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Abstract

We evaluate the character-level translation method for neural semantic parsing on a large corpus

of sentences annotated with Abstract Meaning Representations (AMRs). Using a sequence-to-
sequence model, and some trivial preprocessing and postprocessing of AMRs, we obtain a baseline
accuracy of 53.1 (F-score on AMR-triples). We examine five different approaches to improve this
baseline result: (i) reordering AMR branches to match the word order of the input sentence in-
creases performance to 58.3; (ii) adding part-of-speech tags (automatically produced) to the input
shows improvement as well (57.2); (iii) So does the introduction of super characters (conflating
frequent sequences of characters to a single character), reaching 57.4; (iv) optimizing the training
process by using pre-training and averaging a set of models increases performance to 58.7; (v)
adding silver-standard training data obtained by an off-the-shelf parser yields the biggest improve-
ment, resulting in an F-score of 64.0. Combining all five techniques leads to an F-score of 71.0 on
holdout data, which is state-of-the-art in AMR parsing. This is remarkable because of the relative
simplicity of the approach.

1. Introduction

Various approaches to open-domain semantic parsing have been proposed in the last years. What
we now could refer to as “traditional” approaches are semantic parsers that use supervised learning
to create a syntactic analysis on which the meaning representations are constructed, usually in a
compositional way. Research in this area comprises Bos et al. (2004), Copestake et al. (2005),
Butler (2010), Le and Zuidema (2012), Lewis and Steedman (2013), Bos (2015), Artzi et al. (2015),
and many others. Efforts to create datasets of sentences paired with meaning representations have
stimulated research in semantic parsing (Banarescu et al. 2013a, Bos et al. 2017), especially those
using the formalism of Abstract Meaning Representation (AMR), for which also shared tasks have
been organized (May 2016). In this article, therefore, we concentrate on semantic parsing of AMRs,
because large gold-standard datasets are available and various different approaches can be compared.

In contrast to the traditional approaches mentioned above, there have been interesting attempts
recently to view semantic parsing as a translation task, mapping English expressions to logical
forms under supervision of some deep learning method. Dong and Lapata (2016) used sequence-
to-sequence (seq2seq) and sequence-to-tree (seq2tree) neural translation models to produce logical
forms from sentences for four different datasets (but not AMRs). Barzdins and Gosko (2016) used
a similar method to produce AMRs in the context of the previously mentioned shared task, but the
performance of their neural parser was still far below the state-of-the-art. Despite this, their method
inspired other researchers to adopt this seq2seq approach (Peng et al. 2017, Konstas et al. 2017).
But, even though they got substantial improvements over Barzdins and Gosko (2016), their systems
still did not come close to state-of-the-art. The neural approach of Foland and Martin (2017) did
reach state-of-the-art performance, but they used five bi-LSTM networks instead of a single seq2seq
model.
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What all these attempts have in common, and why they are fascinating, is that they completely
avoid complex models of the syntactic and semantic parsing process and therefore do not rely on
heavily engineered features. However, except for Barzdins and Gosko (2016), they also only use
word-level input. This is interesting, because Barzdins and Gosko (2016) obtained a substantial
improvement for their character-level model over their word-level model. Character-embeddings,
since they were introduced by Sutskever et al. (2011), have also shown improvements in a number
of areas, such as POS-tagging (Santos and Zadrozny 2014, Plank et al. 2016), text classification
(Zhang et al. 2015), and, most importantly, Neural Machine Translation (Chung et al. 2016).

The aim of this article is to find out how far we can push character-level neural semantic parsing:
can we reach accuracy scores comparable with traditional approaches to semantic parsing? More
specifically, our objectives are (1) try to reproduce the results of Barzdins and Gosko (2016); (2)
improve on their results by employing several novel techniques; and (3) investigate whether injecting
linguistic knowledge can improve neural semantic parsing.

We make three main contributions. First, we introduce novel techniques to improve neural AMR
parsing. Second, we show that linguistic knowledge can still contribute to neural semantic parsing.
Third, we show that adding silver standard to the training data makes a considerable (positive)
difference in terms of performance. Our final model reaches an F-score of 71.0, which is the current
state-of-the-art in AMR parsing.

