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Abstract
The aim of this study is to identify linguistic proxies of readability in Dutch, i.e. those linguis-

tic features that define text as being easy-to-read. To this end, we compare the Wablieft corpus
(Vandeghinste et al. 2019) (Flemish easy-to-read newspaper archives) to articles that appeared in
the regular Flemish newspaper De Standaard, using a wide range of lexical, syntactic and read-
ability metrics. We test which of these metrics has the highest effect size and which combinations
of metrics work best in a classification task predicting whether articles belong to Wablieft or De
Standaard.

The results indicate that the best linguistic proxy for readability is (not surprisingly) the
average number of words per sentence. Traditional reading metrics score well, although the com-
bination of the parameters constituting these metrics score better in logistic regression than the
original metrics.

1. Introduction

Many texts are too difficult to read for many people. One out of ten people in Belgium are considered
illiterate,1 meaning they have trouble reading and writing. Even more people are low literate or
nearly functionally illiterate. They have trouble reading text on paper and on web sites. According
to the definition of the United Nations, “a person is functionally illiterate who cannot engage in
all those activities in which literacy is required for effective functioning of his group and community
and also for enabling him to continue to use reading, writing and calculation for his own and the
community’s development” (United Nations 1984).

One can try to alleviate this problem by means of adult education aimed at promoting literacy,
but such an approach will always miss out part of the targeted population. Another approach is to
address text difficulty. Certain texts are difficult to read, for example, because they contain too many
difficult words and/or complicated sentences. For this reason, many governments and institutions,
including the Flemish government, have adopted policies and programs to advocate clear and simple
language use.2

The Wablieft organisation3 addresses the issue of text difficulty and readability on two sides.

1. On the reading side, people who want to read easy texts are offered the Wablieft newspaper.
This weekly newspaper, established in 1989, is written in easy-to-read language, and currently
has more than 45,000 readers. An online archive of articles published since 2009 is available on
the organisation’s website, and has been made available for research as a corpus, as described in
Vandeghinste et al. (2019). This corpus can be downloaded from the Taalmaterialen section of
the website of the Dutch Language Institute,4 or queried with the GrETEL and PaQu syntactic

1. https://www.belgium.be/nl/Leren/permanente_vorming/alfabetisering

2. https://overheid.vlaanderen.be/heerlijk-helder

3. http://www.wablieft.be/

4. https://ivdnt.org/downloads/taalmaterialen/tstc-wablieft-corpus-1-1
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search engines (Augustinus et al. 2017, Odijk et al. 2017).5 It will soon be made searchable as
part of the Corpus Hedendaags Nederlands.6 Recently, a second, even easier-to-read newspaper
was started, called Wablieft Start, but this was not included in this study.

2. On the writing side, the Wablieft organisation provides training sessions for people and or-
ganisations that want to publish easily readable texts. They also offer, against payment, to
rewrite texts in clear language.

The Wablieft corpus provides an opportunity to study actual easy-to-read texts. Since these texts
are written by professional, specialised authors, with the explicit purpose of being easy-to-read, the
corpus can be considered a gold standard in this respect. In the present paper we investigate linguistic
properties of texts in the Wablieft corpus by comparing them with regular newspaper articles taken
from the Flemish newspaper De Standaard,7 and test whether using these properties we can build a
classifier that is able to discriminate between regular and easy-to-read articles. Such an analysis can
be informative for research on automated text simplification, in the context of which the assessment
of text readability or difficulty is often included as a first step (Bulté et al. 2018). Additionally,
automated readability scoring has potential applications in the field of second language learning
(e.g. for the purpose of selecting texts suited for learners at different proficiency levels) as well as
for persons with low literacy.

For the purpose of this article, we define readability as the relative ease or difficulty with which
a text is or can be read. We only focus on textual properties here, thus disregarding other aspects
such as fonts and layout. Even though readability is a (potentially individually, temporally and
situationally variable) subjective concept, having to do with cognitive processing load, our opera-
tionalisation is based on a more stable, objective interpretation of the term (i.e. some texts are,
generally speaking, easier to read than others). Our aim, then, is to find objective, formal, struc-
tural or other features of texts that are related to the subjective notion of readability or, to put it
differently, to find out which (linguistic) features differ between easy-to-read and regular texts.

In section 2 we present related work. Section 3 describes our methodology, while section 4
describes the results. Section 5 concludes and describes plans for future work.

2. Related work

Plenty of guidelines for writing easy-to-read text are available, such as those written by Inclusion-
Europe (2009) or the guidelines on the Wablieft website. We present some in more detail in section
2.1. Section 2.2 presents available easy-to-read corpora, and in section 2.3 related work concerning
readability prediction and classification is discussed.

2.1 Guidelines for writing easy-to-read text

There are a number of approaches towards writing text while addressing the issue of limited literacy.
Some texts are written with the general aim of being easy-to-read, others have children or second
language learners as their target group, and yet other texts aim at people with cognitive disabilities,
so there is a large spectrum of possible target users.

The guidelines on the Wablieft website can be summarised as: “address your readers, use short
sentences (±15 words), and use everyday language”.

More extensive standards for writing easy-to-read text are described and illustrated in Inclusion-
Europe (2009), which contains instructions on how to produce easy-to-read documents. The language-
related instructions target different aspects of writing at the lexical, syntactic and discourse level.

