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Abstract

Recognizing and classifying implicit discourse relations is a challenging task since hardly any
strong indicators exist, and a variety of weak indicators has to be harnessed to yield evidence
for a particular discourse relation or another. Most current approaches rely on a combination of
shallow, surface-based features and rather specialized hand-crafted features, with a considerable
gap in between which is partly due to the sheer complexity of combining evidence from different
levels of linguistic description.

As a way to avoid both the shallowness of word-based representations and the lack of coverage
of specialized linguistic features, we use a graph-based representation of discourse segments, which
allows for a more abstract (and hence generalizable) notion of syntactic (and partially of semantic)
structure, we propose an approach to use a graph-structured representation of discourse units in
order to improve the classification of implicit discourse relations.

We validate this approach using implicit discourse relation data from the TüBa-D/Z treebank,
providing an extended discussion and error analysis that looks at the impact of the graph-based
representation on the different kinds of discourse relations.

The empirical evaluation shows that our graph-based approach not only provides a suitable
representation for the linguistic factors that are needed in disambiguating discourse relations,
but also improves results over a strong state-of-the-art baseline by more accurately identifying
Temporal, Comparison and (for the German data) Reporting discourse relations.

1. Introduction

Discourse relations are semantic or rhetorical relations that hold between textual spans. They
capture essential structural and semantic/pragmatic aspects of the coherence of a text. Besides
anaphora and referential structure, discourse relations are a key ingredient in understanding a text
beyond single clauses or sentences. The automatic recognition of discourse relations is therefore an
important task; approaches to the solution of this problem range from heuristic approaches that use
reliable indicators (Marcu, 2000) to modern machine learning approaches such as Lin et al. (2009)
that apply broad shallow features in cases without such indicators.

Especially on implicit discourse relations, where no discourse connective could provide a reliable
indication, broad, shallow features such as bigrams or word pairs conceivably lack the precision
that would be needed to improve disambiguation results beyond a certain level. Conversely, hand-
crafted linguistic features allow one to encode certain relevant aspects, but they have often limited
coverage. Encoding detailed linguistic information in a structured representation, as in the work
presented here, allows us to bridge this divide and potentially find a golden middle between linguistic
precision and broad applicability.

Using a corpus of German with discourse annotation, the TüBa-D/Z treebank (Telljohann et al.,
2009; Versley and Gastel, 2013) and a novel representation of discourse units as graph structures, we
argue that such an approach is suitable to overcome the shallowness of a word-based representation
and the non-specificity or lack of coverage of specialized linguistic features. We provide results for
using this approach on a German corpus of discourse relations using a structure mining approach
and an approach using support vector machines and convolution kernels.
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The rest of this article is organized as follows: Section 2 takes a closer look at the concept of
discourse relations; Section 3 gives an overview of existing approaches to use structure in automatic
classification. Section 4 gives an overview of the corpus we used, and Section 5 describes the feature-
based and graph-based representations that are used in this study. Section 6 describes the setup
that is used to evaluate different variants of the system, and provides details on each experiment.

2. Discourse relations

The meaning of a text does not just consist in (purely) the propositions of its constituting sentences,
but is conventionally understood as including the inferences that readers add so that the text grows
into a coherent whole (implicatures). In this process of understanding the text, they are guided by
the assumption that constituent parts of the text are in a specific relation to some other part of the
text. In the following example (1), the clause John pushed him is taken to be the explanation for the
asserted event Peter fell and we can express this insight by postulating a causal discourse relation
between the two clauses.

(1) Peter fell. John pushed him.

Many theories of discourse assume that discourse relations both build a hierarchy of longer and
longer parts of a text (complex discourse units), and can also hold between these larger parts.
Rhetorical Structure Theory (Mann and Thompson, 1988, RST), in particular, assumes that the
whole discourse consists of a hierarchy of (elementary, then complex) discourse units in the form of
a projective tree. In other cases, such as Segmented Discourse Representation Theory (Asher, 1993,
SDRT), a non-projective hierarchy is assumed (Afantenos and Asher, 2010), and in the assumptions
underlying the Discourse GraphBank (Wolf and Gibson, 2005), the idea of hierarchy is more or less
abandoned.

While the idea that discourse segments are linked by discourse relations belonging to one or mul-
tiple types seems to be universally accepted among different theories, the question of discourse units
forming a hierarchy, and the exact constraints that hold on that hierarchy, has received different,
mutually incompatible, answers within linguistic theories of discourse, and consequently in different
existing resources, which means that any computational approach for taking into account not just
labeling of discourse relation but also the identification of their structure across a text will be tied
to one particular theoretical framework.

Because of this, we exclude the identification of structure from the considerations of this article.
Instead, the focus is on the problem of identifying which discourse relation holds between the two
spans of text, more specifically on those where no discourse connective gives an overt clue that can
be used to identify this relation (implicit discourse relations).

In cases where a discourse connective links two discourse segments (explicit discourse relation),
both the arguments and the realized discourse relation are actually unambiguous. For example,
in “[Peter despises Mary ] because [she stole his yoghurt ]” the discourse relation is unambiguously
signaled.

In other cases, a connective can be ambiguous, as in the case of German ‘nachdem’ (as/after/since).
Nachdem can signal multiple types of discourse relations (e.g. purely temporal or temporal and
causal), as in (2):1

(2) [Nachdem sowohl das Verwaltungsgericht als auch das Oberverwaltungsgericht das Verbot
bestätigt hatten,] [rief die NPD am Freitag nachmittag das Bundesverwaltungsgericht an].
[After both the Administrative Court and the Higher Administrative Court had confirmed the
interdiction,]
[the NPD appealed to the Federal Administrative Court.] (Temporal+cause)

1. TüBa-D/Z corpus, sentence 7462
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Another type of discourse relations are implicit discourse relations, which can occur between neigh-
bouring spans of text without any discourse connective signaling them:2

(3) [Mittlerweile ist das jedoch selbstverständlich]
[Die gemeinsame Arbeit hilft, den anderen zu verstehen.]
[In the meantime, this has become a matter of course] (implied:since) (Explanation)
[The common work helps to appreciate the other.]

In existing research, most earlier work such as Marcu (2000) or Soricut and Marcu (2003), as well
as later Pitler and Nenkova (2009), exploit discourse connectives and syntactic context for the
identification of discourse relations, while work such as Haddow (2005) and Miltsakaki et al. (2005)
uses linguistic indicators such as tense and modality to improve results on ambiguous connectives. In
the realm of ambiguous discourse connectives, Versley (2011a) claims that additional semantic and
structural information – classes of adverbials, or the detection of contast pairs (such as hot–cold)
can help improving the classification accuracy in such cases.

In the case of implicit discourse relations, the absence of overt clues makes successful disam-
biguation considerably harder, and a combination of weak linguistic indicators and world knowledge
is needed for successful disambiguation. Sporleder and Lascarides (2008) use positional and mor-
phological features, as well as subsequences of words, lemmas or POS tags to disambiguate implicit
relations in a reannotated subset of the RST discourse treebank (Carlson et al., 2003). Sporleder
and Lascarides also show that (despite the corpus size of about 1000 examples) actual annotated
relations are more useful than artificial examples derived from non-ambiguous explicit discourse
relations.

Research using the implicit discourse relations annotated in the second release of the Penn
Discourse Treebank (Prasad et al., 2008) shows a focus on shallow features: Pitler et al. (2009) find
that the most important feature in their work on implicit discourse relations are word pairs. Lin
et al. (2009) identify production rules from the constituent parse, as well as word pairs, to be the
most important features in the system, with dependency triples not being useful as a features, and
information from surrounding (gold-standard) discourse relations having only a minimal impact.
Park and Cardie (2012) provide a summary and synthesis of implicit relation labeling on the Penn
Discourse Treebank: they identify context-free productions as the most effective feature across all
relations, with a feature identifying common verb classes (as encoded in VerbNet, Kipper et al.,
2000), as well as semantic classes and sentiment.

Some existing research deals with inferring both the structure and the labeling of discourse
relations in a text, such as Hernault et al. (2010), Feng and Hirst (2012) on the RST Discourse
Treebank (Carlson et al., 2003) or Muller et al. (2012) on the SDRT-based AnnoDis corpus (Péry-
Woodley et al., 2011). In these cases, identification of discourse connectives and shallow indicators
are again the mainstay of classification, while Feng et al. propose the semantic similarity between
words of the two clauses as an indicator.

In summary, most existing research on automatic processing discourse relations treats individual
clauses as bags of words, with only verbs and negators given special status. In order to use of the
information in the clauses more effectively, it would be desirable to involve their internal structure
in the classification process.