2. Method and Data

We first give a bit of background on AMRs. Then we outline the basic ideas of the character-based
translation model with English sentences as input and AMRs as output. We then establish a baseline
system with the aim to improve it in the next section.

2.1 Abstract Meaning Representations

In our experiments utilizing neural semantic parsing we will focus on parsing Abstract Meaning
Representations (AMRs). AMRs were introduced by Banarescu et al. (2013b) and are acyclic,
directed graphs that represent the meaning of a sentence. There are, in fact, three ways to display
an AMR: as a graph, as a set of triples, or as a tree. An example of an AMR is shown in Figure 1,
here displayed as a tree, the format that is used in the annotated corpora. The corresponding triple
representation is shown in Table 1.

(a / affect-01
:ARGO (w / wave-04
:ARG1 (h2 / heat)
:location (¢ / country :wiki "France" :name (n / name :opl "France")))
:ARG1 (p / person
:ARGO-of (s / strike-02
:mod (h / hunger-01
:ARGO p))))

Figure 1: AMR representing the meaning of Hunger strikers were affected by France’s heat wave.

An AMR consists of concepts that are linked to variable names with a slash. In the example
above we have that a is an instance of the concept affect-01, and p is an instance of the concept
person (note that the names of the variables are not important). Concepts can be related to each
other by using two-place predicates, which are indicated by a colon. So, the first : ARGO is an ordered
relation between a and w. Inverse relations are denoted by the suffix —of. Note that, if one concept
relates to more than one other concept (for instance, in the example above, the node a is related to
w via :ARGO, and to p via :ARG1), the order of these relations within the AMR is not important.
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Table 1: The AMR of Hunger strikers were affected by France’s heat wave. displayed as the set of
instance, attribute and relation triples.

Instance Attribute Relation
(instance, a, affect-01) (TOP, a, affect-01) (ARGO, a, w)
(instance, w, wave-04) (wiki, ¢, France) (ARGI, a, p)
(instance, h2, heat) (opl, n, France) (location, w, ¢)
(instance, ¢, country) (ARG1, w, h2)
(instance, n, name) (name, c, n)
(instance, p, person) (ARGO, s, p)
(instance, s, strike-02) (mod, s, h)
(instance, h, hunger-01) (ARGO, h, p)

AMRs also allow for a re-occurrence of variables: the concept person with variable p stands in
a relation with affect-01 as well as with hunger-01. The brackets are important, because they
signal which relations belong to which concepts (the spacing used in Figure 1 is optional and is only
used to increase readability). Some of the concepts have a number as suffix that indicate a specific
word sense. AMRs also include proper name reference resolution by including a link to a wikipedia
entry (wikification).

For evaluation purposes, AMRs are converted into triples. The triples of the AMR in Figure 1
are shown in Table 1.

The accuracy of an AMR, parser is computed by precision and recall on matching triples between
gold standard AMRs and system-produced AMRs, using the SMATCH system (Cai and Knight 2013).

For the evaluation of our experiments we use the sentences annotated with AMRs from LDC
release LDC2016E25", consisting of 36,521 training AMRs, 1,368 development AMRs and 1,371 test
AMRs.

This release also includes the PropBank frameset and comes with pre-aligned AMRs and sen-
tences. In all results shown in this article, the models are trained on the training data. As develop-
ment and test data we use the designated dev and test set from LDC2016E25, which are the exact
same sets that are used in LDC2015E89. We remove HTML-tags from the input sentences, but
URLs are kept in.

2.2 The Basic Translation Model

To create our sequence-to-sequence translation model, we use the OpenNMT system (Klein et al.
2017). In contrast to Peng et al. (2017) and Konstas et al. (2017), who use word-level input, we use
character-level input .2

We train a model with bidirectional encoding and general attention (Luong et al. 2015). Since
training a full model takes two to three days on a GPU, we perform a heuristic parameter search
instead of an exhaustive one. We started out with a default model and changed only one parameter
value in separate experiments. If we improved over the default, the setting was kept and combined
with other parameter settings that improved performance. All models were only tested on the de-
velopment set. Ultimately, we arrived at the settings shown in Table 2. All our described models in
this paper are trained with these settings. Training is stopped 3 epochs after there is no improve-

1. https://catalog.ldc.upenn.edu/LDC2017T10

2. We did experiment with word-based models, but they never obtained F-scores higher than 30.0. This is in line
with Peng et al. (2017) and Konstas et al. (2017), who only arrived at their final F-scores by applying extensive
anonymization methods.
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ment in validation perplexity on the development set anymore. The best performing model on the
development set is then used to decode the test set.