5. http://gretel.ccl.kuleuven.be/ and https://paqu.let.rug.nl:8068/ respectively.
6. http://corpushedendaagsnederlands.inl.nl/

7. The articles from De Standaard cannot be made publicly available due to publication permissions, but they form
part of the Corpus Hedendaags Nederlands
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At the lexical level, writers are instructed to use words that people know and that are easy to under-
stand, or to explain difficult words. Lexical variety is discouraged, as writers should be consistent
with the words that they use and avoid introducing new words to refer to already introduced con-
cepts. Also metaphors, loan words, abbreviations, long numbers and percentages are to be avoided.
With regard to syntax, short, active sentences are preferred, in which the reader should be ad-
dressed directly. Sentences should also be affirmative. Finally, at the level of discourse, writers are
instructed to structure the information in a simple way and to organise the text by topic. Repeating
information is not discouraged.

2.2 Easy-to-read corpora

Probably the most well-known initiative with respect to easy-to-read text is Wikipedia Simple En-
glish,8 which is written in so-called simple English. Amongst other things, its authors are instructed
to use only the 1000 most frequent words of English. Other Wiki-initiatives are aiming at kids, such
as Wikikids9 for Dutch-speaking children and Vikidia10 for kids speaking French, Italian, Spanish,
English, Basque, Catalan, German, Russian, Greek and Sicilian.

In an academic context, a number of available easy-to-read corpora have been described and
used, such as the Swedish LäSBarT corpus (Mühlenbock 2009), a corpus for Brazilian Portuguese
(Alúısio et al. 2008), the French CLEAR medical corpus (Grabar and Cardon 2018), and a very
small (227 sentences) corpus for Basque (Gonzalez-Dios et al. 2018). There exist some monolingual
comparable corpora, in which regular text is aligned with its easy-to-read variant. Alignment can be
at the text level, the paragraph level or the sentence level. A list of English comparable corpora with
an easy-to-read side can be found in Yaneva (2015), and also for French (Cardon and Grabar 2018)
and Brazilian Portuguese (de Medeiros Caseli et al. 2009) there have been efforts to create such a
comparable corpus.

Very recently, Naderi et al. (2019) presented a dataset containing 1000 German sentences taken
from 23 Wikipedia articles to be used for developing text-complexity predictor models and automatic
text simplification. The dataset includes subjective evaluations of different text-complexity aspects
provided by German learners. In addition, it contains 250 sentences that were manually simplified
by native speakers and subjective assessment of these simplified sentences by target users.

Apart from the Wablieft corpus (Vandeghinste et al. 2019), we are not aware of any such efforts for
Dutch, although the Dutch data in the CHILDES project might be worth mentioning (MacWhinney
2000), as well as the JASMIN speech corpus, consisting of recordings of Dutch speech by young
people, non-native speakers, and elderly people (Cucchiarini et al. 2008). These two projects recorded
supposedly easy active speech, whereas the Wablieft corpus contains texts focusing on the passive
language knowledge of the target users.

Also worth mentioning is the corpus of 105 Dutch texts with readability judgements collected by
De Clercq et al. (2013). Even though this is not an easy-to-read corpus, the readability assessments
provided by experts and the crowd (De Clercq et al. 2014) allow for a categorisation of the texts
according to their perceived readability. The lexical resource NT2Lex described in Tack et al. (2018)
is a CEFR-graded11 lexicon based on a corpus of texts targeted at Dutch language learners, which
consists of CEFR-graded subcorpora. Unfortunately this corpus is not available.

2.3 Automated assessment of readability

Automated readability assessment has a long tradition dating back to the readability formulas
developed in the early 20th century (Flesch 1948). These formulas were intended to provide an

8. https://simple.wikipedia.org/wiki/Main_Page

9. http://www.wikikids.nl

10. http://www.vikidia.org

11. Common European Framework of Reference for Languages
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objective, quantitative evaluation of how easy or difficult to read texts are. Readability formulas
have also been developed for analysing Dutch texts specifically (Brouwer 1963, Staphorsius 1994).

Since the turn of the century, readability prediction has seen a move away from these sim-
ple formulas towards data-driven machine learning approaches, that involve increasingly more and
more complex features. Classifiers have been built using a wide range of approaches, such as naive
Bayes (Collins-Thompson and Callan 2004), logistic regression (François 2009) and support vector
machines (Schwarm and Ostendorf 2005, Larsson 2006). The features that are included in these
classifiers range from surface-level word, sentence and text metrics (such as average length in terms
of number of characters) to more complex features based on syntactic parse trees, language models
and morphological features (Hancke et al. 2012, Dell’Orletta et al. 2011).

T-scan, a tool developed to automatically assess various textual features, includes some measures
related to Dutch text difficulty and readability (Pander Maat et al. 2014). De Clercq and Hoste
(2016) tested a more advanced machine learning approach to Dutch readability prediction using
support vector machines, with a wide range of linguistic and textual features as input. The corpus
they used to train their classifier was compiled by means of pairwise comparisons of 105 texts in
terms of their readability.

3. Method

Section 3.1 describes the data sets we used. Section 3.2 describes the linguistic features or metrics
under investigation. Section 3.3 explains the statistics used in the comparison of the two corpora,
and section 3.4 describes the classifiers we trained.

3.1 Data

In order to find out which linguistic proxies reflect in what respect easy-to-read text differs from
regular text, we compare the Wablieft data with the De Standaard 2010 data.

We use the articles in the Wablieft corpus (Vandeghinste et al. 2019) as our easy-to-read corpus,
and as a control corpus, we use all the articles published in De Standaard year 2010. These data are
part of the Corpus Hedendaags Nederlands (CHN), which we can unfortunately not make available
for download due to copyright reasons, but which is available as a CLARIN infrastructure for online
querying through http://corpushedendaagsnederlands.inl.nl/. Table 1 presents some statistics
about the two corpora.