3. Structured classification

In the realm of machine learning approaches that are suitable to taking structure into account, one
can distinguish structured-input learning techniques, which take a complex structure (molecular
graphs of proteins, syntactic structures of a parsed sentence, local patterns in an image and their
neighbourhood relations) and provide a simple output in terms of a yes/no label, or a category from

2. TüBa-D/Z corpus, sentence 448
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a fixed set, from structured-output learning techniques, where a complex structure is built from
parts (such as in part-of-speech tagging, or parsing).

In both cases, local parts of the overall structure (such as a part-of-speech tag and the word
it belongs to) can be labeled as belonging to a particular class (in the case of structured-input
classification) or as being indicative of a good or bad output structure (in the case of a hypothesis
in structured-output classification).

For our problem, the classification of graphs representing clauses into discourse relation cate-
gories, we care more about using larger parts of the structure in our classification (as is typical of
structured-input classification), while not being concerned about the interdependencies between dif-
ferent discourse relation tokens (which would be typical in the case of structured-output classifiation
such as RST-style building of discourse structure).

3.1 Graph classification in computational linguistics

All approaches for structured-input learning fall into one of three groups: linearization approaches,
which decompose a structure into parts that can be presented to a linear classifier as a binary feature,
structure boosting approaches, which determine the set of included substructures as an integral part
of the learning task, and kernel-based methods which use dynamic programming for computing the
dot product in an implied vector space of substructures. Kernel-based methods on trees have been
used very widely, for example in the reranking of parse trees on a small treebank (Collins and
Duffy, 2002) and for answer ranking in a question answering system (Moschitti and Quarteroni,
2011). A boosting algorithm for trees has been used by Kudo et al. (2004) for a sentiment task
(classifying reviews into positive/negative instances). Arora et al. (2010) use subgraph features in a
linearization-based approach to sentiment classification.

3.2 Partial tree kernels

Kernel-based methods such as support vector machines use a learning approach that does not need
an explicit feature representation, but instead only depends on the kernel product κ(x1, x2) between
two learning instances. Tree kernels, or convolution kernels more generally, allow it to use an
implicit feature space of arbitrarily-sized substructures without the efficiency problems that an
explicit expansion of a structure into substructures would entail. Explicit expansion of structures
into a list of substructures would yield an exponentially growing feature space, since there are
exponentially many substructures. In contrast, dynamic programming methods allow it to use
an implicit expansion that takes into account arbitrarily large substructures while only using a
polynomial amount of time.

The partial tree kernel (Moschitti, 2006) uses an implicit feature space that is derived from all
trees that have a subsequence of sibling nodes (but the same hierarchical relations between nodes).

As an example, consider a tree (written in bracketed notation) (A (B (C D) (E))), which has
the partial trees (A), (A (B)), (A (B (E))), (B (C)), (B (C D)), (E) etc. and a tree (A (B (D)

(E))) , which has the partial trees (A), (A (B)), (A (B (E))), (B (D)), (B (D)), (E), but not (B
(C)), (C) or (A (B (C))) etc. The common substructures (A (B)), (B) or (E) would all contribute
to the kernel product between these trees.

3.3 Linearization-based approaches

Approaches based on linearization decompose the tree (or graph) into a vector of fragment indicators
as an explicit feature representation. As mentioned above, this explicit feature representation can be
less efficient, which is why they are usually paired with techniques that filter for frequent subgraphs
– such as gSpan (Yan and Han, 2002) – and/or techniques for generic feature selection. In addition,
boosting approaches integrate learning and feature selection (Kudo et al., 2004), whereas recent
approaches for tree kernel linearization (Severyn and Moschitti, 2013) first perform kernel-based
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Figure 1: Example Feature-Node Graph (i), its backbone (ii), and its expansion (iii)

learning followed by a step that extracts the most important substructures from the support vector
classifier that has been learned in order to use these as features in a linear classifier.

Both the kernel-based approach and linearization-based approaches are combineable with nom-
inal (i.e., non-structured) features, but the general simplicity of a straightforward linearization ap-
proach makes it the best option for the starting point in our exploration of structure-based modeling
of clauses, as reported in the next sections.

3.4 Feature-node graphs

When we want to represent subparts of a clause and their features, extracting features locally and
then using a single (global) feature vector loses the information on each part. A better way to make
use of the (implicit) information which property relates to which part of an argument span is to
represent them in feature-node graphs, which we introduce here. This formalism also allows us to
take into account more structure than n-grams (which are limited to relatively shallow information)
or dependency triples (which would be too sparse in the case of typical discourse corpora).3

Formally, a feature-node graph consists of a set V of vertices with labels LV : V → L, a set of
edges E ⊆ V × V with labels LE : E → L, with the addition of a set F : V → P(L) that assigns to
each vertex a set of feature labels.

The backbone of a feature-node graph is simply the labeled directed graph (V,LV , E, LE), without
any features.

The expansion of a feature-node graph is the labeled directed graph (V ′, L′V , E
′, L′E) built by

expanding the set of nodes to V ′ = V ] {(v, l) ∈ V × L|l ∈ F (v)} with labels L′V (v) = LV (v) for all
v ∈ V and L′V ((v, l)) = l for all v ∈ V, l ∈ F (v) and correspondingly adding edges to get the complete
set E′ = E ]{(v, (v, l))|l ∈ F (v)}, with a special symbol z for the labels of newly introduced edges,
i.e. LE(v, (v, l)) = z.

Figure 1 gives an example of a feature-node graph with the verticesX, Y and Z with F (X) = {u},
F (Y ) = {r, s}, and F (Z) = ∅, edges E = {(X,Y ), (X,Z)} and edge labels LE((X,Y )) = ε,
LE((X,Z)) = a.

Representing desired information as features (instead of, e.g., using words, or POS tags, as the
node labels in a dependency graph) is advantageous because that two feature-node graphs of similar
structures will have a common substructure as long as the backbone of that structure is identical. In
the case of words as node labels, any non-identical word would prevent the detection of the common
substructure.

4. Discourse relations in the TüBa-D/Z corpus

In order to test our approach to discourse relation classification, we rely on a subcorpus of the
TüBa-D/Z corpus that has been annotated with discourse relations. This subcorpus has received
full annotation for all discourse relations, according to an annotation scheme described by Versley
and Gastel (2013). This corpus contains 803 implicit discourse relations that are not marked by a
connective (according to the criteria set forth by Pasch et al., 2003).

3. For reasons of efficiency as well as learnability, the structures we use to represent each discourse unit are simpler
and more compact than the annotated corpus data from which they are derived.
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In the corpus, 41 texts have been annotated with a scheme postulating a hierarchical discourse
structure that has elementary discourse units at its bottom end (described below), and larger dis-
course segments (topic segments) corresponding to a high-level communicative goal (explain the
history of the museum) at its upper end, where a text is subdivided into multiple topic segments
corresponding (usually) to the result of the author’s high-level text organization.

At the lowest level, elementary discourse units (EDUs) are defined in syntactic terms as tensed
clauses (matrix clauses and non-center-embedded subclauses), but also right-dislocations and non-
restrictive relative clauses, as in the following example (4):4

(4) [Er sollte unseren heimischen Markt aufmischen,]
[das erste Produkt in deutschen Läden, das genmanipulierten Mais enthält.]
[It was to stir up our domestic market,]
[the first product in German stores to contain GM corn.] (Restatement)

In this example, the same situation (a chocolate bar containing genetically modified corn was put
on the market) is described using two different aspects of the event (firstly, the intended effect, and
secondly, background information about the chocolate bar).

Because the discourse structure is organized hierarchically, unmarked discourse relations can also
occur between larger spans, such as in the Commentary relation of Example (5):5

(5) [α Die gute Nachricht: Die Weltbevölkerung wächst inzwischen langsamer als in den vergan-
genen Jahrzehnten.| Die schlechte Nachricht: Erreicht wird diese Entlastung der ökologischen
und sozialen Systeme nicht nur durch Fortschritte bei der Geburtenkontrolle,| sondern auch
durch eine Sterblichkeitsrate, die zum erstenmal seit 40 Jahren wieder ansteigt. |. . . ]

[β Diese Entwicklung zeigt nach Angaben von Lester Brown, einem der Autoren der Studie,
das “Versagen unserer politischen Institutionen”.]
[α The good news: The world population is growing more slowly than in past decades.| The
bad news: This unburdening of ecological and social systems is not only achieved by progress
in family planning,| but is also due to a mortality that growing again for the first time since
40 years. | . . . ]
[β This development shows, according to Lester Brown, one of the study’s authors, a “failure
of our political institutions.”] (Commentary)

The Commentary relation in this example is typical for the progression from factual reporting in
discourse segment α to a perspectivized opinion in segment β (which is attributed to one of the
study’s authors, but is also understood to be the opinion of the writer of the text at hand).

The relation labels in the annotation scheme are summarized in Table 1, and are grouped into
the following broad categories:

• Contingency relations include those relations that would be termed causal source of coherence
in the property scheme of Sanders et al. (1992). They include both causal relations in the
narrow sense, but also conditionals (“If I buy an umbrella, I will not get wet.”) and concession-
like relations (“Although he bought an umbrella, he still got wet.”)