Table 2: Parameter settings of the seq2seq model.

Parameter ~ Value | Parameter Value

Layers 2 RNN type brnn
Nodes 500 Dropout 0.3
Epochs 20-25 | Vocabulary = 100-200
Optimizer sgd Max length 750
Learning rate 0.1 Beam size 5
Decay 0.7 Replace unk true

Following Barzdins and Gosko (2016), we do not want our model to learn the arbitrary characters
that are used to represent variables. The characters itself do not carry any semantic information and
are only necessary to indicate co-referring nodes. Therefore we remove all variables from the AMRs
and simply duplicate co-referring nodes from the input. An example of such a preprocessed AMR is
shown in Figure 2. Note that this means that we lose information, since the variables cannot be put
back perfectly. We describe an approach to restore the co-referring nodes in the output in section
2.3.3. All wikification relations present in AMRs in the training set are also removed and restored
in a post-processing step. Newlines present in an AMR are replaced by spaces, and multiple spaces
are squeezed into single ones (so the input AMR is represented on a single line).3

(m / material (material
:mod (r / raw) :mod (raw)
:domain (o / opium) :domain (opium)
:ARG1-of (u / use-01 :ARG1-of (use-01
:ARG2 (p / make-01 :ARG2 (make-01
:ARG1 (h / heroin) :ARG1 (heroin)
:ARG2 0))) :ARG2 (opium))))

Figure 2: Example of the original AMR (left) and the variable-free AMR (right) displaying the
meaning of Opium is the raw material used to make heroin.

2.3 Postprocessing and Restoring Information

The output of the seq2seq model is, of course, an AMR without variables, without wiki-links, and
without co-occurrent variables. Furthermore, because of the character-based seq2seq model, it could
well be that there are brackets in the output that do not match, or that some nodes representing
concepts are incomplete. This, obviously, needs to be fixed.

First, the variables in the AMRs are restored by assigning a unique variable to each concept. We
also try to fix invalidly produced AMRs by applying a few heuristics, such as inserting parentheses
and quotes, or by removing unfinished nodes. This is done by using the restoring script from Barzdins
and Gosko (2016).* Then, we apply three methods to increase the quality of the AMRs. They are
described below.

3. All pre- and post-processing scripts are available at https://github.com/RikVN/AMR
4. Taken from https://github.com/didzis/tensorflow AMR/
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2.3.1 PRUNING

A problem with many deep learning approaches is the fact that the decoder does not keep track of
what it has already produced. As a consequence, we sometimes end up with duplicated, redundant
material in our generated AMRs. This hurts precision. We propose four different methods to remove
this redundant material. This is done on node level, where nodes are defined as relation-concept
pairs without children, e.g. :mod (raw) and :domain (opium).

Table 3: Statistics of the different pruning methods. Methods were applied on the output of our
baseline model on the dev set.

Model ‘ Nodes pruned AMRs changed F-score
Baseline ‘ 0 0 54.8
Removing all re-occurrent nodes 1426 689 55.4
Removing re-occurrent nodes with same parent 135 95 55.0
Removing re-occurrent nodes with frequency >2 427 249 55.3

Removing all re-occurrent nodes with same

parent, but also nodes with frequency >2 496 302 555

The statistics of applying these four methods on our baseline model (dev set) are shown in
Table 3. Note that all these processes are trade-offs: usually duplicates are correctly recognized as
redundant and can be removed, but sometimes we erroneously remove actual re-occurrent nodes.

The first method simply removes all re-occurrent nodes and is already quite effective: F-score
increases by 0.6. The second method is more careful and only removes duplicate nodes if they have
the same parent. This helps, but only by a small margin. The third method does not consider parent
nodes, but removes nodes if they occur more than twice in the full AMR. This method also increases
the F-score, but does not outperform the first method yet. The fourth method is a combination of
the second and third method. All re-occurrent nodes with the same parent are removed, but also
nodes occurring more than twice are removed. This results in the best F-score, an increase of 0.7
over the baseline. Two example AMRs whose branches are pruned using the fourth method are
shown in Figure 3.

