.

147

b
:
B

a
:
A

1
:
J

a
:
A

1
:
J

a
:
J
\(
A
\(
J
\(
A
\P

))
)

1
a

:
A
\(
J
\(
A
\P

))

a
1a

:
J
\(
A
\P

)

1a
1a

:
A
\P

a
1a

1a
:
P

1
:
J

b
:
J
\(
P
↓ 2
R

)

1b
:
P
↓ 2
R

a
1
a
1b
a

:
R

1
:
J

b
:
J
\(
R
↓ 1

(B
\P

))

1b
:
R
↓ 1

(B
\P

)

a
1
ba

1
ba

:
B
\P

ba
1b
a
1b
a

:
P

ε
:
I

ba
1b
a
ba

:
P
�

2
I

ε
:
I

ba
ba
ba

:
(P
�

2
I
)
�

1
I

b
:
B

a
:
A

x
R 1

:
X
R 1

a
:
A

x
P 2

:
X
P 2

a
:
X
P 2
\(
A
\(
X
R 1
\(
A
\P

))
)

x
P 2
a

:
A
\(
X
R 1
\(
A
\P

))

a
x
P 2
a

:
X
R 1
\(
A
\P

)

x
R 1
a
x
P 2
a

:
A
\P

a
x
R 1
a
x
P 2
a

:
P

a
x
R 1
a
1a

:
P
↑
X
P 2

x
P 2

:
X
P 2

b
:
X
P 2
\(

(P
↑
X
P 2

)
↓
R

)

x
P 2
b

:
(P
↑
X
P 2

)
↓
R

a
x
R 1
a
x
P 2
ba

:
R

a
1a
x
P 2
ba

:
R
↑
X
R 1

x
P 1

:
X
P 1

b
:
X
P 1
\(

(R
↑
X
R 1

)
↓

(B
\P

))

x
p 1
b

:
(R
↑
X
R 1

)
↓

(B
\P

)

a
x
p 1
ba
x
p 2
ba

:
B
\P

ba
x
p 1
ba
x
p 2
ba

:
P

ba
x
p 1
ba

1b
a

:
P
↑
X
P 2

ε
:
I

ba
x
p 1
ba
ba

:
(P
↑
X
P 2

)
�
I

ba
1
ba
ba

:
((
P
↑
X
P 2

)
�
I
)
↑
X
P 1

ε
:
I

ba
ba
ba

:
((

(P
↑
X
P 2

)
�
I
)
↑
X
P 1

)
�
I

F
ig

u
re

1
:

D
er

iv
a
ti

o
n

s
fo

r
ba
ba
ba

:
S

148

	Introduction
	Preliminaries
	Displacement Calculus and its Fragments

	Related Results
	Main Result
	Conclusion & Future Directions