• Expansion relations provide additional information to something introduced in one of the
relation arguments. In the case of Elaboration, the statement is specified further by providing
a redescription of the event (Restatement), an instance for the general phenomenon described
in the segment (Instance), or some background information that can help understanding the
plausibility or relevance of the first discourse segment (Background). Interpretation relations
link a reported text segment to a summary or conclusion that is either purely factual (Sum-
mary) or contains claims that the author makes from their perspective (Comment).

4. TüBa-D/Z, sentence 5736
5. TüBa-D/Z sentences 8429ff.
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Relation # total # implicit % implicit % relation

Contingency
Causal

Result 133 88 66.2% 11.0%
Explanation 122 81 66.4% 10.1%

Conditional
Consequence 26 5 19.2% 0.6%
Alternation 7 2 28.6% 0.2%
Condition 13 — 0.0% —

Denial
ConcessionC 60 9 15.0% 1.1%
Concession 34 5 14.7% 0.6%
Anti-Explanation 3 3 100.0% 0.4%

Expansion
Elaboration

Restatement 149 140 94.0% 17.4%
Instance 63 39 61.9% 4.9%
Background 119 109 91.6% 13.6%

Interpretation
Summary 2 1 50.0% 0.1%
Commentary 36 28 77.8% 3.5%

Continuative
Continuation 89 71 79.8% 8.8%
Conjunction 45 1 2.2% 0.1%

Temporal
Narration 127 70 55.1% 8.7%
Precondition 34 23 67.6% 2.9%

Comparison

Parallel 55 23 41.8% 2.9%
Contrast 66 26 39.4% 3.2%

Reporting

Attribution 67 67 100.0% 8.3%
Source 65 65 100.0% 8.1%

%implicit : proportion of relation instances that are implicit, rather than explicit. % rel : percentage of given
relation among all implicit. About 10% of the implicit instances have multiple labels (e.g. Result+Narration).

Table 1: Frequencies of discourse relations in the corpus of Gastel et al. (2011)

• Temporal relations hold between events that are part of the same temporal sequence (Nar-
ration), or where the Arg1 of the relation is situated temporally in the post-state of the event
of Arg2 (Precondition).

• Comparison relations center on two topical entities in Arg1 and Arg2 and compare them
according to one particular property or attribute, focusing on the entities’ similarity in that
respect (Parallel) or their dissimilarity (Contrast).

• Reporting relations hold between a fact that is reported by one of the actors in the text and
the event that constitutes the reporting. In the case of Source, the reported fact is seen to be
asserted by the author (veridical). In the case of Attribution, the reported proposition is not
necessarily portrayed as veridical, and the reporting event is seen as more central.

Among the most frequent unmarked relations are Restatement and Background from the Ex-
pansion/Elaboration group, which predominantly occur as implicit discourse relations, as well as
Result and Explanation, which occur unmarked in about two thirds of the cases. In other cases,
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such as Consequence, Concession (is limited to cases of contraexpectation) and ConcessionC (which
also includes more pragmatic concession relations), only a minority of relation instances is implicit
whereas the majority is marked by an explicit connective.

Relations that are typically marked, such as Contrast – see Example (6) – or Concession/ConcessionC
– see Example (7) – often contain weak indicators for the occurring discourse relation, such as the
opposition policemen-demonstrators in the first case, or the negation of a reference to Arg1 (“this
wish will not be fullfilled soon”).

(6) [159 Polizisten wurden verletzt.]
[Zahlen über verletzte DemonstrantInnen liegen nicht vor.] (Contrast)

[159 policemen were injured.][No data is available regarding injured demonstrators.]

(7) [“Nun will ich endlich in Frieden leben.”]
[Dieser Wunsch Ahmet Zeki Okcuoglus wird so bald nicht in Erfüllung gehen.]

[“Now I finally want to live in peace.”] (implied: However,)

[This wish of Ahmet Zeki Okcuoglu will not be fulfilled any time soon.] (ConcessionC)

4.1 Annotation layers of TüBa-D/Z

The TüBa-D/Z is a multilayer corpus that contains the following annotation layers:

• A word layer containing the document’s tokens with associated part-of-speech, morphological,
and lemma information.

• A syntactic layer containing a phrase structure parse for each sentence. The annotation
scheme for phrase structure is aimed to capture theory-independent assumptions about the
syntax of German while keeping as much information as possible within the projective phrase
structure itself. The syntactic layer uses topological fields (Höhle, 1986) to organize the con-
stituents occurring within a clause.

• A layer of named entities that represents the spans of named entities (which may or may not
coincide with the spans of noun phrases) and their semantic class. The named entity annotation
distinguishes between persons (PER), organizations (ORG), locations (LOC), geopolitical entities,
which are territories with an elected or inherited governing entity (GPE), and other named
entities such as works of art (OTHER).

The spans of named entities usually coincide with the boundary of a noun phrase in the
syntactic layer, but often this is not the case exactly, for example when the ‘canonical’ name
does not include the determiner or a premodifier of the noun phrase. For example, in the noun
phrase “[NP Die Caritas]”, only Caritas is part of the canonical name of the organization,
yielding an annotation of “Die [ORG Caritas]” on the Named Entity layer.

• A layer with coreference information, which contains a pointer from a subsequent mention
of an extratextual entity to its previous mention in the document, and which covers both
anaphora (anaphoric) and definite descriptions and names (coreferential). The coreference
layer also marks non-referring pronouns such as expletives (expletive) and inherent reflexives
(inherent reflexive). In case of a pronoun referring to an entity introduced by several noun
phrases (ex.: John met Mary at the station. Then they went home), the split antecedent

relation is used.

While it is straightforward to use the word and the syntactic layer once the span of a discourse
segment has been mapped to a sentential nonterminal node, named entities have to be mapped back
to the syntax node to which they correspond.
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5. Representing discourse segments

5.1 Feature-based representations

5.1.1 Linguistic features

We implemented a group of specialized linguistic features, which are inspired by those that were
successfully used in related literature (Sporleder and Lascarides, 2008; Pitler et al., 2009; Versley,
2011a).

As implicit discourse relations can occur intra- as well as intersententially, the topological
relation between the arguments is classified by syntactic embedding (if one argument is in the pre-
or post-field of the other), or as one preceding, succeeding or embedding the other.

Several features reproduce simple morphosyntactic properties: One feature signals the pres-
ence of negation in either argument, either as a negating adverb (English not), determiners (no), or
pronouns (none). A negated Arg1 would be tagged 1N+, a non-negated one as 1N-. Tense and mood
of clauses in either argument are also incorporated as features (e.g. 1tense=t for an Arg1 in pas(t)
tense). The head lemma(s) of each argument, which is normally the main verb, is also included
as a feature (e.g. 1Lverletzen for the Arg1 of Example (6)).

We also mark the semantic type of adjuncts present in either relation argument, with cate-
gories for temporal, causal, or concessive adverbials, conjunctive focus adverbs (also, as well), and
commentary adverbs (doubtlessly, actually, probably . . . ). As an example, an Arg1 containing “de-
spite the cold” would receive a feature 1adj concessive. Because this feature is based on a word
list, it is imperfect in the sense that the list is incomplete, and some markers can be ambiguous with
respect to their function.

The detection of cotaxonomic relations between words in both arguments uses the German
wordnet GermaNet (Henrich and Hinrichs, 2010). Such pairs of contrasting lemmas, such as hot-
cold or policeman-demonstrator commonly indicate a parallel or contrast relation. If two words
share a common hyperonym (excluding the uppermost three levels of the noun hierarchy, which
are not informative enough), feature values indicating the least-common-subsumer synset (such as
temperature adjective) and up to two hyperonyms are added. For example, the pair sagen (to say)
in Arg1 co-occurring with erzählen (to recount) in Arg2 would yield several features that include the
synset IDs of the least common subsumer in GermaNet and its hyperonyms (e.g., lcs super 48092

— say something to someone, and lcs super 48077 — to utter).

A sentiment feature uses the lists of emotional words and of ‘shifting’ words (which invert the
emotional value of the phrase) by Klenner et al. (2009) as well as the most reliable emotional words
from Remus et al. (2010). The combination of emotional words and shifting words into a feature is
similar to Pitler et al. (2009): according to the presence of positive- or negative-emotion words, each
relation argument is tagged as POS, NEG or AMB. When a negator or shifting expression is present, a
“-NEG” is added to the tag, yielding, e.g. “1 pol NEG-NEG” for an Arg1 phrase containing the words
‘not bad ’.