(material (material
:mod (raw) :mod (raw)
‘ :domain (opium)
+mod—(raw)

:mod (raw)
:ARG1-of (use-01
:ARG2 (make-01
:ARG1 (heroin)
+mod—(Craw)
:ARG2 (opium))))

:domain (opium)
:ARG1-of (use-01
:ARG2 (make-01
:ARG1 (heroin)
:ARG2 (opium))))

Figure 3: Example of pruned branches for the produced AMRs of Opium is the raw material used to
make heroin. In the left AMR, the second occurrence of :mod (raw) is already removed,
because both branches are children of material. However, in the right AMR, none of the
:mod (raw) branches share the same parent, so only the third occurrence is removed.
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2.3.2 WIKIFICATION

Since we removed wikification relations in preprocessing, our model will never output such a link.
We restore wiki links in the output AMR by using an off-the-shelf system (Daiber et al. 2013),
following the method presented by Bjerva et al. (2016). They look at the :name relations in an
AMR and try to find this name on Wikipedia. If it has a page, the corresponding link gets added;
otherwise the AMR remains unaltered.

2.3.3 RESTORING CO-REFERRING NODES

Our system also tries to restore co-referring nodes. If we output a duplicate node (a node already
produced for this AMR), it replaces the node by the variable name of the node encountered first.
This can only happen once per unique node, since the third instance of such a node is already
removed in the pruning phase. An example of how the co-referring nodes are restored is shown in
Figure 4.

(m / material (m / material
:mod (r / raw) :mod (r / raw)
:domain (o / opium) :domain (o / opium)
:mod (r2 / raw) :mod r
:ARG1-of (u / use-01 :ARG1-of (u / use-01
:ARG2 (m2 / make-01 :ARG2 (m2 / make-01
:ARG1 (h / heroin) :ARG1 (h / heroin)
:ARG2 (02 / opium)))) :ARG2 0)))

Figure 4: Example of how co-referring nodes are restored. On the left an example of a produced
AMR, on the right the AMR with co-reference restored.

2.4 Baseline Results

Our first objective was to reproduce the results obtained by Barzdins and Gosko (2016). We did so,
arriving at an F-score of 53.1 (see Table 4). Compared to the F-score of 43.0 by Barzdins and Gosko
(2016), our score is significantly higher. This is probably due to the higher amount of training data
and the fact that they used Tensorflow instead of OpenNMT. We also reproduced their results by
using the exact same data, software and parameter settings as they did, obtaining an F1l-score of
42.3.°

Table 4: Baseline Results Semantic Parsing on LDC2016E25.

Type ‘ Dev Diff ‘ Test Diff
Baseline seq2seq | 54.8 | 53.1
Post-processing Pruning 55.5 +0.7| 53.7 4+ 0.6

Restoring Co-reference | 55.7 + 0.9 | 54.2 + 1.1

Wikification 558 + 10| 541 +1.0

All post-processing

57.3  +2.5 | 555 + 24

As is shown in Table 4, concept pruning, restoring co-reference variables, and wikification all
increase the F-score by about a percentage point each. This small gain of performance is what one
could expect as each single operation has only a small impact on the overall contents of an AMR.

5. We did not possess their Wikification and coreference restoring scripts, so differences might be attributed to that.

98



3. Improving the Basic Translation Model

In the previous section we outlined our basic method of producing AMRs using a seq2seq model
based on characters. In this section, we look at five different techniques to move beyond the F-score
that we obtain with our basic method, that we will consider in this section as baseline. Some of the
techniques were already (briefly) introduced in van Noord and Bos (2017).

3.1 AMR Re-ordering

Although AMRs are unordered by definition, in our textual representation of the AMRs there is
an order of the branches. However, these branches do not necessarily follow the word order in
the corresponding English sentence. It has been shown that for (statistical) machine translation
reordering improves translation quality (Collins et al. 2005). We use the provided alignments to
permute the AMR in such a way that it best matches the word order. We do this both on sub-tree
level and on individual node level. The best matching AMR is defined as the AMR in which the
order of the nodes (when traversing over the AMR depth-first) is the closest to the order of the
words in the English sentence, following the alignments. An example of an AMR with a branch
order best matching the input sentence is shown in Figure 5.