Articles Sentences Tokens
Before Preprocessing
Wablieft 12,683 256,729 2,074,491
De Standaard 34,520 905,875 14,745,751
After Preprocessing
Wablieft 12,665 256,226 2,072,945
De Standaard 31,140 869,260 11,932,643

Table 1: Size of the data sets. The numbers presented under Before Preprocessing are the sizes
of the raw data sets. Those in the After Preprocessing section are the sizes of the data sets after
cleaning and filtering.

Both corpora are preprocessed by the Alpino parser (van Noord 2006). As a tokeniser we use
the built-in tokeniser from Alpino.

Sentence detection for the Wablieft corpus is done semi-automatically. For De Standaard it is
done fully automatically, based on punctuation. It is clear that the De Standaard data contain
numerous sentence detection mistakes, especially in those cases where parts which should have been
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detected as separate sentences, do not end in a full stop. This happens mainly in headings. We hope
to compensate for this by the sheer number of sentences and articles in one year of daily newspaper
processing, and by filtering out the worst cases.12 We apply a number of filters to automatically
clean the two corpora. These filters operate both at the article and the sentence level. At the article
level, cleaning consists of excluding all articles with less than five sentences (on the assumption that
these articles contain too little information), as well as articles with on average over 100 words per
finite verb. This second filter is imposed in order to leave out ‘non-language’ articles such as stock
market results, TV programme listings or sports results, since these can be considered to contain
insufficient linguistic data. We believe that by putting the threshold at 100 words per finite verb,
there is virtually no risk of also excluding ‘real’ newspaper articles.

At the level of individual sentences, cleaning consists of deleting those sentences with less than
four characters, because these usually constitute the initials of the journalist in De Standaard data.
Sentences that contain more than 20% words containing a digit, and which are longer than 200
characters, are skipped. So are sentences with a ratio of proper names (according to the parser) of
more than 40%, no verbs and more than 100 characters long. Manual spot checks revealed that these
filters only filter out non-linguistic data, as well as some cases where sentence boundary identification
has failed. No ‘regular’ sentences were filtered out. The exact statistics of the corpora, after filtering,
are presented in Table 1.

3.2 Linguistic features and readability metrics

We calculate a broad selection of metrics, ranging from lexical measures to more complex (morpho-)
syntactic metrics and traditional readability formulas, to compare our two corpora. These features
are also used in the classifiers (see section 3.4). Some of these measures use purely formal text
criteria and rely on the identification of basic linguistic units (e.g. characters, words or sentences),
whereas others require deeper syntactic parsing and/or part-of-speech labelling. Certain measures
also use (text-)external information sources such as frequency lists or the results of psycholinguistic
studies to assess word difficulty.

The lexical metrics are words per text (w/txt),13 characters per word (c/w), syllables per word
(syl/w), long word ratio (lwr), type token ration (ttr), Guiraud index (gi), lexical density (ld), frequent
word ratio (fwr), age of acquisition (aoa) and concreteness (conc). Words are operationalised as all
tokens which are not tagged as punctuation. To determine the number of syllables per word, we
use the rule-based syllable counter described in Vandeghinste and Pan (2004). The long word ratio
is calculated as the amount of words that contain more than three syllables divided by the total
amount of words. The type token ratio is the number of word types divided by the number of tokens
in the text. The Guiraud index of lexical diversity (Guiraud 1954), which is a lexical type token
ratio corrected for text length, is calculated as

gi =
wordtypes√
tokens

(1)

Lexical density refers to the proportion of content words in a text, and is operationalised by
dividing the number of content words (i.e. all nouns, adjective, adverbs and verbs, apart from the
verbs which lemmatise to hebben, zijn, worden and zullen) by the total number of words. The
frequent word ratio is calculated as the ratio of words that appear in the list of 77% most frequent
words in the frequency list of the SONAR corpus (Oostdijk et al. 2013). This metric is also used
in the CLIB and CILT formulas (Equations 4 and 5). Age of acquisition and concreteness are two

12. In future work, we could exclude headings from the analysis, as this information is included in the TEI file formats
we received. For this paper, however, we realised this too late to redo the analyses.

13. One can dispute whether this is really a lexical metric, but it surely does not belong in the other categories. We
added this metric because it provides a good descriptive statistic, as there are considerable differences in text
length.

85



psycholinguistic measures based on data provided by Brysbaert et al. (2014). Aoa refers to the
average age at which children learn a word, which can be seen as an indication of word difficulty.
Concreteness evaluates the degree to which a concept denoted by a word refers to a perceptible
entity, as perceived by native speakers. For both measures, we calculate average values for all
content words in a text. Words that do not occur in the list with norms for 30,000 Dutch words,
are given the maximum aoa as it occurs in the data. Words that do not occur in the list with norms
for concreteness are not used in the calculation of average conc.

The morpho-syntactic metrics target the occurrence and relative proportion of specific word
categories (De Clercq and Hoste 2016, Feng et al. 2010). We calculate the frequency of occurrence of
the main part-of-speech labels (verbs (V), adjectives (ADJ), nouns (N), numerals (NUM), adverbs
(ADV), punctuation signs (PUN), special tokens (SPEC), prepositions (PRP), pronouns (PRN),
articles (ART), conjunctions (CONJ)14) and the ratio of each of these parts of speech, i.e. the
relative frequency of the part-of-speech over all the tokens in the text, abbreviated as the tag
abbreviation + r (e.g. Vr). We also include the number of finite verbs (finV).