Regarding the accuracy of these features, the identification of positive-sentiment or negative-
sentiment items in arguments purely based on a word list (even together with shifting expressions)
is relatively error-prone, since available resources mix actual sentiment terms with terms that have
a positive or negative connotation within a certain domain (for example, a weak nuclear force in
physics is not a sentimentally laden term, while a political figure having weak arguments would have
a negative connotation). A more complete account of sentiment could be expected to be useful in
all those cases where the question under discussion is an evaluative one.

Among the other features, the detection of cotaxonomic relations and the identification of se-
mantic types of adjuncts are probably rather on the conservative side since they rely on hand-coded
data rather than some kind of semi-supervised learning approach. (For a use as feature, in this case,
limited coverage should be preferred over noise problems with extracted features).
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5.1.2 Shallow features

As mentioned in Section 2, shallow lexical features empirically constitute a very important ingredient
in the automatic classification of implicit (and ambiguous explicit) discourse relations, despite the
fact that they lack most – semantic or structural – generalization capabilities. We implemented
three groups of features that have been identified as important in the prior work of Sporleder and
Lascarides (2008), Lin et al. (2009) and Pitler et al. (2009).

A first group of features captures (unigrams and) bigrams of words, lemmas, and part-of-speech
tags. In this fashion, the bigram “Zahlen über” from Arg2 of Example (6) would be represented by
word forms 2w Zahlen über, lemmas 2l Zahl über and POS tags 2p NN APPR.6

Word pairs, i.e., pairs consisting of one word from each of the discourse relation arguments,
have been identified as a very useful feature for the classification of implicit discourse relations in the
Penn Discourse Treebank (Lin et al., 2009; Pitler et al., 2009), and, quite surprisingly, also for smaller
datasets such as the discourse relations in the RST Discourse Treebank targeted by Feng and Hirst
(2012) or the ambiguous connective dataset used by Versley (2011a).7 Because of the morphological
richness of German, we use lemma pairs across sentences; for Example (6), the lemma Polizist from
Arg1 and the lemma DemonstrantIn from Arg1, among others, would be combined into a feature
value wp Polizist DemonstrantIn.

Finally, CFG productions were used by Lin et al. (2009) to capture structural information,
including parallelism. Context-free grammar expansions are extracted from the subtrees of the
relation arguments and used as features by marking whether the corresponding rule type occurs only
in one, or in both, arguments. In Example (6), the CFG rule ‘PX → APPR NX’ for prepositional
phrases occurs in both arguments, yielding a feature “pr B PX=APPR-NX”, whereas the preterminal
rule “APPR → über” only occurs in Arg2 (yielding “pr 2 APPR=über”).

5.2 Representing discourse units as graphs

In order to get a relatively general representation of discourse units in graph form, the backbone
of the graph should be as simple and possible: in this fashion, commonalities are not hidden by
variation in the node labels that is due to (incidental) variation of the syntactic form. In our
approach, the backbone of the graph is built using nodes for a clause (S), and including children
nodes for any clause adjuncts (MOD), verb arguments (ARG). In the case of relation arguments being in
a (syntactic) matrix clause - subclause relationship (e.g. [Arg1 Peter wears his blue pullover,] [Arg2
which he bought last year ]), the graph corresponding to the matrix clause receives a special node
(SUB-CL, or REL-CL for relative clauses). This is universally the case for the explicit relations in the
case of nachdem, but may also occur in the case of unmarked relations. For example, Background
relations are frequently realized by relative clauses. Non-referring noun phrases (which are tagged
as ‘expletive’ or ‘inherent reflexive’ in the referential layer of TüBa-D/Z), receive a node label
expletive instead of ARG.

In each of the adjunct/argument nodes, we include syntactic information such as the category
of the node (nominal/prepositional/adverbial phrase, e.g. cat:NX for a noun phrase), the topological
field (cf. Höhle, 1986, e.g. fd:MF for a constituent occurring in the middle field) and, for clause
arguments, the grammatical function (subject, accusative or dative object or predicative complement
– e.g., gf:OA for the accusative object). Clause nodes contain features for tense and mood based on

6. Sporleder and Lascarides (2008) use a Boosting classifier (BoosTexter) that can extract and use arbitrary-length
subsequences from its training data. As our dataset is small enough that we do not expect a significant contribution
from longer sequences, we approximate the sequence boosting by extracting unigrams and bigrams. As with the
other shallow features, unigrams and bigrams are subject to the same supervised feature selection that is also
applied to subgraph features.

7. For an illustration of the differences in size, consider that the Penn Discourse Treebank contains about 20 000
implicit discourse relations in 2159 articles, and the RST Discourse Treebank contains a lower number of 385
documents; Sporleder and Lascarides used a sample of 1 051 annotated implicit relations which were derived from
the RST Discourse Treebank but manually relabeled according to an SDRT-like annotation scheme.
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Figure 2: The complete graphs built from the implicit relation arguments “Nun will ich endlich in
Frieden leben.” and “Dieser Wunsch Ahmet Zeki Okcuoglus wird so bald nicht in Erfüllung
gehen.” – cf. ex. (7).

the main and auxiliary/modal verb(s) of that clause (e.g., mood=i, tense=s for an indicative/past
clause).

In the realm of semantic information, we use the heuristics of Versley (2011a) to identify
semantic classes of adverbials, in particular temporal, causal or concessive adverbials, conjunctive
focus adverbs, and commentary adverbs. As the backbone of our graph structure abstracts from
syntactic categories and only distinguishes adjuncts and arguments, it is possible to learn general-
izations over different realizations of the same type of adjunct: for example, temporal adjuncts may
be realized as a noun phrase (next Monday), a prepositional phrase (in the last week), an adverb
(later), or a clause (when Peter was ill).

Noun phrase arguments are annotated with information pertaining to their information status,
marking them either as old (if their referent has already been introduced), mediated (if a modifier –
e.g. the genitive John’s in John’s hat – has been previously introduced), or new (if neither the phrase
nor any of its modifiers has a previous mention). Additionally, we use a semantic categorization
into persons (PER), organizations (ORG), locations (LOC), events (EVT) and other entities. In
the case of named entities, this information is derived from the existing named entity annotation in
the TüBa-D/Z treebank (by simply mapping the GPE label to LOC); for phrases with a nominal
head, this information is derived using the heuristics of Versley (2006), which use information from
GermaNet, semantic lexicons, and heuristics based on surface morphology. The identification of
semantic classes has about 80-90% accuracy, lacking especially in cases of polysemy (e.g., process-
product), but offering a precision over 90% for person instances. Clauses as well as arguments and
adjuncts are annotated with their semantic head; prepositional phrases are, in addition, annotated
with the semantic head of the preposition’s argument (in the next year).

From the graph representations of relation arguments that are created in this step, frequent
subgraphs are extracted. The subgraphs are then filtered based on thresholds which were chosen
based on intuition. Considering the small size of the dataset, it would be useful to catch any
subgraph that occurs recurringly, with some safety margin to allow for the fact that clauses may
be (part of) an argument in multiple discourse relations, hence subgraphs must occur at least five
times in either the Arg1 or Arg2 graph. Graphs also have (potentially) a greater-than-polynomial
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number of subgraphs, which is why we limit them to seven nodes. Because we want to capture the
structure of the graph, rather than building arbitrary subsets of features, we could also want to
require some of the subgraph nodes to be part of the backbone, or limit the number of nodes that
are feature rather than backbone nodes (by default, to three). We investigate the sensitivity of the
classification approach to parameter settings in the subgraph extraction in the following Section 6.

6. Experiments

For the 803 implicit discourse relations in the annotated subcorpus of TüBa-D/Z, we use a 10-fold
cross-validation scheme where, successively, one tenth of the data is automatically labeled by a model
from the remaining nine tenth of the data. Multiple relation labels are predicted by using binary
classifiers (one-vs-all reduction) and using confidence values to choose one or several labels among
those that have the most confident positive classification. In the case of multiple positive classifi-
cations (e.g., if Reporting, Temporal and Expansion all receive a positive classification), relations
are only considered for the ‘second’ label if the most-confident label and the potential second label
have been seen together in the training data (e.g. Contingency and Temporal can occur together,
but Reporting will not be extended by a second relation label). In a second step, the coarse grained
relation label (or labels) is extended up to the finest taxonomy level (e.g., an initial coarse-grained
Contingency label is extended to Contingency.Causal.Explanation). In our experiments, we use
SVMperf, an SVM implementation that is able to train classifiers optimized for performance on
positive instances (Joachims, 2005).

6.1 Feature selection

Both the shallow features and the subgraph features are relatively noisy in the sense that only a
minority of the actual feature values (i.e., a random subsequence of the lemmas in a clause, or a
random pair of one word from one relation argument and one from the other) is indicative for the
assignment of a discourse relation, whereas the rest of the feature values are not. The standard
solution to this problem is to use feature selection and simply filter out all feature values that do
not match a particular criterion such as frequency or correlation with the target labeling.