(material (material
:mod (raw) :domain (opium)
:domain (opium) :mod (raw)
:ARG1-of (use-01 :ARG1-of (use-01
:ARG2 (make-01 :ARG2 (make-01
:ARG1 (heroin) :ARG2 (opium)
:ARG2 (opium)))) :ARG1 (heroin))))

Figure 5: Example of a variable-free AMR before (left) and after re-ordering (right) for the sentence
Opium is the raw material used to make heroin.

We are also able to use this approach to augment the training data, since each reordering of the
AMR provides us with a new AMR-sentence pair. Due to the exponential increase, large AMRs
often have thousands of possible orders. We performed a number of experiments to find out how we
could best exploit this surplus of data. Ultimately, we found that it is most beneficial to “double”
the training data by adding the best matching AMR to the existing data set.®

3.2 Introducing Super Characters

We are not necessarily restricted to only using characters as input. For example, we can view the
AMR relations (e.g. :ARGO, :mod) as atomic instead of a set of characters. This ensures that the
characters for relations (e.g. m, o and d for :mod) do not influence the general character embeddings
of the concepts, which might improve performance. This way, we create a hybrid model that is a
combination of word and character level input. An example of the AMR and sentence level input
using super characters is shown in Figure 6 and Figure 7.

We also tried various ways to explicitly encode the tree structure by using super characters. In
our basic model, the parentheses ’(” and ’)” are simply characters. This means that the model cannot

6. Instead of ordering the AMR nodes reflected by the word order of sentence, we also tried two different experiments
based on consistency. The first experiment simply ordered the nodes alphabetically, without any other influence.
This decreased the result of our baseline model by 2.0. Our second experiment was focused on fixing irregularities:
if two nodes occur in a different order than they usually do (based on the full training set), we simply switch them
around. This method did not change the order as considerably as the alphabetical ordering, but the result of the
baseline model still decreased by 1.0. Hence we discarded both reordering techniques.
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AMR, chars: ‘(‘t‘h‘i‘n‘g‘—l—‘ : ‘q‘u‘a‘ n ‘t ‘—l—‘1H—‘:‘p‘o‘l‘a‘r‘i‘t‘y‘ﬂ-‘)‘
AMR, super chars: |([t|/h]ijn]g]+]:quant|+|1]+]:polarity|+] - |)]

Figure 6: Input for the AMR (t / thing :quant 1 :polarity -) representing the sentence Not
one thing, with and without super characters. The +-symbols represent spaces.

sentence: ‘I‘ + ‘a‘m‘—i—‘ n ‘o‘t‘—i—‘t‘ h ‘a‘t‘—ﬁ—‘r‘i‘ c ‘h‘—i—H
sentence + POS:  [I[PRP[+]a |m|[VBP|+n|o[t[RB[+]t[h [alt IN]+] r [i[c[h][JJ[+].]

Figure 7: Input for the sentence I am not that rich, without and with POS-tags. POS-tags are
inserted as super characters. The +-symbols represent spaces (word boundaries).

differentiate between a parenthesis that opens the full AMR and a parenthesis that opens, say, the
fifth subtree of the AMR. One would expect it would help the model if it has this information
explicitly encoded in the input. For example, in an experiment we replaced each parenthesis in
the structure by a super character that also provides the subtree information (e.g., an opening
parenthesis on the fifth level becomes *5* (, while a closing bracket on the third level becomes *3x%).
However this resulted in an F-score lower than the baseline and we discarded the technique.

3.3 Adding Part-of-Speech Information

We might still be able to benefit from syntactic information, even though we use a character-level
neural semantic parser. To show this, we parse the sentences with the POS-tagger of the C&C tools
(Clark et al. 2003), employing the Penn POS tagset. Each tag is represented as a single character and
placed after the last character representation of the word that matches the tag (see Figure 7). Put
differently, we create a new super character for each unique tag and add this to the input sentence.
On the one hand, this will increase the size of the input. On the other hand, just a single character
will add a lot of general, potentially useful, information. For example, proper nouns correlate with
the :name relation, while adjectives correlate with the :mod relation.