The syntactic metrics consist of words per sentence (w/sen), number of clauses (cl), clause
length (cllen), number of subclauses (subc), subclauses per clause (subcl/cl), subclause length (sublen),
words per finite verb (w/finV), noun phrase length (NPlen), dependents per head (d/h) and tree depth
(depth). These measures either target the length or number of different syntactic units or the degree
of embedding. For clause length, we count the following Alpino categories as clauses: smain, sv1,

cp, svan, rel, whrel, whq, whsub. The length of a clause is taken as the subtraction of the
value of the end feature of the clause with the value of the begin feature. For subclauses per clause
we divide the number of subordinate clauses by the total number of clauses. As subordinate clauses,
we use clauses which were given the following category labels by Alpino: cp, svan, rel, whrel,

whq, whsub. For subclause length, we use only the subordinate clauses and use a similar calculation
as for clause length. For words per finite verb, we divide the text length by the number of finite
verbs. For dependents per head, we count, for each head in the Alpino trees, the number of siblings.
For tree depth, we count the maximum depth of each syntactic tree.

The readability metrics are Flesch, Flesch Douma, CLIB, CILT and Leesindex A. Flesch is
one of the oldest readability formulas, developed in 1948 (Flesch 1948). Its formula is presented in
Equation 2, where I is the resulting Index value. The higher I, the easier the text.

I = 206.835− (1.015× w/sen)− (84.6× syl/w) (2)

Flesch Douma is the Dutch equivalent for Flesch Reading Ease (Douma 1960). The formula is

I = 206.83− (0.93× syl/w)− (77× w/sen) (3)

CLIB, CILT and Leesindex A were developed for assessing the readability of texts in a primary
school context. CLIB is the Cito readability index for basic education (Leesbaarheidsindex voor het
Basisonderwijs), developed for Dutch (Staphorsius 1994). The formula is presented in Equation 4.
A CLIB score lower than 74 indicates that a text is suitable for primary education.

CLIB = 46− (6.603× c/w) + (0.474× fwr)− (36.5× ttr) + (1.425× w/sen) (4)

CILT is the Cito readability index for technical reading (Cito Leesindex Technisch Lezen) (Staphorsius
1994). It is calculated as follows:

CILT = 114.49 + 0.28× fwr − 12.33× c/w (5)

14. The part-of-speech labels are provided by the parser, and are formed according to the CGN-tagset (Van Eynde
2004).
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This index is used for determining AVI levels, i.e. the levels of reading proficiency required to read a
certain text, as used in primary education. The Leesindex A (Brouwer 1963) is calculated according
to formula 6. Regular text should score between 50 and 75, and a higher score indicates an easier
text. This is the index that was used for AVI calculations before 1994 and the development of CLIB.

A = 195− 2× w/sen− 66.7× syl/w (6)

3.3 Comparative analyses

We report descriptive statistics (mean, median, standard deviation) per linguistic feature and metric
to describe the two corpora, and compare them using independent samples t-tests with Cohen’s d
as a measure of effect size. We rely on the value of d to determine which metrics are best able
to discriminate between both corpora or, put differently, to ascertain which linguistic features and
metrics characterise easy-to-read text, when compared to regular text.15

We also present charts showing the frequency distributions of the scores for each measure, cal-
culated once for each corpus (see Figure 1 and appendix A). To this end, we divided the scores
in different bins and counted how many articles occur in each bin. This presents us with a visual
resumé showing how large the overlap is between the different distributions.

3.4 Automated text classification

We build a series of binary classifiers with the aim of predicting whether a text is easy-to-read (i.e.
belongs to the Wablieft corpus), or not (i.e. belongs to De Standaard). For this purpose, we take a
random selection of 12,000 articles from each of the corpora, ensuring a balanced distribution. The
data are then randomly divided into a training (90%) and test set (10%).

We test two types of classifiers. The first type are logistic regression binary classifiers,
implemented using the sklearn Logistic Regression Python3 library. We start an A* search
(Dechter and Pearl 1985) for the best feature combination by training the model on each feature
separately. We then sort the models in descending order based on their accuracy, and expand the
best scoring hypothesis by adding a second feature. These results are added to the stack of non-
expanded feature sets, and the best scoring one is expanded again. This algorithm was run until no
further improvements were found. We also applied A* with a correction on number of features, to
explore other parts of the search space, left unattended by the regular A*. In addition, we tested
all possible permutations up to five features. These alternate searches occasionally led to improved
results on best scoring feature sets for a given number of features. Results are presented in section
4.

The second type are multilayer perceptron binary classifiers, implemented using the keras

Python3 library with up to four hidden layers of 2 to 100 dimensions each, 30% dropout, L2 regu-
larisation, and a rectified linear activation function, where the input layer consists of one input node
per feature. For initial testing we tried different batch sizes (10 up to 12000) and different numbers
of epochs (10 and 100). Eventually, we decided to run an A* search, similar to the one for logistic
regression. Apart from the features, we also included different batch sizes (10 and 30) as well as
different numbers of epochs (10 and 30) in the A* search space in order to explore whether these
would yield better results. Because these neural models work with random initialisations, different
training sessions on the same data can lead to different results, for example due to local minima
encountered by the gradient descent algorithm. Therefore, we trained each network 30 times and
used the average prediction accuracy of these 30 runs.

15. We do not use these parametric tests here to make claims about the statistical significance of observed differences
(considering the size of the data set we use, too high statistical power would render such an analysis meaningless),
but rather as an indication of how discriminating individual features are (i.e. we are only interested in an estimate
of the size of the effect).
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Figure 1: Distributions of the six best-scoring features. Continuous blue lines represent the Wablieft
distribution, dotted red lines the De Standaard distribution.