Unsupervised feature selection methods, such as setting a threshold on occurrence frequency, or
on the entropy of a feature value as in (Versley, 2011a) do not make use of the target labeling.

In contrast, supervised methods for feature selection use the labeling information in the gold
data to assess whether a feature value should be informative or not. Both Pitler et al. (2009) and
Lin et al. (2009) and subsequent work use supervised feature selection techniques. Essentially, these
methods use a correlation measure such as pointwise mutual information (in the case of Lin et al.)
or the chi-square test between the presence of the feature value and each individual relation label,
and take the highest score as the overall score for that feature value. In the actual classification, the
training data is filtered so that it contains only the n feature values that have the highest overall
score for the selection metric.

6.2 Experiment I: Feature-based representation

In a first experiment, we wanted to assess the relative utility of the different aspects of the feature-
based representations. For this purpose, we consider each feature group (linguistic features ling,
bigrams bi, word pairs wp, productions pr) by itself, then combinations between linguistic features
and each group of shallow features (ling+bi, ling+wp, ling+pr). Finally, a combination of all feature
groups (all/nogr).

For single groups of shallow features and combinations of linguistic and shallow features, we give
the results for different thresholds for feature selection.
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6.3 Experiment II: Graph-based representation

In a second experiment, we wanted to see which features of the clause representation are the most
useful. We consider three variants:

• Variant A is the full graph, which includes syntactic information, semantic classes, and
information status as well as lexicalization in the form of the semantic head.

• Variant B is the graph with the information status removed.

• Variant C contains the graph without any lexicalization or semantic information.

Since the classification infrastructure is a means for using representations of clauses, its useful-
ness crucially depends on having an informative clause representation. Considering these different
variants allows us to see how sensitive the classification approach is to the richness or paucity of
information.

6.4 Experiment III: Subgraph extraction versus tree kernels

As discussed in Section 3, there are multiple approaches to using a graph-based representation in
learning and classification for discourse relations. Contrasting two learning approaches using the
same representation helps us to understand the essential properties that a successful approach of
learning with structured input representation would need.

6.5 Experiment IV: Varying the filtering criteria for subgraphs

As discussed in Section 3, we apply different thresholds in the extraction of subgraphs, which were
initially based on intuitions regarding efficiency and performance. Looking at the system behaviour
when one varies these parameters gives us a better idea of the nature of the graphs that contribute
to improving the classification performance.

6.6 Experiment V: Comparative experiments for English

In order to test the portability of the graph-based approach to other languages, we use data from
the Penn Discourse Treebank (Prasad et al., 2008). In order to stay relatively close to the setting
for the smaller German corpus, we perform 10-fold crossvalidation on the validation set of the Penn
Discourse Treebank (sections 00–02), instead of training on much more data and predicting the test
set results only once. Our subset of the PDTB data contains 1958 relation tokens in total.

The annotation schemes of the Penn Discourse Treebank and of the TüBa-D/Z discourse anno-
tation are relatively similar, with several exceptions. Firstly, the PDTB uses a separate mechanism
for the annotation of attribution relations and treats them separately from the discourse relations,
unlike the solution in TüBa-D/Z which treats them as discourse relations in the Reporting group.
Secondly, concession relations (Peter likes to travel but he gets seasick very quickly) are part of the
Comparison group in the PDTB while they are part of the Contingency group in TüBa-D/Z. Finally,
event causation (Peter stumbled, and fell on his nose) receives both a temporal relation and a causal
relation (e.g., Narration+Result-cause) in the TüBa-D/Z whereas only one relation is chosen in the
Penn Discourse Treebank.

In the validation subset of the Penn Discourse Treebank, the most frequent group of relations is
the Expansion relation (1025 occurrences), followed by Contingency (526 occurrences), Comparison
(299 occurrences) and Temporal (111 occurrences).

For the test with the Penn Discourse Treebank data, we use a smaller set of linguistic features
that are close to the feature set of Versley (2011b) and a version of the graph representation that
contains the basic clause/argument/adjunct backbone, semantic heads, and function labels, but no
semantic information or indicators of information status.
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7. Results and discussion

7.1 Evaluation measures

In our study, the classification results in a complex prediction that can contain multiple labels, which
in turn come from a taxonomy of discourse relations. As a result, a simple percent accuracy figure is
insufficient as an evaluation statistic, and we need to consider both different granularities of relations
and give partial credit when a relation with multiple labels (e.g. Temporal+cause) has been assigned
a labeling with a subset/superset or overlapping categories (e.g., Temporal, or Temporal+parallel).

As a way to assign partial credit, we use a variant of accuracy that uses the Dice score to assign
partial credit to relation tokens with an overlap between prediction and gold annotation.8

Given a set G of labels that constitute the labeling of a relation in the gold annotation, and a set
S of labels that the system assigns as a labeling, the Dice score for one relation token is calculated
as

Dicetok(Gi, Si) :=
2|Gi ∩ Si|
|Gi|+ |Si|

Where Gi and Si are the relation labels assigned to one particular relation token i.
To give a few examples, an exact match would be scored as 1.0, whereas guessing a sub- or

superset (e.g. only Result instead of Result+Narration) would give a contribution of 0.66 for that
example, and overlapping predictions (Result+Comparison instead of Result+Narration) would get
a partial credit of 0.5.

The Dice score for a system is simply the sum of the Dice scores of all relation tokens divided by
the number of relation tokens in the dataset. Equivalently,

Dice(G,S) :=
1

N

∑
i

Dicetok(Gi, Si)

Because it averages over relation tokens, the Dice score is not very sensitive to the performance of
a system on minority relations – indeed, the solution of always assigning the most frequent relation
can give a Dice score that is very hard to beat. If one is interested in how well a system does
across all relations, it is more informative to average over relation types instead of over relation
tokens. Calculating the F1 scores of each individual relation type (label) and then the average over
all possible relation types yields the Macroaveraged F-Score (MAFS).

Formally, we can write this as

MAFS(G,S) :=

∑
rel∈Rel F1(Grel, Srel)

|Rel|

Because the macroaveraged F-score gives a (proportionally) larger importance to rare relations,
it is also less stable with respect to small changes in the system response, whenever these pertain to
less-frequent relation labels.

7.2 Quantitative results

Table 2 provides evaluation figures for different subsets of the presented features, using aggregate
measures over relations both at the coarsest level (for implicit discourse relations, the five categories
Contingency, Expansion, Temporal, Comparison, Reporting), and the finest level (which contains
twenty-one relations in the case of implicit relations).

For each level of granularity, we can measure the quality of the classifier’s predictions in terms
of an average over relation tokens, the Dice score, which assigns partial credit for a relation token

8. The Dice score is similar to a microaveraged F-measure. For instances with multiple labels, the Dice score
assigns less importance than for those with only a single label, while microaveraged F-score would weight them
proportionally to the number of labels.
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5 relations 21 relations Cont Expn Temp Comp Rept
Dice MAFS Dice MAFS F1 F1 F1 F1 F1

Restatement 0.474 0.129 0.161 0.014 0.00 0.65 0.00 0.00 0.00
random 0.338 0.233 0.096 0.056 0.27 0.50 0.06 0.21 0.14

ling only 0.540 0.396 0.274 0.127 0.40 0.68 0.32 0.00 0.58

bi(500) 0.471 0.251 0.201 0.066 0.23 0.64 0.04 0.00 0.34
bi(1k) 0.513 0.283 0.245 0.082 0.32 0.65 0.00 0.00 0.44
bi(2k) 0.517 0.283 0.257 0.089 0.31 0.65 0.02 0.00 0.44
bi(5k) 0.516 0.301 0.260 0.098 0.40 0.65 0.00 0.00 0.45

wp(500) 0.469 0.284 0.207 0.067 0.28 0.63 0.12 0.00 0.40
wp(1k) 0.469 0.252 0.197 0.070 0.20 0.64 0.05 0.00 0.37
wp(2k) 0.494 0.307 0.198 0.084 0.42 0.65 0.02 0.05 0.40
wp(5k) 0.489 0.297 0.200 0.083 0.41 0.66 0.00 0.05 0.37

pr(500) 0.474 0.129 0.184 0.026 0.00 0.65 0.00 0.00 0.00
pr(1k) 0.479 0.142 0.192 0.036 0.04 0.65 0.00 0.00 0.03
pr(2k) 0.478 0.185 0.199 0.046 0.27 0.66 0.00 0.00 0.00
pr(5k) 0.478 0.154 0.192 0.034 0.12 0.65 0.00 0.00 0.00

ling+bi(5k) 0.545 0.399 0.300† 0.141 0.39 0.69 0.33 0.00 0.59
ling+wp(2k) 0.552 0.408 0.277 0.144 0.42 0.68 0.33 0.00 0.61
ling+pr(5k) 0.546 0.399 0.297† 0.142 0.40 0.68 0.33 0.00 0.58

all/nogr 0.538 0.343 0.273 0.116 0.42 0.68 0.10 0.00 0.52

Table 2: Experiment I: Baselines, specialized linguistic features (ling), word/lemma/pos bigrams
(bi), word pairs (wp), CFG productions (pr), and combination of linguistic and shallow
features, and of all feature groups (all/nogr). None of the results show significant improve-
ments over the linguistic features (ling) according to McNemar’s test.

when system and/or gold standard contain multiple labels and both label sets overlap. As an average
over relation types, we can also calculate an average of the F-score over all relations, yielding the
macro-averaged F-score (MAFS; see Section 7.1).