3.4 Adding Silver Standard Data

A problem with neural parsing approaches is data sparsity, since a lot of manual effort is required
to create gold standard data. Peng et al. (2017) tried to overcome this by extensive generalization
of the training data, but did not get near state-of-the-art results. Konstas et al. (2017) applied a
similar method, but also used the GigaWord corpus to self-train their system. They use their own
pre-trained parser to parse the previously unseen sentences and add those to the training data in a
series of iterations. Ultimately, their system is trained on 20 million additional data AMR-sentence
pairs and obtains an F-score of 62.1. Without this additional data, they obtain a score of 55.5,
which is better than Peng et al. (2017), but not close to state-of-the-art performance.

Our method of obtaining new training data mainly differs from Konstas et al. (2017) in two
ways: (i) we use two off-the-shelf parsers to create the training data instead of self-training; (ii) we
employ a method to exclude lower-quality AMRs instead of using all available data. We therefore
refer to this data as “silver standard” data, by which we mean something in between unchecked
automatically produced data and gold standard data.

Instead of self-training our parser, we use the off-the-shelf AMR parsers CAMR (Wang et al. 2015)
and JAMR (Flanigan et al. 2014) to create silver standard data for our system. Both are non-neural,
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syntax-based parsers. CAMR works by first generating a dependency tree for the English sentence,
after which it uses a transition-based algorithm to create the AMR graph. JAMR is the first
published AMR parser and does the parsing in two stages: first identifying the concepts by using a
semi-Markov model, and then identifying the relations between these concepts by searching for the
maximum spanning connected subgraph.

Both systems are trained on the LDC2015E86 AMR corpus, which contains 16,833 training
instances. We parse 1,303,419 sentences from the Groningen Meaning Bank (Basile et al. 2012),
which mainly consists of newswire text. AMRs that are either invalid or include null-tag or
null-edge (this is what the CAMR parser outputs when it is not able to find a suitable candidate
parse) are removed.

We do not simply add the other AMRSs to our data set. To ensure that the AMRs are at least of
decent quality, we compare the produced AMRs with each other using SMATCH (Cai and Knight 2013).
If their pairwise score does not exceed 55.0, the AMRs are not considered for adding to our training
set. This value was picked to filter out AMRs that would only hurt the training process, but to also
still include a large variety of AMRs and sentences. Our final set contained 530,450 sentences, that
have both a CAMR and JAMR parse.

We now have to determine which AMR to add to our silver data set. CAMR produces higher
quality AMRs in general (64.0 vs 55.0 on the test set), but it might be beneficial to introduce some
variety by also adding JAMR-parsed AMRs. We never add both CAMR and JAMR for the same
sentence. We performed five experiments in which we added 100k silver AMRs, either containing
100%, 75%, 67%, 50% or 0% CAMR-parsed AMRs. The results of testing on the development set
are shown in Table 5.

Table 5: F-scores on the dev set for adding different ratios of CAMR and JAMR parsed AMRs to
our initial data set. All scores are without postprocessing improvement methods.

# CAMR AMRs # JAMR AMRs F-score

100,000 0 65.8
75,000 25,000 65.8
66,667 33,333 65.7
50,000 50,000 65.3

0 100,000 61.4

As would be expected, we see that only adding CAMR scores considerably better than only
adding JAMR. However, the scores for adding 67% and 75% CAMR are very similar to adding
100% CAMR. But, since this does not indicate that adding JAMR actually helps performance, we
only add the CAMR-parsed AMRs in our silver data experiments. We randomly selected 20k, 50k,
75k, 100k and 500k instances for these experiments.

3.5 Optimizing training

Aside from the pre- and post-processing methods described, we can also optimize the training process
itself. The first method we employ is pre-training on our full data set including silver AMRs, after
which the model is fine-tuned on the gold data only. Both phases use the same parameter settings,
as experiments with different learning rates resulted in lower performance. A similar procedure
was used by Konstas et al. (2017) and in general this is a method widely used in Neural Machine
Translation (Denkowski and Neubig 2017).