4. Results

4.1 Text Properties

Table 2 shows the descriptive statistics with respect to the different metrics, ordered by effect size
(Cohen’s d), which allows a comparison of the Wablieft corpus with De Standaard 2010. Figure 1
shows the frequency distributions for the six best-scoring features. The distributions for the other
features can be found in appendix A. The smaller the overlap between the distributions for the two
corpora, the more discriminative a feature is.

As shown in Table 2 and confirmed by Figure 1, the metric that differentiates best between
the two corpora is the average number of words per sentence with an effect size of 0.81, which
is considered a strong effect. This is in agreement with the Wablieft guideline of writing short
sentences. On average, sentences in Wablieft are 8.31 words long, compared to 14.19 words per
sentence in De Standaard. Only the Leesindex A comes close, scoring an effect size of 0.79, just
under what is generally considered the (soft) threshold of 0.80 for a strong effect size. Note that
average sentence length is one of the two variables (together with number of syllables per word)
included in the Leesindex A (see Equation 6).

The syntactic metrics tree depth and clause length also have a fairly high effect size (0.77 and
0.73 respectively). These are followed by the Flesch Douma and Flesch readability metrics.

The long word ratio is the lexical measure with the highest effect size (0.67), followed by aver-
age age of acquisition (0.63), characters per word (0.62) and the Guiraud index (0.61). Frequent
word ratio, which can be seen as the operationalisation of the Wablieft guideline to use everyday
vocabulary, almost achieves a medium effect size (0.48).

The articles in Wablieft are, on average, more than twice as short as those in De Standaard (163
vs 383 words), but the high standard deviations show that there is considerable variation in both
corpora. This is also clearly visible in the corresponding graph in appendix A. The relatively small
effect size for this parameter (0.42) indicates that text length alone is not sufficient to differentiate
between both corpora.

At the lower end of the spectrum, the part-of-speech ratios all show very small effect sizes, and
in all cases score lower than the non-normalised part of speech frequency, which are related to text
length.
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Wablieft De Standaard Cohen’s d
Metric MEAN MED STDEV MEAN MED STDEV Effect size

w/sen 8.31 8.19 1.14 14.19 13.96 3.12 0.810

Leesindex A 72.84 73.28 9.13 50.20 50.28 11.29 0.791
depth 4.44 4.40 0.49 6.12 6.11 0.92 0.774
cllen 8.13 8.00 1.15 11.46 11.31 2.09 0.728
Flesch Douma 77.80 78.39 10.10 59.84 60.01 10.84 0.722
Flesch 65.13 65.77 11.10 45.43 45.62 11.90 0.721
subcl/cl 0.11 0.10 0.09 0.27 0.28 0.11 0.675
lwr 0.04 0.03 0.03 0.08 0.08 0.03 0.670
sublen 5.56 5.42 2.01 8.38 8.17 2.38 0.643
CILT 77.66 77.84 4.96 70.46 70.64 5.45 0.641
NPlen 3.31 3.25 0.51 4.29 4.20 0.79 .0.635
aoa 7.92 7.83 1.06 9.55 9.43 1.29 0.630
c/w 4.76 4.75 0.34 5.23 5.21 0.36 0.623
gi 7.29 6.94 1.39 10.12 10.01 2.45 0.610
syl/w 1.58 1.57 0.13 1.74 1.73 0.13 0.607

fwr 78.29 78.44 6.00 72.88 73.62 6.19 0.479
ART 16.34 13.00 13.20 41.09 35.00 33.53 0.468
PRP 20.80 15.00 17.49 52.84 44.00 43.23 0.467
w/finV 8.12 8.00 1.29 10.32 9.86 2.99 0.457
subcl 3.05 2.00 5.00 12.64 9.00 14.23 0.457
N 41.69 30.00 31.31 88.34 76.00 68.17 0.426
SPEC 6.73 4.00 8.04 20.35 15.00 21.03 0.425
w/txt 163.68 104.00 144.95 383.19 315.00 329.75 0.420
ADJ 10.86 8.00 11.25 28.69 22.00 27.42 0.419
V 26.88 18.00 27.40 61.93 49.00 58.67 0.379
CONJ 4.99 3.00 6.20 17.63 13.00 18.22 0.374
PUN 24.04 16.00 24.94 55.58 43.00 53.77 0.374
ADV 11.38 7.00 14.02 25.01 17.00 27.38 0.318
cl 21.97 14.00 21.91 42.35 33.00 40.93 0.311
finV 21.10 14.00 20.74 40.40 32.00 38.90 0.310
Nr 0.24 0.24 0.04 0.21 0.21 0.04 0.308
NUM 4.49 4.00 4.20 8.40 6.00 8.80 0.291
CLIB 63.49 63.61 4.44 66.26 66.73 6.43 0.270
PRN 19.24 11.00 26.25 38.46 24.00 48.62 0.256
PRNr 0.09 0.09 0.04 0.08 0.07 0.03 0.242
ttr 0.63 0.63 0.09 0.59 0.57 0.11 0.231
PRPr 0.11 0.11 0.03 0.12 0.12 0.02 0.230

ADJr 0.06 0.06 0.02 0.06 0.06 0.02 0.199
d/h 1.72 1.72 0.11 1.75 1.76 0.10 0.190
SPECr 0.04 0.03 0.04 0.05 0.04 0.04 0.168
NUMr 0.03 0.02 0.02 0.02 0.02 0.02 0.156
ld 0.52 0.53 0.06 0.51 0.51 0.05 0.151
conc 2.93 2.93 0.24 2.96 2.96 0.18 0.116
ADVr 0.06 0.05 0.03 0.05 0.05 0.02 0.112
ARTr 0.09 0.09 0.03 0.10 0.10 0.03 0.098
Vr 0.14 0.14 0.03 0.14 0.14 0.03 0.061
CONJr 0.02 0.02 0.01 0.04 0.04 0.01 0.020
PUNr 0.12 0.12 0.03 0.12 0.12 0.03 0.020