We also performed statistical significance testing using McNemar’s test (Dietterich, 1998; Mc-
Nemar, 1947) by counting the transitions from wrong labelings (no overlap) to partially or totally
correct ones, and vice versa. Under the null assumption, the number of improvements should be
similar to the number of disimprovements, and the difference between the numbers of improvements
and disimprovements is assumed to be χ2-distributed.

Because the label distribution is heavily skewed – some relations, such as Restatement, are
relatively frequent with 140 occurrences, while, e.g., Contrast with 26 occurrences, is much less
frequent – a classification that is biased towards the more frequent relations will receive higher
token-weighted (Dice) scores and lower type-weighted (MAFS) scores, whereas an unbiased system
would receive lower Dice and higher macro-averaged F scores.

Table 3 compares the results that are obtained for the full graph (grA), a version with all features
except information status (grB), and finally a minimal version that excludes all semantic features
and lemmas (grC ).

In Experiment I (Table 2), we see that the linguistic features perform much better than the
shallow features, where in turn bigrams and word pairs reach a higher Dice score than the most-
frequent-relation baseline.

We also see that a combination of linguistic and all shallow features (all/nogr) performs less
well than the best-performing combination of the linguistic features with one of the shallow features
(ling+wp). For most of the shallow features, there is a threshold for the number of features below
which the classification quality deteriorates, and above which the results get slightly worse even
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5 relations 21 relations Cont Expn Temp Comp Rept
Dice MAFS Dice MAFS F1 F1 F1 F1 F1

grA(20k) 0.543 0.364 0.245 0.158 0.38 0.70 0.18 0.00 0.57
grB(20k) 0.552 0.372 0.266 0.167 0.36 0.69 0.20 0.03 0.58
grC(20k) 0.566‡0.398 0.291 0.172 0.38 0.70 0.27 0.06 0.58

ling+grA(20k) 0.580‡ 0.387 0.276 0.156 0.37 0.70 0.27 0.00 0.60
ling+grB(20k) 0.577‡ 0.396 0.294 0.172 0.36 0.71 0.30 0.00 0.61
ling+grC(20k) 0.588‡0.408 0.307†0.180 0.37 0.71 0.34 0.00 0.62

allA 0.572‡ 0.406 0.304† 0.176 0.42 0.70 0.29 0.00 0.62
allB 0.569‡ 0.407 0.297 0.174 0.39 0.70 0.31 0.00 0.62
allC 0.580‡0.414 0.306† 0.177 0.40 0.71 0.33 0.00 0.63

allA-pr 0.576‡ 0.411 0.296 0.175 0.43 0.70 0.33 0.00 0.60
allB-pr 0.582‡ 0.414 0.293 0.174 0.41 0.70 0.34 0.00 0.62
allC-pr 0.583‡ 0.413 0.310†0.178 0.40 0.71 0.35 0.00 0.62

Table 3: Experiment II: Graph-based representations for discourse segments: All information (grA),
all without information status (grB) and a delexicalized version of the graph representation
(grC ). All graph representations are shown by themselves (gr), in combination with linguis-
tic features (ling+gr), in combination with linguistic and all shallow features (all) as well
as with linguistic, bigram and word pair features (all-pr). Significant improvements over
linguistic features are marked (‡: p < 0.0001 according to McNemar’s test, †: p < 0.01).

though they remain quite stable. In the case of bigrams and grammar productions, this threshold
seems to lie around 1000 selected features, while the useful threshold for word pairs seems to lie
around 2000 selected features.

None of the improvements from the shallow features is a statistically significant improvement
according to the test: even in the case of the word pair features, which give a visible improvement
in score, the number of disimprovements is greater than the number of improvements; the number
of exact matches stays about the same.

Table 3 presents the results for Experiment II concerning the use of graph structures (together
with the use of subgraph extraction and feature selection).9

The graph structures by themselves already give results that are superior to those using linguistic
features. They provide a higher precision on Expansion relations, and generally better performance
on Reporting relations, is the only information source to provide enough information for the identifi-
cation of Comparison relations by themselves. In terms of statistical significance, the improvements
at the coarsest level correspond to a highly significant difference in behaviour: from the linguistic
features (ling) to the graph features (grA), there are 321 improvements and 178 disimprovements,
yielding a value of X2 ≈ 40.7 (p < 0.0001). On the finest level (21 relations), the linguistic features
and the graph features are not significantly different (p ≥ 0.4). (Similar things hold for combina-
tions of the graph features and other features — for the combination of all features without CFG
productions, the fine-grained level shows 176 improvements and 147 disimprovements, which does
not yet reach statistical significance at p ≈ 0.11).10

The second group of rows in Table 3, with combinations of the linguistic features with the shallow
information sources and with the graph representation, shows that the graph-based representation
works best also when compared to the combinations of linguistic and shallow features in Table 2.

9. Results differ from previous versions because the subgraph isomorphism detection from the VFLib library (Cordella
et al., 2004) turned out to give different results to gSpan’s internal matcher. The new results from Tables 3 and
6 directly use the matches output by the gSpan code.

10. A non-stratified paired t-test over the ten folds is considerably less sensitive; using the paired t-test, the Dice
scores of ling+grB, ling+grC, allC, allB-pr and allC-pr are all significantly higher than ling at p < 0.05, whereas
the test is too weak to detect other differences.

163



A graph-based approach for implicit discourse relations

5 relations 21 relations Cont Expn Temp Comp Rept
Dice MAFS Dice MAFS F1 F1 F1 F1 F1

Restatement 0.474 0.129 0.161 0.014 0.00 0.65 0.00 0.00 0.00
random 0.338 0.233 0.096 0.056 0.06 0.50 0.27 0.21 0.14

SVMperf

ling only (deg1) 0.476 0.134 0.167 0.025 0.00 0.65 0.00 0.00 0.03
ling only (deg2) 0.540 0.396 0.274 0.127 0.40 0.68 0.32 0.00 0.58
ling+gr(20k) 0.574 0.389 0.285 0.161 0.37 0.70 0.28 0.00 0.59
ling+gr(all) 0.506 0.431 0.253 0.181 0.41 0.66 0.29 0.16 0.63

SVMlight/TK

ling only (deg1) 0.497 0.406 0.242 0.162 0.37 0.63 0.10 0.31 0.61
ling only (deg2) 0.548 0.435 0.274 0.180 0.40 0.66 0.32 0.32 0.69
ling+gr(PTK) 0.507 0.346 0.211 0.104 0.35 0.64 0.19 0.00 0.54

Table 4: Experiment III: Different methods of classification using the graph structures.

We also see in the first group of rows in Table 3 that the graph representation with the richest
set of features performs best in isolation, with a drop in the Dice score when one uses a more im-
poverished representation. In contrast, the richer representation works less well when it is combined
with the linguistic features. In this case, the most impoverished representation performs best.

When all the shallow features are added to the linguistic and graph features, we see a (relatively
slight) drop in the Dice score, despite the fact that the F1 measure for individual relations and the
macroaveraged F-score show a slight improvement. Removing the grammar productions from the set
of information sources (fourth group of rows in Table 3), we again get a slight improvement. Similar
to the group of results combining linguistic and graph features, we see that the parsimonious grC
graph gives the best combination result (allC–pr, including linguistic, word pair, unigram/bigram,
and graph features) despite the more informative grA giving the best results in isolation.

Looking at individual relations, we see that the identification of rare relations such as Temporal,
Comparison, and Reporting is helped by the graph representation (the full system obtains the best
MAFS scores of 0.438 and 0.208, for coarse- and fine-grained relations, respectively, against 0.388
and 0.145 for the system without graph information). System variants with graph information also
obtain higher coarse-grained Dice scores (0.559–0.581) than the version without graph information
(0.552 for ling+wp and 0.538 for all–gr).

For Experiment III (Table 4), we compare the linearization-based approach of extracting
subgraphs from the graph representation and treating them as features for the SVMperf classifier

with an approach that uses the partial tree kernel to take into account the graph structure.
In the second group of rows of Table 4, we see that feature combination (i.e., forming features

from two of the original linguistic features) is essential for the performance of the linguistic features.
We also see that feature selection is essential for the performance of the graph-based approach: when
taking all 500 000 subgraphs instead of the most informative 20 000 ones, the additional noise drowns
even the information from the linguistic features and results in a Dice score of only 0.506 (against
0.540 for the linguistic features by themselves).