The second method is averaging a set of models to decode the test set, instead of using a
single model. This was first applied by Junczys-Dowmunt et al. (2016) as an alternative to the
usual ensembling of models, which is known to give substantial improvements in Neural Machine
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Translation (Sutskever et al. 2014). Ensembling, however, is very resource intensive, since the
predictions of different models are averaged at decoding time. This as opposed to averaging, where
the parameters of models are averaged to create a single model. This means that averaging, say,
four models is four times faster than ensembling four models, while also using only a quarter of the
memory the ensemble method uses. We tested with both ensembling and averaging and obtained
similar results on the development set, thus opting to only use averaging in our experiments.

4. Results and Discussion

Table 6 shows the results of our improvement methods in isolation, meaning that only that individual
method is added to our baseline model. Re-ordering has a clear positive effect, both for using the
best re-ordering (42.0) and adding that re-ordering to the existing data set (+5.2). Constructing
super characters and adding POS-tags both lead to a similar increase in performance. Pre-training
and subsequently fine-tuning also results in a substantial improvement, but creating an average
model only has a slight positive effect. The biggest improvement comes from adding silver standard
data to our training set, reaching a maximum of 65.8 on the dev set. However, there is a limit with
regards to adding silver data, since adding 500k silver AMRs performed worse than adding 50k,
75k or 100k silver AMRs. Finding the optimal number of silver AMRs is difficult due to the long
training times and is therefore left for future work.

Table 6: Results of the improvements in isolation (without post-processing).

Type ‘ Dev  Diff ‘ Test  Diff
Baseline seq2seq ‘ 54.8 ‘ 53.1
AMR Re-ordering Best 56.8 +20 | 55.1 + 2.0
Doubling 60.0 +52 | 583 +5.2
Introducing Super Characters Relations ‘ 583 + 3.5 ‘ 574 4+ 4.3
Adding POS Tags PTB | 582 +34 | 572 441
Training optimization Averaging 549 +0.1 | 534 + 0.3
Pre-training | 59.4 4+ 4.6 | 586 + 5.5
Both 59.5 +4.7 | 587 + 5.6

Adding Silver Standard Data  Adding 20k 622 +74 | 600 +6.9
Adding 50k 64.7 +99 | 629 4938
Adding 75k 65.7 4+ 10.9 | 63.7 + 10.6
Adding 100k | 65.8 + 11.0 | 64.0 + 10.9
Adding 500k | 63.8 4+ 9.0 | 62.1 + 9.0

Since the previous experiments were all in isolation, we now test whether a combination of
our methods still increases performance. The tested combinations are shown in Table 7. Even after
adding the silver data, the addition of POS-tags and super characters still increased the performance,
albeit by a smaller margin. Interestingly, the best result (71.0) was not obtained by combining all
improvement methods, since re-ordering the AMRs does not show an increase anymore after adding
POS-tags and super characters. The best model without using any silver data obtains an F-score of
64.0, which is considerably higher than the AMR-only score (55.5) of Konstas et al. (2017).

Table 8 shows the results of the most notable previous AMR parsing systems. Our best model
outperforms all these previous parsers and reaches state-of-the-art results. However, we are also the
first approach that uses the LDC2016E25 data set, which contains slightly more than double the
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Table 7: F-scores for our neural models, combining the different improvement methods.

Adding Super Re-ordering Optimize
Post-proc 100k Silver POS tags Chars Best Training Dev Test
® ® t 3 x 4 x 54.8  53.1
® ® x 4 x 57.3  55.5
65.1 64.0
® ® 4 t 4 68.0 66.4
® ® 4 68.9 67.3
4 4 70.4  69.0
x 69.0 68.0
3 71.9 71.0

number of gold standard training instances compared to the LDC2015E86 data set.” Therefore, we
also trained the best performing model in Table 7 on the LDC2015E86 data set, while still applying
all our improvement methods. This model still obtains an F-score of 68.5, outperforming all previous
AMR parsers, except for the parser of Foland and Martin (2017).

Table 8: F-scores for AMR parsing. Comparison with previously published results on the test set.