Table 2: Statistical information concerning the different metrics. A Cohen’s d-value > 0.80 (indi-
cated in boldface) points to a strong effect. Values > 0.50 signify a medium effect. Values > 0.20
signify a small effect. These groups of effect sizes are delimited with a dashed line.
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4.2 Correlations between features

Many of the linguistic features and readability metrics included in this study are logically and/or
mathematically related. In this section we therefore explore the correlations between the different
measures. We identified three clusters of inter-correlating features:16

1. Features related to text length: text length itself (w/txt), morpho-syntactic metrics gauging
the occurrence of word categories (PRP, PRN, N, ART, CONJ, ADV, PUN and V), counts
of syntactic units (cl, subcl and finV), and lexical diversity measures containing text length
as denominator (gi and ttr). The correlation matrix of this cluster is presented in Table 3.
Text length correlates very strongly (r > .90) with 10 of these features. It is not surprising,
for example, that the number of specific tokens in a text is, to a large degree, a function of
the total number of tokens in a text, or that longer texts contain more (sub)clauses. Also,
the negative correlation between ttr and text length confirms that ttr should not be used as
a measure of lexical diversity with texts of varying lengths, since longer texts tend to receive
lower ttr scores (as it becomes more difficult to introduce new words in a longer texts).

cl subcl finV ttr gi PRP PRN N ART CONJ ADV ADJ PUN V

w/txt .98 .85 .98 -.74 .84 .96 .94 .96 .90 .88 .93 .92 .96 .98
cl .89 1.00 -.71 .82 .92 .96 .92 .85 .89 .94 .91 .97 .99

subcl .88 -.59 .67 .75 .88 .74 .67 .87 .84 .80 .82 .88
finV -.71 .82 .92 .96 .92 .85 .88 .94 .91 .97 .99

ttr -.58 -.74 -.64 -.75 -.74 -.64 -.66 -.66 -.68 -.70
gi .81 .76 .83 .75 .75 .76 .79 .82 .81

PRP .86 .95 .89 .80 .84 .85 .90 .91
PRN .83 .74 .87 .93 .89 .94 .96

N .92 .82 .83 .85 .91 .90
ART .72 .76 .80 .83 .84

CONJ .85 .84 .86 .89
ADV .88 .91 .94

ADJ .89 .91
PUN .96

Table 3: Highly correlating features related to text length.

2. Features related to sentence length: w/sen, cllen and (somewhat less) w/finV. Correlations
are presented in Table 4. Sentences can be made longer by increasing the length of the (finite)
clauses that they contain, or by combining several clauses into the same sentence.17

cllen w/finV

w/sen .79 .54
cllen .72

Table 4: Correlating features related to sentence length.

3. Readability metrics (Flesch, Flesch Douma, CILT, Leesindex A), and their constituting sub-
features (char/w and syl/w). To a somewhat lesser extent, CLIB is also correlated with these,
as presented in Table 5. We see a perfect18 correlation between Flesch and Flesch Douma, and
a nearly perfect correlation between both of these measures and Leesindex A.

16. All correlation coefficients presented in this section are based on the Wablieft data set.
17. Note that the Wablieft corpus contains mainly short, simple sentences.
18. Correlation coefficient r > .999999
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Flesch CLIB CILT Leesindex A char/w syl/w
Douma

Flesch 1.00 .83 .55 .99 -.87 -.99
Flesch Douma .83 .55 .99 -.87 -.99

CLIB .86 .48 -.69 -.60
CILT .80 -.95 -.84

Leesindex A -.84 -.97
char/w .88

Table 5: Correlating readability metrics and their highly correlating constituting features.

We decided to take the high inter-correlations between measures into account for the automated
text classification using binary classifiers, which is presented in the next section. For the models
using multiple features, we worked with a reduced feature set by eliminating certain measures that
were found to correlate very strongly, in order to reduce the search space for the A* algorithm and
to avoid multi-collinearity. For the measures related to text length, we dropped the features cl, finV,
ADV, PUN, V, PRN, N, ADJ, SPEC, PRP, NUM and ART. We also removed Flesch, Flesch Douma
and syl/w from the cluster of readability metrics.

4.3 Classification results

When we look at the two different classification methods we tried (described in section 3.4), the
accuracy of the neural networks was always lower than that of the corresponding logistic regression
models. This was the case for single features as well as for combinations of features. We tried
different network sizes and architectures, and the best score we reached for a single feature (w/sen)
in a neural classifier was 91.41% (compared to 94.46% for the corresponding logistic regression
model). The best neural score for all features combined was 97.58% (compared to 98.54% for the
best logistic regression model). The logistic regression models score very high overall and are,
moreover, much faster to train than the neural nets. Since we failed to show an added value of using
neural networks for this particular task and data set, we only present detailed results for the logistic
regression models.

Features Score Features Score Features Score

w/sen 0.9446 ART 0.7563 NUM 0.6413
depth 0.9042 w/txt 0.7538 CLIB 0.6292
cllen 0.8763 subcl 0.7508 Nr 0.6188
Leesindex A 0.8750 w/finV 0.7475 ttr 0.6183
Flesch 0.8129 syl/w 0.7450 PRPr 0.5779
Flesch Douma 0.8117 V 0.7292 PRNr 0.5758
NPlen 0.8067 N 0.7292 ADJr 0.5742
sublen 0.8063 ADJ 0.7254 d/h 0.5692
lwr 0.7917 PUN 0.7254 SPECr 0.5579
subcl/cl 0.7913 CONJr 0.7021 conc 0.5567
aoa 0.7838 SPEC 0.6983 NUMr 0.5554
gi 0.7738 cl 0.6929 ld 0.5475
CILT 0.7696 finV 0.6917 ARTr 0.5433
c/w 0.7633 fwr 0.6779 ADVr 0.5417
CONJ 0.7617 ADV 0.6650 PUNr 0.5283
PRP 0.7571 PRN 0.6438 Vr 0.5046

Table 6: Results of logistic regression with one feature only.