In the experiments using the SVMlight/TK classifier, we see parallel tendencies: we see that a
linear SVM (deg1) does not perform as well as an SVM classifier using a degree-2 polynomial kernel
(deg2). The classification results using the partial tree kernel are very similar to the graph-based
approach without feature selection, resulting in a Dice score of 0.507.

In Experiment IV (Table 5), we investigate whether the thresholds initially chosen — at most
three feature nodes, at least two non-feature edges, at least five occurrences — are in fact sensible,
and how sensitive our approach is to choice of the parameter.

It turns out that a small setting of the minimal support threshold is in fact beneficial to the
performance – it is possible to lower the threshold to two without any adverse effects (but note that
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5 relations 21 relations Cont Expn Temp Comp Rept
Dice MAFS Dice MAFS F1 F1 F1 F1 F1

Restatement 0.474 0.129 0.161 0.014 0.00 0.65 0.00 0.00 0.00
random 0.338 0.233 0.096 0.056 0.06 0.50 0.27 0.21 0.14
ling+grC, defaults 0.588 0.408 0.307 0.180 0.37 0.71 0.34 0.00 0.62

Minimum support

f ≥ 2 0.588 0.408 0.303 0.180 0.36 0.70 0.37 0.00 0.61
f ≥ 4 0.586 0.414 0.304 0.171 0.38 0.71 0.34 0.03 0.61
f ≥ 5 (default) 0.588 0.408 0.307 0.180 0.37 0.71 0.34 0.00 0.62
f ≥ 8 0.574 0.408 0.302 0.168 0.40 0.70 0.32 0.00 0.62
f ≥ 40 0.551 0.392 0.289 0.170 0.37 0.70 0.33 0.00 0.56

Maximum feature edges

N ≤ 1 0.560 0.405 0.280 0.179 0.36 0.70 0.33 0.04 0.60
N ≤ 2 0.582 0.419 0.304 0.174 0.41 0.71 0.33 0.03 0.62
N ≤ 3 (default) 0.588 0.408 0.307 0.180 0.37 0.71 0.34 0.00 0.62
N ≤ 4 0.584 0.403 0.303 0.186 0.37 0.71 0.34 0.00 0.60
N ≤ 5 0.585 0.407 0.306 0.193 0.38 0.70 0.34 0.00 0.60
N ≤ 6 0.580 0.403 0.305 0.192 0.39 0.70 0.33 0.00 0.60

Minimum backbone nodes

M ≥ 0 (default) 0.588 0.408 0.300 0.173 0.37 0.71 0.34 0.00 0.62
M ≥ 1 0.595 0.416 0.311 0.181 0.37 0.71 0.37 0.00 0.63
M ≥ 2 0.585 0.408 0.300 0.173 0.36 0.71 0.36 0.00 0.62
M ≥ 3 0.544 0.361 0.247 0.142 0.34 0.69 0.32 0.00 0.46
M ≥ 4 0.550 0.396 0.259 0.126 0.38 0.69 0.37 0.03 0.51

Table 5: Experiment IV: Thresholds for subgraph extraction.

the χ2-based feature selection that only keeps the 20 000 most informative features will also filter
out any matches that are too infrequent and/or uninformative).

With the number of feature edges, we see a large improvement between allowing only one feature
edge (which yields graphs that consist of mostly backbone nodes with at most one additional feature
overall) and allowing two of them. As the number of possible feature edges increases towards the
limit imposed on the total graph size for efficiency reasons (7 nodes, which would limit structures to
6 feature nodes and one backbone node), we see that classification performance only decreases very
slowly, again with the caveat that feature selection already filters out subgraphs that are altogether
uninformative. This can be compared with classification results for polynomial kernels, where the
inclusion of second-degree interactions yields large gains, but higher-degree interactions between
features bring decreasing returns (as well as noise and sparsity problems).

Looking at the version that only allows one feature edge, we see that the results come closer
to the linguistic features, but generally stay above the results for just linguistic features. Hence
the graph structure plays a dual role with respect to the linguistic features: the linguistic features
contain information about the whole sentence that does not necessarily profit from structural in-
formation, whereas the graph features’ strength consists both in combining local informations with
structural information about the surroundings, as well as in the efficient combination of local pieces
of information with each other.

Table 6 shows the results of applying the approach described here on data from the Penn Dis-
course Treebank (Experiment V). In this case, the most informative single feature is found in the
context-free productions, which give a slightly higher Dice score for themselves than when combined
with other features, and also a higher score than other features in isolation or in combination.

If we compare the English results with those obtained on the smaller German corpus, we see that
the English linguistic and graph features do not seem to be sufficient to predict Temporal relations,
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5 relations 13 relations Cont Expn Temp Comp
Dice MAFS Dice MAFS F1 F1 F1 F1

Conjunction 0.523 0.172 0.202 0.026 0.00 0.69 0.00 0.00
random 0.363 0.244 0.168 0.072 0.24 0.52 0.07 0.14

ling only 0.538 0.268 0.290 0.066 0.39 0.69 0.00 0.00
bi(5k) 0.536 0.268 0.320 0.091 0.39 0.68 0.00 0.00
wp(2k) 0.535 0.273 0.258 0.081 0.38 0.69 0.00 0.03
pr(2k) 0.554 0.283 0.347 0.092 0.44 0.69 0.00 0.00

ling+bi(5k) 0.545 0.349 0.339 0.120 0.42 0.69 0.00 0.29
ling+wp(2k) 0.544 0.281 0.323 0.091 0.43 0.69 0.00 0.01
ling+pr(2k) 0.552 0.281 0.339 0.093 0.44 0.69 0.00 0.00

gr(20k) 0.536 0.273 0.297 0.090 0.39 0.68 0.00 0.02
ling+gr(20k) 0.544 0.278 0.306 0.094 0.41 0.68 0.00 0.01

all 0.551 0.282 0.342 0.107 0.43 0.69 0.00 0.01
all-gr 0.549 0.280 0.349 0.114 0.44 0.69 0.00 0.00
all-bi 0.552 0.281 0.339 0.102 0.44 0.69 0.00 0.00
all-wp 0.549 0.283 0.338 0.104 0.43 0.69 0.00 0.01
all-pr 0.538 0.275 0.321 0.108 0.41 0.69 0.00 0.01

Table 6: Experiment V: Preliminary results on sections 00–02 of the Penn Treebank/Penn Discourse
Treebank.
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Figure 3: ROC curve comparison for the Temporal relation in TüBa-D/Z (left) and PDTB sample
(right)
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Figure 4: ROC curve comparison for the Comparison relation in TüBa-D/Z (left) and PDTB sample
(right)

whereas the German linguistic and graph features seem to allow this with some success. For the
other relations (Contingency, Expansion, Comparison), we can note that the performance is roughly
similar and in both languages appears to be correlated with the relative frequency of those relations,
with the most frequent group Expansion getting the best prediction results and the relatively less
frequent Contingency group also reaching an F-score in the middle range (around 0.40–0.43 for
German and around 0.44 for English).

In order to have a closer look of the differences with respect to the Temporal relation, let us have
a look at Figure 3. We see that the German subgraph feature is better than the English subgraph
feature when it comes to identifying temporal relations with high precision (lower left corner of
left graph, dashed line). At the same time, the grammar productions (continuous line) work less
well when it comes to high-precision identification of Temporal relations in German than they do in
English.

For Comparison, another of those relations that are not easy to predict, we see that the difference
is less pronounced. While the performance for Comparison relations in German is generally higher,
we also see that grammar productions and subgraph features stay relatively close together.

7.3 Error analysis

In order to assess the types of errors that occur in the classification, we extracted examples that
received high confidence values and therefore provide an indication for a robust true positive, false
negative or false positive.

For the Comparison relation, the detection of parallel structure is especially important, since
contrast or parallel relations tend to compare two items relative to a common aspect. In the follow-
ing Comparison relation, the parallel structure of a name in the subject and a past-tensed clause
(together with an asyndetic conjunction) is detected as an indicator for parallelism:

(8) [Okcuoglu war ein wohlerzogener Bauernsohn und wurde Jurist], [Öcalan wuchs als Kind
einer siebenköpfigen armen Bauernfamilie auf].
[Okcuoglu was a well-bred farmer’s son and became a lawyer ], [Öcalan grew up as the child
of a seven-strong poor farmer family ].
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The parallel structure is much harder to detect in the following example (which is not identified by
the system):

(9) [Eine interne Kostenrechnung geht von 1,4 Milliarden Mark aus], [Mitarbeiter der Kreisver-
waltung rechnen eher mit dem Doppelten].
[An internal cost estimate assumes about 1.4 billion Mark ], [employees of the local adminis-
tration rather expect twice that ].