Authors | Model | Train set (gold) | F-score
Flanigan et al. (2014) JAMR-14 LDC2013E117 58.0
Damonte et al. (2017) AMR-eager LDC2015E86 64.0
Artzi et al. (2015) CCG parsing LDC2014T12 66.3
Wang et al. (2015) CAMR LDC2015E86 66.5
Flanigan et al. (2016) JAMR-16 LDC2015E86 67.0
Pust et al. (2015) SBMT LDC2015E86 67.1
Barzdins and Gosko (2016) | char-based seq2seq LDC2015E86 43.0
Peng et al. (2017) word-based seq2seq LDC2015E86 52.0
Konstas et al. (2017) word-based seq2seq LDC2015E86 55.5
Konstas et al. (2017) word-based seq2seq + giga LDC2015E86 62.1
Foland and Martin (2017) | 5 bi-LSTM networks (word-based) LDC2015E86 70.7
This article char-based seq2seq model + silver LDC2015E86 68.5
This article char-based seq2seq model + silver LDC2016E25 71.0

Damonte et al. (2017) presented a way to evaluate system output in a more detailed way, by fo-
cussing on various aspects that are present in an AMR: the role labelling, word sense disambiguation,
named entity recognition, wikification, detecting negation, and so on. These detailed results of our
best system are shown in Table 9, in which the results of the other parsers are taken from Damonte
et al. (2017). Unfortunately, Foland and Martin (2017) did not publish these specific scores. As the
table shows, our system scores higher than the other parsers on five of the eight metrics other than
Smatch. In general, our system is quite conservative, obtaining a higher precision than recall for
each metric. Given the results in Table 9, one would think that detecting negation and reentrancy
would be ways to get an improvement in accuracy. Note that the other parsers score also relatively
bad at these metrics. Compared to the other systems, our system scores worse on concepts, named
entities, and wikification. A possible method to increase performance in the first two of those metrics

7. LDC2015E86 only contains 16,833 instances, as opposed to the 36,521 of LDC2016E25.
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is to adopt an anonymization or generalization approach for named entities and concepts, similar to
Peng et al. (2017) or Konstas et al. (2017).

Table 9: Comparison with previous parsers using the evaluation script of Damonte et al. (2017). We
also included precision and recall scores for our system.

‘CAMR JAMR-16 AMR-eager‘ Our system

Metric ‘ F F F ‘ Pr. Rec. F
Smatch 63 67 64 76 67 71
Unlabeled 69 69 69 79 70 74
No WSD 64 68 65 76 67 72
Reentrancy 41 42 41 57 48 52
Concepts 80 83 83 87 78 82
Named entities 75 79 83 83 76 79
Wikification 0 75 64 82 54 65
Negations 18 45 48 67 58 62
SRL 60 60 56 70 62 66

5. Conclusion and Future Work

Applying re-ordering of AMR branches, introducing super characters, and adding POS-tags are
techniques that substantially improve neural AMR parsing using a character-based seq2seq model.
However, the biggest increase of performance is triggered by adding a large quantity of silver standard
AMRs produced by existing (traditional) parsers. This is in line with the findings of Konstas et al.
(2017), who used the Gigaword corpus to get extra training data, although their training method is
different from ours.

The obtained results are promising. Our best model, with an F-score of 71.0, outperformed any
known previously published result on AMR parsing. This is remarkable, for traditional approaches
are often based on extensive, manually crafted lexicons using linguistic knowledge. It should be
noted, of course, that we use some linguistic knowledge in the form of POS-tags in our best models,
and that we employ existing parsers trained on extensive linguistics annotations. In fact, one could
consider the use of silver standard AMR data as a disadvantage, as there is still a need of an existing
high-quality AMR parser to get the silver data in the first place. In our approach we rely even on
two different off-the-shelf parsers. It would therefore be interesting to explore other opportunities,
such as self-learning, as proposed by Konstas et al. (2017).

We have the feeling that there are still a lot of techniques that one could try to increase the
performance of neural AMR parsing. From a more esthetical perspective, it would be nice if one could
eliminate the AMR repair strategies that are used to resolve unbalanced brackets. An interesting
candidate that could master this problem would be the seq2tree model presented by Dong and
Lapata (2016). Similarly, a more principled approach to deal with co-occurring variables would be
desirable.

Another possible next step in semantic parsing is to change the target meaning representation.
AMRs are unscoped meaning representations, and have no quantifiers. It would be challenging to
transfer the techniques of neural semantic parsing to scoped meaning representations, such as those
used in the Groningen Meaning Bank (Basile et al. 2012) or the Parallel Meaning Bank (Abzianidze
et al. 2017).
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