91



If we look at single features only (Table 6), the best scoring measure is w/sen, as was the case
when looking at effect size. Not surprisingly, the rankings of the features according to their effect
size and their classification accuracy are extremely well correlated (Spearman’s ρ = 0.97).

With regard to the traditional readability metrics, Leesindex A, Flesch Douma and Flesch score
above 80% in the logistic regression. In fact, these three metrics contain the same two parameters,
namely words per sentence and syllables per words, and highly correlate (r > .98). When these
two features are entered as independent variables in a logistic regression, we obtain a classification
accuracy of 95.17%, which is well above the results we got when using the individual readability
metrics as independent variable. It seems that, for our data at least, a better combination of words
per sentence and syllables per word is possible than the ones used in the pre-defined readability
metrics.

Concerning CLIB, we see that this measure only scores 62.92% in the logistic regression, which
is surprisingly low (and the lowest of all readability metrics we implemented). Each of the four
constituting features, apart from ttr, scores better by itself. In Table 7 we present the scores for
different combinations of the four features that are used to calculate CLIB. When using only words
per sentence and characters per word, we obtain an accuracy of 95.63%. Note that characters per
word and syllables per word, which are used in Leesindex A, Flesch Douma and Flesch, are closely
related features (r = .88). Adding ttr only slightly increases the accuracy.

2 features 3 features 4 features

w/sen, c/w 0.9563 w/sen, c/w, ttr 0.9575 all 0.9550
w/sen, fwr 0.9475 w/sen, c/w, fwr 0.9554
w/sen, ttr 0.9429 w/s, fwr, ttr 0.9483
c/w, fwr* 0.7721 char/w, fwr, ttr 0.8200
c/w, ttr 0.7842
fwr, ttr 0.7488

Table 7: Results of logistic regression for the combination of features involved in CILT (marked with
*) and CLIB.

The logistic regression model using CILT performs better, obtaining an accuracy of 76.96%.
CILT offers a linear combination of two features, namely frequent word ratio and characters per
word. Both of these features score, by themselves, slightly lower than CILT. The combination of
the features, as shown in Table 7, reaches an accuracy of 77.21%, which is only slightly better than
CILT. Nevertheless, CILT is not using the best predictors for our classification task.

Next, we look at models including combinations of multiple features, based on the A* search
described in section 3.4 and disregarding certain highly correlated measures as identified in section
4.2. The best-scoring feature combinations up to seven features are listed in Table 8, which also
included the average accuracies of the neural classifier using the same features by means of compar-
ison. When using more than seven features, several different combinations lead to the same best
scores. Table 8 shows that by combining the syntactic metric w/sen with different lexical metrics
(such as aoa, gi, lwr and ttr), a readability formula (CLIB or CILT), a morpho-syntactic metric (Nr)
and, to a lesser extent, other syntactic metrics (depth, cllen), the accuracy of the classification can
be further improved.
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# features Accuracy Features
logit MLP

1 0.9446 0.9222 w/sen
2 0.9575 0.9486 w/sen + aoa
3 0.9721 0.9661 w/sen + CLIB + gi
4 0.9729 0.9518 w/sen + CLIB + gi + lwr
5 0.9758 0.9673 w/sen + CLIB + gi + Nr + ttr
6 0.9771 0.9677 w/sen + CLIB + gi + Nr + ttr + depth
7 0.9788 0.9740 w/sen + CILT + gi + Nr + ttr + cllen + aoa

Table 8: Best feature combinations in logistic regression (logit). Average scores (over 30 runs) for
the multilayer perceptron classifier using the same features are also mentioned.

4.4 Ignoring sentence length (w/sen)

Considering that the predictive value of sentence length alone is so strong (for our data set specifically,
but also according to previous analyses of text readability), we wanted to conduct an additional
experiment in which we control for differences in w/sen across articles. To this end, we extracted
from both subcorpora all articles with w/sen values between 6 and 12, which are the values for which
we see an overlap in w/sen in Figure 1. Table 9 shows how many articles in each subcorpus occur
with certain w/sen values. Each of the columns represents a bin.19 In order to allow recalculating the
effect of each of the features (without w/sen), for each bin we determine the size of each subcorpus
N = min(size(Wablieft), size(DeStandaard)), selecting N random articles from the larger corpus,
so the two subcorpora are of equal size with respect to number of articles, allowing easy comparison.

6 ≤ x < 7 7 ≤ x < 8 8 ≤ x < 9 9 ≤ x < 10 10 ≤ x < 11 11 ≤ x < 12

Wablieft 1160 3994 4262 2075 800 218
De Standaard 140 206 446 990 1918 3192

N 140 206 446 990 800 218

Table 9: Number of newspaper articles for specific ranges of w/sen values.

Table 10 shows the best scoring single features in the logistic regression when controlling for
w/sen and Figure 2 shows the best scores for logistic regression classifiers found using the same A*
algorithm as described in section 4.3, but now over bins with comparable w/sen values. The values
in this table and figure are weighted averages of the values of the bins as calculated according to
Equation 7, in which n is the number of the bin, Nn the size of the bin (as in Table 9), and µn the
mean value calculated for that specific bin.