In this case, the common integrator (different parties providing cost estimates) is hidden in the verbs
ausgehen (here: to assume) and mit . . . rechnen (to anticipate) is not accessible directly or even
through a comparison in GermaNet. The fact that the two contrasting entities (the internal cost
estimate and the one from the employees of the local administration) are (specific) indefinites rather
than definites, as well as structurally and semantically dissimilar, does not make the task easier;
finally, the parallelism between 1,4 Milliarden Mark (1.4 billion Mark) and dem Doppelten (twice
that) requires somewhat more complex inference.

Conversely, a vaguely similar temporal and modal structure is not a good indication for paral-
lelism:

(10) [Genmanipulationen lassen sich im nachhinein nur schwer nachweisen.] [Eine Garantie, daß
ihre Produkte gentechnikfrei seien, können selbst Ökobauern nicht mehr ohne Gewissensbisse
geben.]
[Genetic manipulations are hard to detect in retrospect.] [Not even organic farmers can give
a guarantee that their products are free from genetically engineered substances.]

Here, two verbs lassen (realizing an impersonal passive indicating the (im-)possibility of something)
and können (also indicating possibility) show a roughly similar structure, but simple argument
structure is not sufficient for detecting the causally mediated paraphrase between detecting genetic
manipulations and give a guarantee that their products are free from genetically engineered substances
that is needed for detecting the Instance relation of this example.

In the case of Contingency relations, we often find syntactic marking that is a strong indicator of
these relations (analogous to AltLex relations in the Penn Discourse Treebank, where some indicator
is present that does not fulfill the criteria for a discourse connective).

For example, adverbials (even temporal ones) can be a relatively good indicator of a (causal or
concessive) contingency relation:

(11) [In den neunziger Jahren, als er wegen neuer Haftstrafen seinen Beruf vorübergehend ein-
stellte,] [versuchte er sich als Publizist und Verlagsgründer.]
[In the nineties, when he had to leave his profession temporarily,] [he tried his hand as a
publicist and founding a publishing company.]

In absence of information about headedness (which is implicit in the relation labels), longer spans
of text become more an more intransparent. The following false negative exemplifies this weakness:

(12) [Die Hamburger Staatsanwaltschaft hat gegen den Sprecher der Bundesarbeitsgemeinschaft
kritischer PolizistInnen, Strafbefehl beantragt. Wenn das Gericht zustimmt, drohen Wüppesahl
zehn Monate Gefängnis.] [Er soll als Fahnder des Dezernats für “Kfz-Schiebereien” des Lan-
deskriminalamts (LKA 234) insgesamt 68 Ermittlungsakten entwendet haben.]
[The prosecution in Hamburg has requested a penalty order against the speaker of the national
working group of critical policepersons. If the court agrees, Wüppesahl would be threatened
with ten months of imprisonment ] [He is said to have stolen 68 investigation files as an
investigator of the department for “car trafficking” of the Landeskriminalamt (LKA 234)].

In this case, the system fails to find the causal relation between the alleged theft and the penalty
order.
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In some cases, lexical sparsity means that a ‘weak’ indicator which would give reliable information
is misinterpreted by the classifier:

(13) [Neben den ersten 14,9 Prozent von YPF durch einen Kauf vor einem Jahr,] [besitzen die
Spanier noch 56 Prozent des zweiten argentinischen Erdölunternehmen Astra.]
[Besides the first 14.9 percent of YPF through an acquisition a year ago,] [the Spaniards own
56 percent of the second Argentinian petrol company Astra.]

Reporting relations are most often marked through reporting verbs such as erzählen (to recount),
ankündigen (to announce):

(14) [“Prominentenakten sind weggeschlossen”,] [erklärt Gerhardt betont nüchtern.]
[“The files of celebrities are shut away”,] [Gerhard declares in an austere tone.]

In cases where the discourse relation holds through an anaphoric link, the identification is consider-
ably more difficult:

(15) [Private Unternehmen dürfen die Telefonbücher der Telekom-Tochter DeTeMedien nicht
ohne deren Erlaubnis zur Herstellung einer Telefonauskunfts-CD verwenden.] [Das hat der
Bundesgerichtshof (BGH) gestern in Karlsruhe entschieden.]
[Private companies are not allowed to use the telephone books of Telekom daughter company
DeTeMedien without its permission to create a telephone directory CD.] [This has been
decided by the federal court of law (BGH) yesterday in Karlsruhe.]

Similar to syntactically mediated Contingency relations, lexical sparseness results in clause subor-
dinations occurring as false positives for Reporting when the respective material is unknown.

In the case of Temporal relations, a past/past perfect sequence of tenses can be used successfully,
whereas temporal sequences that are understood because of our understanding of actions are missed:

(16) [Da steht Jusef auf.] [Er wendet den Blick von der Wand] . . .
[So Jusef stands up.][He diverts his gaze from the wall ] . . .

Finally, Expansion relations are typical for large spans of text, and constitute the majority of
discourse relations for these. In rare cases, such as right dislocation or fragments — often with
a relation between main verb and the head noun of such a fragment — the relation between the
fragments cannot be inferred with the means of the current system:

(17) [In leicht zeitversetzten Sequenzen hört man disharmonische Tonfolgen und Lautsprecher-
pfeifen -] [jenes “Feedback” eben, das er sich als Maler erhofft.]
[In time-shifted sequences one hears disharmonic note sequences and loudspeaker whistling ]
- [just the kind of “feedback” that he was hoping for as a painter.]

Taking a step back, we should note that there is a subset of implicit discourse relations that is
tractable in the sense that, even without the context, knowing the content of both discourse relation
arguments would put us in a good position to evaluate whether they are both information pertaining
to a common question under discussion (as with Comparison relations), or whether one clause is
the direct or indirect argument to a suitable verb in the other clause (which is the case for some
constructions indicating a Contingency or Reporting relation), or use knowledge about events to
estimate the likelihood of a causal or temporal relation. The annotation scheme of TüBa-D/Z makes
learning these indicators more straightforward, as, e.g., discourse relations expressing instances of
event causation are annotated as (and can be learned as) instances both of a temporal and of a
causal connection.

In many cases we see the limits of a purely supervised approach based on treebank data and
taxonomic information such as that available from GermaNet: some important lexical clues, such as
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the nature of reporting verbs, can be learned in a supervised fashion (the head lemmas in the ling
feature, or the respective information in the graph descriptions), but suffer from sparsity. In some
cases, such as the more difficult cases of Comparison relations, it would be necessary to judge the
similarity of whole phrases, or the event types realized by the clauses, which is a currently unsolved
problem where we might however see improvements. In many cases that are already in the reach
of automatic classification, we see that capturing the interaction between lexical and structural
information, as is possible with the graph structure, is instrumental to improving the achievable
results.

8. Conclusion

In this article, we introduced the notion of feature-node graphs, which distinguish between so-called
backbone nodes, which correspond to elements of linguistic structure, and feature nodes which contain
information about these nodes in a structured-input classification task. We applied an approach
that combines a graph-based representation, more detailed linguistic information and shallow surface
features to the prediction of unmarked discourse relations in German, with a comparative experiment
aimed at understanding the differences with respect to English.

For German, we found that the graph-based representation, when paired with subgraph ex-
traction and supervised feature selection, significantly improves the classification performance over
a strong baseline of linguistic features, where shallow features bring a more limited improvement
(which does not reach statistical significance). Comparing different variants of the approach of graph
construction, we find that, similar to nominal features, noisy or sparse information can hurt clas-
sification performance — to counter this, careful construction of the graph, as well as supervised
feature selection are effective tools. In a related experiment, we used the graph-based representation
together with support vector machines and the partial tree kernel implementation in SVMlight/TK.
The results of this experiment, where tree kernels, similarly to subgraph extraction without feature
selection, perform relatively poorly, indicate that feature selection is indeed one of the essential in-
gredients for filtering the broad set of possible subgraphs down to a much narrower set of informative
subgraphs.

Finally, we presented preliminary experiments using English data. On the small subset of the
Penn Discourse Treebank that we used for comparison, we see a similar general tendency for the most
frequent relations to be well-represented in the classification, while rarer relations are less reliable.
In contrast to German, we find that the classification of Temporal relations reaches somewhat lower
performance, and we also see a different relative importance of grammar productions on one hand
and subgraph features on the other. Possible causes for this discrepancy include differences in the
grouping of discourse relations (where the TüBa-D/Z puts relations in the Comparison group when-
ever they are correlated with structural parallelism — including the parallel relation — whereas the
PDTB’s definition hinges on the more abstract criterion that the author wants “to highlight promi-
nent differences between the two situations”), or in the resources used in the graph construction. A
more elaborate graph construction, and possibly more meaningful comparison for English, will be
subject of future work.
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