6 ≤ x < 7 7 ≤ x < 8 8 ≤ x < 9 9 ≤ x < 10 10 ≤ x < 11 11 ≤ x < 12 AV G

CILT 0.8571 0.7619 0.8111 0.7576 0.7125 0.8409 0.7650
CLIB 0.8214 0.7381 0.8000 0.7222 0.7125 0.7273 0.7384

aoa 0.8929 0.7619 0.7889 0.6818 0.6750 0.7727 0.7204
fwr 0.8214 0.6905 0.7667 0.6869 0.7250 0.6818 0.7171
lwr 0.7857 0.7857 0.7333 0.7525 0.6125 0.7273 0.7116

Table 10: Best scoring features when controlling for w/sen.

19. In the remainder of this section, we will shorten the names of the bins to bin6, bin7, bin8, bin9, bin10 and bin11
respectively.
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Figure 2: Weighted average of best logistic regression results for each of the bins of equal sentence
length over number of features.

AV G(X) =

∑11
n=6Nn ∗ µn∑11

n=6Nn

(7)

When ignoring w/sen and only using one other feature, CILT is the best predictor (admittedly
it is a combination of two features). With two features, CILT combined with subcl scores best, and
with three features the best combination includes CILT, gi and ttr.20 With four features, we find
that CLIB (which correlates very strongly with CILT) combined with subcl/cl, ttr and w/txt shows
the best prediction.

The weighed average clearly shows diminishing improvement when adding features, but we still
reach an average accuracy of over 85%.

5. Conclusions and Future Work

We first present our conclusions in Section 5.1. In Section 5.2 we present our plans for the future.

5.1 Conclusions

In this paper we identified a number of linguistic features or metrics that make good proxies for
readability by using the Wablieft corpus as a gold standard of easy-to-read texts, and the De Stan-
daard data as a control corpus. The simple metric words/sentence scores best of all, both in terms
of effect size and classification accuracy. Generally speaking, syntactic metrics appear to perform
better than lexical ones, even though adding lexical metrics (such as average age of acquisition,
Guiraud or characters/word) to average sentence length increases the accuracy of classification us-
ing logistic regression. We also found that of the traditional metrics, which all combine syntactic
and lexical features (apart from CILT), Brouwer’s Leesindex A scores best. It should be noted,
however, that none of these measures achieve the effect size or accuracy of words per sentence alone,
which indicates that, for our data at least, there is no evidence supporting their use as readability
metrics.21 For the classification task we used here, better results could be reached in the logistic
regression when using features as separate independent variables. Nevertheless, additional analyses

20. Note that gi is actually a transformation of ttr.
21. All these metrics, apart from CILT include w/sen as a factor.
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showed that, when controlling for differences in average sentence length, the CILT metric proved to
have the best predictive power.

We found three clusters of inter-correlated features, i.e. features related to text length, features
related to sentence length, and the readability metrics. We argue that such (high) inter-correlations
between measures can (and maybe should) be taken into account in future classification tasks.

We also noted that the details of operationalisation of the metrics can make a huge difference for
the results of our analyses. For instance, how you define content words or how you count syllables,
what you do with words that do not occur in the age-of-acquisition or concreteness data sets has its
effect on the evaluation of the usefulness of the metrics with respect to readability. Also the corpus
that is used to determine word frequency plays a big role.

Furthermore, details on how you filter texts and treebanks to distinguish noise from language
can make a considerable difference. Our ranking of best proxies looked quite different before we
removed about 1000 articles from De Standaard while cleaning the data.

It is important to keep in mind that our operationalisation of readability was based on a com-
parison of easy-to-read newspaper articles produced by trained and professional writers of such text
with regular newspaper articles, rather than on actual judgements of (perceived) readability. This,
of course, has both advantages and disadvantages. It is probably an advantage to evaluate the read-
ability of texts based on actual texts written by expert writers who follow clear norms for writing
simple texts. Yet, since many of the instructions concerning the writing of easy-to-read texts make
reference to certain features that we evaluated in this study (such as sentence length, lexical vari-
ety and frequency), there is certainly a risk of circular reasoning in the evaluations we carried out.
Moreover, considering that using a simple metric such as average sentence length already enabled
us to reach 94.5% classification accuracy, it might be argued that our two corpora were actually
too different (in terms of readability-related aspects). Since our simple 1-feature classifier already
worked so well, there was not much room for building better classification models using a wider,
possibly more varied range of features. Because of the design of this study, we also only relied on a
binary distinction between easy-to-read and regular text, which does not constitute the most refined
assessment of readability.

5.2 Future work

In future work, we want to identify comparable articles (i.e. dealing with the same topic) from De
Standaard en Wablieft, and build a comparable corpus with on the one side regular Dutch texts and
on the other side easy Dutch texts.

From that corpus, we want to identify comparable sentences, roughly treating the same content.
As such, we hope to build a corpus of comparable sentences with on the one side regular Dutch
sentences and on the other side easy Dutch sentences. As regular sentences are often longer, one-to-
many mappings will regularly occur.

Based on these data sets we aim at building an automated text simplifier using supervised
(Wubben et al. 2012), unsupervised or semi-supervised MT technology, for example using neural
MT systems (Nisioi et al. 2017, Wang et al. 2016), as alternative to rule-based methods for lexical
(Bulté et al. 2018) and syntactic simplification (Sevens et al. 2018) in Dutch or to data-driven tree
transduction methods for Dutch sentence compression (Vandeghinste and Pan 2004).
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Appendix A. Distribution of features

Figure 3: Continuation of Figure 1.
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Figure 3: (continued)
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